/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-07-10 Ernest 1st version * 2020-10-14 Dozingfiretruck Porting for stm32wbxx * 2020-11-26 thread-liu add hash * 2020-11-26 thread-liu add cryp * 2020-12-11 WKJay fix build problem */ #include #include #include #include #include "drv_crypto.h" #include "board.h" #include "drv_config.h" struct stm32_hwcrypto_device { struct rt_hwcrypto_device dev; struct rt_mutex mutex; }; #if defined(BSP_USING_CRC) #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1) static struct hwcrypto_crc_cfg crc_backup_cfg; static int reverse_bit(rt_uint32_t n) { n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa); n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc); n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0); n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00); n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000); return n; } #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */ static rt_uint32_t _crc_update(struct hwcrypto_crc *ctx, const rt_uint8_t *in, rt_size_t length) { rt_uint32_t result = 0; struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data; #if defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1) CRC_HandleTypeDef *HW_TypeDef = (CRC_HandleTypeDef *)(ctx->parent.contex); #endif rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER); #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1) if (memcmp(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)) != 0) { if (HW_TypeDef->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_DISABLE) { HW_TypeDef->Init.GeneratingPolynomial = ctx ->crc_cfg.poly; } else { HW_TypeDef->Init.GeneratingPolynomial = DEFAULT_CRC32_POLY; } switch (ctx ->crc_cfg.flags) { case 0: HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE; HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE; break; case CRC_FLAG_REFIN: HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE; break; case CRC_FLAG_REFOUT: HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE; break; case CRC_FLAG_REFIN|CRC_FLAG_REFOUT: HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE; HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE; break; default : goto _exit; } switch(ctx ->crc_cfg.width) { #if defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B) case 7: HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_7B; break; case 8: HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_8B; break; case 16: HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_16B; break; case 32: HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B; break; default : goto _exit; #else case 32: HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B; break; default : goto _exit; #endif /* defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B) */ } if (HW_TypeDef->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_DISABLE) { HW_TypeDef->Init.InitValue = ctx ->crc_cfg.last_val; } if (HAL_CRC_Init(HW_TypeDef) != HAL_OK) { goto _exit; } memcpy(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)); } if (HAL_CRC_STATE_READY != HAL_CRC_GetState(HW_TypeDef)) { goto _exit; } #else if (ctx->crc_cfg.flags != 0 || ctx->crc_cfg.last_val != 0xFFFFFFFF || ctx->crc_cfg.xorout != 0 || length % 4 != 0) { goto _exit; } length /= 4; #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */ result = HAL_CRC_Accumulate(ctx->parent.contex, (rt_uint32_t *)in, length); #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1) if (HW_TypeDef->Init.OutputDataInversionMode) { ctx ->crc_cfg.last_val = reverse_bit(result); } else { ctx ->crc_cfg.last_val = result; } crc_backup_cfg.last_val = ctx ->crc_cfg.last_val; result = (result ? result ^ (ctx ->crc_cfg.xorout) : result); #endif /* defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */ _exit: rt_mutex_release(&stm32_hw_dev->mutex); return result; } static const struct hwcrypto_crc_ops crc_ops = { .update = _crc_update, }; #endif /* BSP_USING_CRC */ #if defined(BSP_USING_RNG) static