#include #include #include "dm9000.h" #include /* * Davicom DM9000EP driver * * IRQ_LAN connects to EINT7(GPF7) * nLAN_CS connects to nGCS4 */ /* #define DM9000_DEBUG 1 */ #if DM9000_DEBUG #define DM9000_TRACE rt_kprintf #else #define DM9000_TRACE(...) #endif /* * DM9000 interrupt line is connected to PF7 */ //-------------------------------------------------------- #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define MAX_ADDR_LEN 6 enum DM9000_PHY_mode { DM9000_10MHD = 0, DM9000_100MHD = 1, DM9000_10MFD = 4, DM9000_100MFD = 5, DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10 }; enum DM9000_TYPE { TYPE_DM9000E, TYPE_DM9000A, TYPE_DM9000B }; struct rt_dm9000_eth { /* inherit from ethernet device */ struct eth_device parent; enum DM9000_TYPE type; enum DM9000_PHY_mode mode; rt_uint8_t packet_cnt; /* packet I or II */ rt_uint16_t queue_packet_len; /* queued packet (packet II) */ /* interface address info. */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ }; static struct rt_dm9000_eth dm9000_device; static struct rt_semaphore sem_ack, sem_lock; void rt_dm9000_isr(int irqno); static void delay_ms(rt_uint32_t ms) { rt_uint32_t len; for (;ms > 0; ms --) for (len = 0; len < 100; len++ ); } /* Read a byte from I/O port */ rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg) { DM9000_IO = reg; return (rt_uint8_t) DM9000_DATA; } /* Write a byte to I/O port */ rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value) { DM9000_IO = reg; DM9000_DATA = value; } /* Read a word from phyxcer */ rt_inline rt_uint16_t phy_read(rt_uint16_t reg) { rt_uint16_t val; /* Fill the phyxcer register into REG_0C */ dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg); dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */ delay_ms(100); /* Wait read complete */ dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */ val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL); return val; } /* Write a word to phyxcer */ rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value) { /* Fill the phyxcer register into REG_0C */ dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ dm9000_io_write(DM9000_EPDRL, (value & 0xff)); dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff)); dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */ delay_ms(500); /* Wait write complete */ dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */ } /* Set PHY operationg mode */ rt_inline void phy_mode_set(rt_uint32_t media_mode) { rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000; if (!(media_mode & DM9000_AUTO)) { switch (media_mode) { case DM9000_10MHD: phy_reg4 = 0x21; phy_reg0 = 0x0000; break; case DM9000_10MFD: phy_reg4 = 0x41; phy_reg0 = 0x1100; break; case DM9000_100MHD: phy_reg4 = 0x81; phy_reg0 = 0x2000; break; case DM9000_100MFD: phy_reg4 = 0x101; phy_reg0 = 0x3100; break; } phy_write(4, phy_reg4); /* Set PHY media mode */ phy_write(0, phy_reg0); /* Tmp */ } dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */ dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */ } /* interrupt service routine */ void rt_dm9000_isr(int irqno) { rt_uint16_t int_status; rt_uint16_t last_io; rt_uint32_t eint_pend; last_io = DM9000_IO; /* Disable all interrupts */ dm9000_io_write(DM9000_IMR, IMR_PAR); /* Got DM9000 interrupt status */ int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */ dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */ DM9000_TRACE("dm9000 isr: int status %04x\n", int_status); /* receive overflow */ if (int_status & ISR_ROS) { rt_kprintf("overflow\n"); } if (int_status & ISR_ROOS) { rt_kprintf("overflow counter overflow\n"); } /* Received the coming packet */ if (int_status & ISR_PRS) { /* a frame has been received */ eth_device_ready(&(dm9000_device.parent)); } /* Transmit Interrupt check */ if (int_status & ISR_PTS) { /* transmit done */ int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */ if (tx_status & (NSR_TX2END | NSR_TX1END)) { dm9000_device.packet_cnt --; if (dm9000_device.packet_cnt > 0) { DM9000_TRACE("dm9000 isr: tx second packet\n"); /* transmit packet II */ /* Set TX length to DM9000 */ dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff); dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff); /* Issue TX polling command */ dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } /* One packet sent complete */ rt_sem_release(&sem_ack); } } /* Re-enable interrupt mask */ dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM); DM9000_IO = last_io; } /* RT-Thread Device Interface */ /* initialize the interface */ static rt_err_t rt_dm9000_init(rt_device_t dev) { int i, oft, lnk; rt_uint32_t value; /* RESET device */ dm9000_io_write(DM9000_NCR, NCR_RST); delay_ms(1000); /* delay 1ms */ /* identfy DM9000 */ value = dm9000_io_read(DM9000_VIDL); value |= dm9000_io_read(DM9000_VIDH) << 8; value |= dm9000_io_read(DM9000_PIDL) << 16; value |= dm9000_io_read(DM9000_PIDH) << 24; if (value == DM9000_ID) { rt_kprintf("dm9000 id: 0x%x\n", value); } else { rt_kprintf("dm9000 id: 0x%x\n", value); return -RT_ERROR; } /* GPIO0 on pre-activate PHY */ dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */ dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */ /* Set PHY */ phy_mode_set(dm9000_device.mode); /* Program operating register */ dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */ dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */ dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */ dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */ dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */ dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */ dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */ dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */ /* set mac address */ for (i = 0, oft = 0x10; i < 6; i++, oft++) dm9000_io_write(oft, dm9000_device.dev_addr[i]); /* set multicast address */ for (i = 0, oft = 0x16; i < 8; i++, oft++) dm9000_io_write(oft, 0xff); /* Activate DM9000 */ dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */ dm9000_io_write(DM9000_IMR, IMR_PAR); if (dm9000_device.mode == DM9000_AUTO) { i = 0; while (!(phy_read(1) & 0x20)) { /* autonegation complete bit */ rt_thread_delay( RT_TICK_PER_SECOND/10 ); i++; if (i > 30 ) /* wait 3s */ { rt_kprintf("could not establish link\n"); return 0; } } } /* send a notify */ eth_device_linkchange(&dm9000_device.parent, RT_TRUE); /* see what we've got */ lnk = phy_read(17) >> 12; rt_kprintf("operating at "); switch (lnk) { case 1: rt_kprintf("10M half duplex "); break; case 2: rt_kprintf("10M full duplex "); break; case 4: rt_kprintf("100M half duplex "); break; case 8: rt_kprintf("100M full duplex "); break; default: rt_kprintf("unknown: %d ", lnk); break; } rt_kprintf("mode\n"); /* Enable TX/RX interrupt mask */ dm9000_io_write(DM9000_IMR,IMR_PAR | IMR_PTM | IMR_PRM); return RT_EOK; } static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_dm9000_close(rt_device_t dev) { /* RESET devie */ phy_write(0, 0x8000); /* PHY RESET */ dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */ dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */ dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */ return RT_EOK; } static rt_ssize_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_ssize_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_dm9000_control(rt_device_t