rt_uint32_t _rng_rand(struct hwcrypto_rng *ctx) { rt_uint32_t gen_random = 0; RNG_HandleTypeDef *HW_TypeDef = (RNG_HandleTypeDef *)(ctx->parent.contex); if (HAL_OK == HAL_RNG_GenerateRandomNumber(HW_TypeDef, &gen_random)) { return gen_random ; } return 0; } static const struct hwcrypto_rng_ops rng_ops = { .update = _rng_rand, }; #endif /* BSP_USING_RNG */ #if defined(BSP_USING_HASH) static rt_err_t _hash_update(struct hwcrypto_hash *ctx, const rt_uint8_t *in, rt_size_t length) { rt_uint32_t tickstart = 0; rt_uint32_t result = RT_EOK; struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data; rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER); #if defined(SOC_SERIES_STM32MP1) HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex); /* Start HASH computation using DMA transfer */ switch (ctx->parent.type) { case HWCRYPTO_TYPE_SHA224: result = HAL_HASHEx_SHA224_Start_DMA(HW_TypeDef, (uint8_t *)in, length); break; case HWCRYPTO_TYPE_SHA256: result = HAL_HASHEx_SHA256_Start_DMA(HW_TypeDef, (uint8_t *)in, length); break; case HWCRYPTO_TYPE_MD5: result = HAL_HASH_MD5_Start_DMA(HW_TypeDef, (uint8_t *)in, length); break; case HWCRYPTO_TYPE_SHA1: result = HAL_HASH_SHA1_Start_DMA(HW_TypeDef, (uint8_t *)in, length); break; default : rt_kprintf("not support hash type: %x", ctx->parent.type); break; } if (result != HAL_OK) { goto _exit; } /* Wait for DMA transfer to complete */ tickstart = rt_tick_get(); while (HAL_HASH_GetState(HW_TypeDef) == HAL_HASH_STATE_BUSY) { if (rt_tick_get() - tickstart > 0xFFFF) { result = RT_ETIMEOUT; goto _exit; } } #endif _exit: rt_mutex_release(&stm32_hw_dev->mutex); return result; } static rt_err_t _hash_finish(struct hwcrypto_hash *ctx, rt_uint8_t *out, rt_size_t length) { rt_uint32_t result = RT_EOK; struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data; rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER); #if defined(SOC_SERIES_STM32MP1) HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex); /* Get the computed digest value */ switch (ctx->parent.type) { case HWCRYPTO_TYPE_SHA224: result = HAL_HASHEx_SHA224_Finish(HW_TypeDef, (uint8_t *)out, length); break; case HWCRYPTO_TYPE_SHA256: result = HAL_HASHEx_SHA256_Finish(HW_TypeDef, (uint8_t *)out, length); break; case HWCRYPTO_TYPE_MD5: result = HAL_HASH_MD5_Finish(HW_TypeDef, (uint8_t *)out, length); break; case HWCRYPTO_TYPE_SHA1: result = HAL_HASH_SHA1_Finish(HW_TypeDef, (uint8_t *)out, length); break; default : rt_kprintf("not support hash type: %x", ctx->parent.type); break; } if (result != HAL_OK) { goto _exit; } #endif _exit: rt_mutex_release(&stm32_hw_dev->mutex); return result; } static const struct hwcrypto_hash_ops hash_ops = { .update = _hash_update, .finish = _hash_finish }; #endif /* BSP_USING_HASH */ #if defined(BSP_USING_CRYP) static rt_err_t _cryp_crypt(struct hwcrypto_symmetric *ctx, struct hwcrypto_symmetric_info *info) { rt_uint32_t result = RT_EOK; rt_uint32_t tickstart = 0; struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data; rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER); #if defined(SOC_SERIES_STM32MP1) CRYP_HandleTypeDef *HW_TypeDef = (CRYP_HandleTypeDef *)(ctx->parent.contex); switch (ctx->parent.type) { case HWCRYPTO_TYPE_AES_ECB: HW_TypeDef->Init.Algorithm = CRYP_AES_ECB; break; case HWCRYPTO_TYPE_AES_CBC: HW_TypeDef->Init.Algorithm = CRYP_AES_CBC; break; case HWCRYPTO_TYPE_AES_CTR: HW_TypeDef->Init.Algorithm = CRYP_AES_CTR; break; case HWCRYPTO_TYPE_DES_ECB: HW_TypeDef->Init.Algorithm = CRYP_DES_ECB; break; case HWCRYPTO_TYPE_DES_CBC: HW_TypeDef->Init.Algorithm = CRYP_DES_CBC; break; default : rt_kprintf("not support cryp type: %x", ctx->parent.type); break; } HAL_CRYP_DeInit(HW_TypeDef); HW_TypeDef->Init.DataType = CRYP_DATATYPE_8B; HW_TypeDef->Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE; HW_TypeDef->Init.KeySize = CRYP_KEYSIZE_128B; HW_TypeDef->Init.pKey = (uint32_t*)ctx->key; result = HAL_CRYP_Init(HW_TypeDef); if (result != HAL_OK) { /* Initialization Error */ goto _exit; } if (info->mode == HWCRYPTO_MODE_ENCRYPT) { result = HAL_CRYP_Encrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out); } else if (info->mode == HWCRYPTO_MODE_DECRYPT) { result = HAL_CRYP_Decrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out); } else { rt_kprintf("error cryp mode : %02x!