dev, int cmd, void *args) { switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) rt_memcpy(args, dm9000_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* ethernet device interface */ /* transmit packet. */ rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p) { DM9000_TRACE("dm9000 tx: %d\n", p->tot_len); /* lock DM9000 device */ rt_sem_take(&sem_lock, RT_WAITING_FOREVER); /* disable dm9000a interrupt */ dm9000_io_write(DM9000_IMR, IMR_PAR); /* Move data to DM9000 TX RAM */ DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD); { /* q traverses through linked list of pbuf's * This list MUST consist of a single packet ONLY */ struct pbuf *q; rt_uint16_t pbuf_index = 0; rt_uint8_t word[2], word_index = 0; q = p; /* Write data into dm9000a, two bytes at a time * Handling pbuf's with odd number of bytes correctly * No attempt to optimize for speed has been made */ while (q) { if (pbuf_index < q->len) { word[word_index++] = ((u8_t*)q->payload)[pbuf_index++]; if (word_index == 2) { DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]); word_index = 0; } } else { q = q->next; pbuf_index = 0; } } /* One byte could still be unsent */ if (word_index == 1) { DM9000_outw(DM9000_DATA_BASE, word[0]); } } if (dm9000_device.packet_cnt == 0) { DM9000_TRACE("dm9000 tx: first packet\n"); dm9000_device.packet_cnt ++; /* Set TX length to DM9000 */ dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff); dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff); /* Issue TX polling command */ dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } else { DM9000_TRACE("dm9000 tx: second packet\n"); dm9000_device.packet_cnt ++; dm9000_device.queue_packet_len = p->tot_len; } /* enable dm9000a interrupt */ dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM); /* unlock DM9000 device */ rt_sem_release(&sem_lock); /* wait ack */ rt_sem_take(&sem_ack, RT_WAITING_FOREVER); DM9000_TRACE("dm9000 tx done\n"); return RT_EOK; } /* reception packet. */ struct pbuf *rt_dm9000_rx(rt_device_t dev) { struct pbuf* p; rt_uint32_t rxbyte; rt_uint16_t rx_status, rx_len; rt_uint16_t* data; /* init p pointer */ p = RT_NULL; /* lock DM9000 device */ rt_sem_take(&sem_lock, RT_WAITING_FOREVER); __error_retry: /* Check packet ready or not */ dm9000_io_read(DM9000_MRCMDX); /* Dummy read */ rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */ if (rxbyte) { if (rxbyte > 1) { DM9000_TRACE("dm9000 rx: rx error, stop device\n"); dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */ dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */ } /* A packet ready now & Get status/length */ DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD); rx_status = DM9000_inw(DM9000_DATA_BASE); rx_len = DM9000_inw(DM9000_DATA_BASE); DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len); /* allocate buffer */ p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM); if (p != RT_NULL) { struct pbuf* q; rt_int32_t len; for (q = p; q != RT_NULL; q= q->next) { data = (rt_uint16_t*)q->payload; len = q->len; while (len > 0) { *data = DM9000_inw(DM9000_DATA_BASE); data ++; len -= 2; } } } else { rt_uint16_t dummy; rt_kprintf("dm9000 rx: no pbuf\n"); /* no pbuf, discard data from DM9000 */ data = &dummy; while (rx_len) { *data = DM9000_inw(DM9000_DATA_BASE); rx_len -= 2; } } if ((rx_status & 0xbf00) || (rx_len < 0x40) || (rx_len > DM9000_PKT_MAX)) { rt_kprintf("rx error: status %04x, rx_len: %d\n", rx_status, rx_len); if (rx_status & 0x100) { rt_kprintf("rx fifo error\n"); } if (rx_status & 0x200) { rt_kprintf("rx crc error\n"); } if (rx_status & 0x8000) { rt_kprintf("rx length error\n"); } if (rx_len > DM9000_PKT_MAX) { rt_kprintf("rx length too big\n"); /* RESET device */ dm9000_io_write(DM9000_NCR, NCR_RST); rt_thread_delay(1); /* delay 5ms */ } /* it issues an error, release pbuf */ if (p != RT_NULL) pbuf_free(p); p = RT_NULL; goto __error_retry; } } else { /* clear packet received latch status */ dm9000_io_write(DM9000_ISR, ISR_PTS); /* restore receive interrupt */ dm9000_io_write(DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM); } /* unlock DM9000 device */ rt_sem_release(&sem_lock); return p; } #define B4_Tacs 0x0 #define B4_Tcos 0x0 #define B4_Tacc 0x7 #define B4_Tcoh 0x0 #define B4_Tah 0x0 #define B4_Tacp 0x0 #define B4_PMC 0x0 void INTEINT4_7_handler(int irqno, void *param) { rt_uint32_t eint_pend; eint_pend = EINTPEND; /* EINT7 : DM9000AEP */ if( eint_pend & (1<<7) ) { rt_dm9000_isr(0); } /* clear EINT pending bit */ EINTPEND = eint_pend; } int rt_hw_dm9000_init() { /* Set GPF7 as EINT7 */ GPFCON = GPFCON & (~(3 << 14)) | (2 << 14); GPFUP = GPFUP | (1 << 7); /* EINT7 High level interrupt */ EXTINT0 = (EXTINT0 & (~(0x7 << 28))) | (0x1 << 28); /* Enable EINT7 */ EINTMASK = EINTMASK & (~(1<<7)); /* Set GPA15 as nGCS4 */ GPACON |= 1 << 15; /* DM9000 width 16, wait enable */ BWSCON = BWSCON & (~(0x7<<16)) | (0x5<<16); BANKCON4 = (1<<13) | (1<<11) | (0x6<<8) | (1<<6) | (1<<4) | (0<<2) | (0); rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO); rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO); dm9000_device.type = TYPE_DM9000A; dm9000_device.mode = DM9000_AUTO; dm9000_device.packet_cnt = 0; dm9000_device.queue_packet_len = 0; /* * SRAM Tx/Rx pointer automatically return to start address, * Packet Transmitted, Packet Received */ dm9000_device.dev_addr[0] = 0x00; dm9000_device.dev_addr[1] = 0x60; dm9000_device.dev_addr[2] = 0x6E; dm9000_device.dev_addr[3] = 0x11; dm9000_device.dev_addr[4] = 0x02; dm9000_device.dev_addr[5] = 0x0F; dm9000_device.parent.parent.init = rt_dm9000_init; dm9000_device.parent.parent.open = rt_dm9000_open; dm9000_device.parent.parent.close = rt_dm9000_close; dm9000_device.parent.parent.read = rt_dm9000_read; dm9000_device.parent.parent.write = rt_dm9000_write; dm9000_device.parent.parent.control = rt_dm9000_control; dm9000_device.parent.parent.user_data = RT_NULL; dm9000_device.parent.eth_rx = rt_dm9000_rx; dm9000_device.parent.eth_tx = rt_dm9000_tx; eth_device_init(&(dm9000_device.parent), "e0"); /* instal interrupt */ rt_hw_interrupt_install(INTEINT4_7, INTEINT4_7_handler, RT_NULL, "EINT4_7"); rt_hw_interrupt_umask(INTEINT4_7); return RT_EOK; } INIT_DEVICE_EXPORT(rt_hw_dm9000_init); void dm9000a(void) { rt_kprintf("\n"); rt_kprintf("NCR (%02X): %02x\n", DM9000_NCR, dm9000_io_read(DM9000_NCR)); rt_kprintf("NSR (%02X): %02x\n", DM9000_NSR, dm9000_io_read(DM9000_NSR)); rt_kprintf("TCR (%02X): %02x\n", DM9000_TCR, dm9000_io_read(DM9000_TCR)); rt_kprintf("TSRI (%02X): %02x\n", DM9000_TSR1, dm9000_io_read(DM9000_TSR1)); rt_kprintf("TSRII (%02X): %02x\n", DM9000_TSR2, dm9000_io_read(DM9000_TSR2)); rt_kprintf("RCR (%02X): %02x\n", DM9000_RCR, dm9000_io_read(DM9000_RCR)); rt_kprintf("RSR (%02X): %02x\n", DM9000_RSR, dm9000_io_read(DM9000_RSR)); rt_kprintf("ORCR (%02X): %02x\n", DM9000_ROCR, dm9000_io_read(DM9000_ROCR)); rt_kprintf("CRR (%02X): %02x\n", DM9000_CHIPR, dm9000_io_read(DM9000_CHIPR)); rt_kprintf("CSCR (%02X): %02x\n", DM9000_CSCR, dm9000_io_read(DM9000_CSCR)); rt_kprintf("RCSSR (%02X): %02x\n", DM9000_RCSSR, dm9000_io_read(DM9000_RCSSR)); rt_kprintf("ISR (%02X): %02x\n", DM9000_ISR, dm9000_io_read(DM9000_ISR)); rt_kprintf("IMR (%02X): %02x\n", DM9000_IMR, dm9000_io_read(DM9000_IMR)); rt_kprintf("\n"); } #ifdef RT_USING_FINSH #include FINSH_FUNCTION_EXPORT(dm9000a, dm9000a register dump); #endif