\n", info->mode); result = -RT_ERROR; goto _exit; } if (result != HAL_OK) { goto _exit; } tickstart = rt_tick_get(); while (HAL_CRYP_GetState(HW_TypeDef) != HAL_CRYP_STATE_READY) { if (rt_tick_get() - tickstart > 0xFFFF) { result = RT_ETIMEOUT; goto _exit; } } #endif if (result != HAL_OK) { goto _exit; } _exit: rt_mutex_release(&stm32_hw_dev->mutex); return result; } static const struct hwcrypto_symmetric_ops cryp_ops = { .crypt = _cryp_crypt }; #endif static rt_err_t _crypto_create(struct rt_hwcrypto_ctx *ctx) { rt_err_t res = RT_EOK; switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK) { #if defined(BSP_USING_RNG) case HWCRYPTO_TYPE_RNG: { __HAL_RCC_RNG_CLK_ENABLE(); RNG_HandleTypeDef *hrng = rt_calloc(1, sizeof(RNG_HandleTypeDef)); if (RT_NULL == hrng) { res = -RT_ERROR; break; } #if defined(SOC_SERIES_STM32MP1) hrng->Instance = RNG2; #else hrng->Instance = RNG; #endif HAL_RNG_Init(hrng); ctx->contex = hrng; ((struct hwcrypto_rng *)ctx)->ops = &rng_ops; break; } #endif /* BSP_USING_RNG */ #if defined(BSP_USING_CRC) case HWCRYPTO_TYPE_CRC: { CRC_HandleTypeDef *hcrc = rt_calloc(1, sizeof(CRC_HandleTypeDef)); if (RT_NULL == hcrc) { res = -RT_ERROR; break; } #if defined(SOC_SERIES_STM32MP1) hcrc->Instance = CRC2; #else hcrc->Instance = CRC; #endif #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1) hcrc->Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE; hcrc->Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE; hcrc->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE; hcrc->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE; hcrc->InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES; #else if (HAL_CRC_Init(hcrc) != HAL_OK) { res = -RT_ERROR; } #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */ ctx->contex = hcrc; ((struct hwcrypto_crc *)ctx)->ops = &crc_ops; break; } #endif /* BSP_USING_CRC */ #if defined(BSP_USING_HASH) case HWCRYPTO_TYPE_MD5: case HWCRYPTO_TYPE_SHA1: case HWCRYPTO_TYPE_SHA2: { HASH_HandleTypeDef *hash = rt_calloc(1, sizeof(HASH_HandleTypeDef)); if (RT_NULL == hash) { res = -RT_ERROR; break; } #if defined(SOC_SERIES_STM32MP1) /* enable dma for hash */ __HAL_RCC_DMA2_CLK_ENABLE(); HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 0); HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); hash->Init.DataType = HASH_DATATYPE_8B; if (HAL_HASH_Init(hash) != HAL_OK) { res = -RT_ERROR; } #endif ctx->contex = hash; ((struct hwcrypto_hash *)ctx)->ops = &hash_ops; break; } #endif /* BSP_USING_HASH */ #if defined(BSP_USING_CRYP) case HWCRYPTO_TYPE_AES: case HWCRYPTO_TYPE_DES: case HWCRYPTO_TYPE_3DES: case HWCRYPTO_TYPE_RC4: case HWCRYPTO_TYPE_GCM: { CRYP_HandleTypeDef *cryp = rt_calloc(1, sizeof(CRYP_HandleTypeDef)); if (RT_NULL == cryp) { res = -RT_ERROR; break; } #if defined(SOC_SERIES_STM32MP1) cryp->Instance = CRYP2; /* enable dma for cryp */ __HAL_RCC_DMA2_CLK_ENABLE(); HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 0); HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 2, 0); HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); if (HAL_CRYP_Init(cryp) != HAL_OK) { res = -RT_ERROR; } #endif ctx->contex = cryp; ((struct hwcrypto_symmetric *)ctx)->ops = &cryp_ops; break; } #endif /* BSP_USING_CRYP */ default: res = -RT_ERROR; break; } return res; } static void _crypto_destroy(struct rt_hwcrypto_ctx *ctx) { switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK) { #if defined(BSP_USING_RNG) case HWCRYPTO_TYPE_RNG: break; #endif /* BSP_USING_RNG */ #if defined(BSP_USING_CRC) case HWCRYPTO_TYPE_CRC: __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex); HAL_CRC_DeInit((CRC_HandleTypeDef *)(ctx->contex)); break; #endif /* BSP_USING_CRC */ #if defined(BSP_USING_HASH) case HWCRYPTO_TYPE_MD5: case HWCRYPTO_TYPE_SHA1: case HWCRYPTO_TYPE_SHA2: __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex)); HAL_HASH_DeInit((HASH_HandleTypeDef *)(ctx->contex)); break; #endif /* BSP_USING_HASH */ #if defined(BSP_USING_CRYP) case HWCRYPTO_TYPE_AES: case HWCRYPTO_TYPE_DES: case HWCRYPTO_TYPE_3DES: case HWCRYPTO_TYPE_RC4: case HWCRYPTO_TYPE_GCM: HAL_CRYP_DeInit((CRYP_HandleTypeDef *)(ctx->contex)); break; #endif /* BSP_USING_CRYP */ default: break; } rt_free(ctx->contex); } static rt_err_t _crypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src) { rt_err_t res = RT_EOK; switch (src->type & HWCRYPTO_MAIN_TYPE_MASK) { #if defined(BSP_USING_RNG) case HWCRYPTO_TYPE_RNG: if (des->contex && src->contex) { rt_memcpy(des->contex, src->contex, sizeof(RNG_HandleTypeDef)); } break; #endif /* BSP_USING_RNG */ #if defined(BSP_USING_CRC) case HWCRYPTO_TYPE_CRC: if (des->contex && src->contex) { rt_memcpy(des->contex, src->contex, sizeof(CRC_HandleTypeDef)); } break; #endif /* BSP_USING_CRC */ #if defined(BSP_USING_HASH) case HWCRYPTO_TYPE_MD5: case HWCRYPTO_TYPE_SHA1: case HWCRYPTO_TYPE_SHA2: if (des->contex && src->contex) { rt_memcpy(des->contex, src->contex, sizeof(HASH_HandleTypeDef)); } break; #endif /* BSP_USING_HASH */ #if defined(BSP_USING_CRYP) case HWCRYPTO_TYPE_AES: case HWCRYPTO_TYPE_DES: case HWCRYPTO_TYPE_3DES: case HWCRYPTO_TYPE_RC4: case HWCRYPTO_TYPE_GCM: if (des->contex && src->contex) { rt_memcpy(des->contex, src->contex, sizeof(CRYP_HandleTypeDef)); } break; #endif /* BSP_USING_CRYP */ default: res = -RT_ERROR; break; } return res; } static void _crypto_reset(struct rt_hwcrypto_ctx *ctx) { switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK) { #if defined(BSP_USING_RNG) case HWCRYPTO_TYPE_RNG: break; #endif /* BSP_USING_RNG */ #if defined(BSP_USING_CRC) case HWCRYPTO_TYPE_CRC: __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex); break; #endif /* BSP_USING_CRC */ #if defined(BSP_USING_HASH) case HWCRYPTO_TYPE_MD5: case HWCRYPTO_TYPE_SHA1: case HWCRYPTO_TYPE_SHA2: __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex)); break; #endif /* BSP_USING_HASH*/ #if defined(BSP_USING_CRYP) case HWCRYPTO_TYPE_AES: case HWCRYPTO_TYPE_DES: case HWCRYPTO_TYPE_3DES: case HWCRYPTO_TYPE_RC4: case HWCRYPTO_TYPE_GCM: break; #endif /* BSP_USING_CRYP */ default: break; } } #if defined(HASH2_IN_DMA_INSTANCE) void HASH2_DMA_IN_IRQHandler(void) { extern DMA_HandleTypeDef hdma_hash_in; /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&hdma_hash_in); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(CRYP2_IN_DMA_INSTANCE) void CRYP2_DMA_IN_IRQHandler(void) { extern DMA_HandleTypeDef hdma_cryp_in; /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&hdma_cryp_in); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined (CRYP2_OUT_DMA_INSTANCE) void CRYP2_DMA_OUT_IRQHandler(void) { extern DMA_HandleTypeDef hdma_cryp_out; /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&hdma_cryp_out); /* leave interrupt */ rt_interrupt_leave(); } #endif static const struct rt_hwcrypto_ops _ops = { .create = _crypto_create, .destroy = _crypto_destroy, .copy = _crypto_clone, .reset = _crypto_reset, }; int stm32_hw_crypto_device_init(void) { static struct stm32_hwcrypto_device _crypto_dev; rt_uint32_t cpuid[3] = {0}; _crypto_dev.dev.ops = &_ops; #if defined(BSP_USING_UDID) #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) cpuid[0] = HAL_GetUIDw0(); cpuid[1] = HAL_GetUIDw1(); #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) cpuid[0] = HAL_GetREVID(); cpuid[1] = HAL_GetDEVID(); #endif #endif /* BSP_USING_UDID */ _crypto_dev.dev.id = 0; rt_memcpy(&_crypto_dev.dev.id, cpuid, 8); _crypto_dev.dev.user_data = &_crypto_dev; if (rt_hwcrypto_register(&_crypto_dev.dev, RT_HWCRYPTO_DEFAULT_NAME) != RT_EOK) { return -1; } rt_mutex_init(&_crypto_dev.mutex, RT_HWCRYPTO_DEFAULT_NAME, RT_IPC_FLAG_PRIO); return 0; } INIT_DEVICE_EXPORT(stm32_hw_crypto_device_init);