/**
******************************************************************************
* @file HAL_spi.c
* @author AE Team
* @version V1.0.0
* @date 28/7/2017
* @brief This file provides all the SPI firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, MindMotion SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
*
© COPYRIGHT 2015 MindMotion
*/
/* Includes ------------------------------------------------------------------*/
#include "HAL_spi.h"
/** @addtogroup StdPeriph_Driver
* @{
*/
/** @defgroup SPI
* @brief SPI driver modules
* @{
*/
/** @defgroup SPI_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Defines
* @{
*/
/* SPI SPIENE mask */
#define GCTL_SPIEN_Set ((uint16_t)0x0001)
#define GCTL_SPIEN_Reset ((uint16_t)0xFFFE)
/* SPI registers Masks */
#define GCTL_CLEAR_Mask ((uint16_t)0xF000)
#define CCTL_CLEAR_Mask ((uint16_t)0xFFC0)
#define SPBRG_CLEAR_Mask ((uint16_t)0x0000)
#define SPI_DataSize_Mask ((uint16_t)0xFCFF)
/**
* @}
*/
/** @defgroup SPI_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup SPI_Private_Functions
* @{
*/
/**
* @brief Deinitializes the SPIx peripheral registers to their default
* reset values .
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @retval : None
*/
void SPI_DeInit(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
switch (*(uint32_t*)&SPIx)
{
case SPI1_BASE:
/* Enable SPI1 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
/* Release SPI1 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
break;
case SPI2_BASE:
/* Enable SPI2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
/* Release SPI1 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
break;
default:
break;
}
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the SPI_InitStruct.
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
* contains the configuration information for the specified
* SPI peripheral.
* @retval : None
*/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
uint32_t tmpreg = 0;
/* check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Check the SPI parameters */
assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
assert_param(IS_SPI_DATAWIDRH(SPI_InitStruct->SPI_DataWidth));
assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));
/*---------------------------- SPIx GCTL Configuration ------------------------*/
/* Get the SPIx GCTL value */
tmpreg = SPIx->GCTL;
/* Clear csn_sel, dmamode, txtlf, rxtlf,data_sel, rxen, txen, mm, int_en, spien bits */
tmpreg &= GCTL_CLEAR_Mask;
/* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
master/salve mode, CPOL and CPHA */
/* Set dat_sel bits according to SPI_DataSize value */
/* Set csn and csn_sel bits according to SPI_NSS value */
/* Set mm bit according to SPI_Mode value */
tmpreg |= (uint32_t)((uint32_t) SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_NSS |
SPI_InitStruct->SPI_Mode );
/* Write to SPIx GCTL */
SPIx->GCTL = tmpreg;
/*---------------------------- SPIx CCTL Configuration ------------------------*/
tmpreg = SPIx->CCTL;
/* Clear spilen, lsbfe, CPOL, CPHA bits */
tmpreg &= CCTL_CLEAR_Mask;
/* Set Spilen bit according to SPI_DataWidth value */
/* Set LSBFirst bit according to SPI_FirstBit value */
/* Set CPOL bit according to SPI_CPOL value */
/* Set CPHA bit according to SPI_CPHA value */
tmpreg |= (uint16_t)( SPI_InitStruct->SPI_FirstBit | SPI_InitStruct->SPI_CPOL |
SPI_InitStruct->SPI_CPHA) ;
/* Write to SPIx CCTL */
SPIx->CCTL = tmpreg|0x18;
/*---------------------------- SPIx SPBRG Configuration ------------------------*/
tmpreg = SPIx->SPBRG;
/* Clear spbrg bits */
tmpreg &= (uint16_t)SPBRG_CLEAR_Mask;
/* Set BR bits according to SPI_BaudRatePrescaler value */
tmpreg |= (uint16_t) SPI_InitStruct->SPI_BaudRatePrescaler;
/* Write to SPIx SPBRG */
SPIx->SPBRG = tmpreg;
if((SPI_InitStruct->SPI_DataWidth)!=SPI_DataWidth_8b)
{
SPIx->CCTL|=1<<2;//lsbfe
SPIx->CCTL|=1<<3;//spilen
}
SPIx->EXTCTL=SPI_InitStruct->SPI_DataWidth;
}
/**
* @brief Fills each SPI_InitStruct member with its default value.
* @param SPI_InitStruct : pointer to a SPI_InitTypeDef structure
* which will be initialized.
* @retval : None
*/
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
{
/*--------------- Reset SPI init structure parameters values -----------------*/
/* initialize the SPI_Mode member */
SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
/* initialize the SPI_DataSize member */
SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
/* Initialize the SPILEN member */
SPI_InitStruct->SPI_DataWidth = SPI_DataWidth_8b;
/* Initialize the SPI_CPOL member */
SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
/* Initialize the SPI_CPHA member */
SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
/* Initialize the SPI_NSS member */
SPI_InitStruct->SPI_NSS = SPI_NSS_Soft;
/* Initialize the SPI_BaudRatePrescaler member */
SPI_InitStruct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
/* Initialize the SPI_FirstBit member */
SPI_InitStruct->SPI_FirstBit = SPI_FirstBit_MSB;
}
/**
* @brief Enables or disables the specified SPI peripheral.
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @param NewState: new state of the SPIx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI peripheral */
SPIx->GCTL |= GCTL_SPIEN_Set;
}
else
{
/* Disable the selected SPI peripheral */
SPIx->GCTL &= GCTL_SPIEN_Reset;
}
}
/**
* @brief Enables or disables the specified SPIinterrupts.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_IT: specifies the SPI interrupt source to be
* enabled or disabled.
* This parameter can be one of the following values:
* @arg SPI_IT_TX: Tx buffer empty interrupt mask
* @arg SPI_IT_RX: Rx buffer interrupt mask
* @arg SPI_IT_UNDERRUN: under Error interrupt mask in slave mode
* @arg SPI_IT_RXOVER: RX OVER Error interrupt mask
* @arg SPI_IT_RXMATCH: spectials rx data numbers interrupt mask
* @arg SPI_IT_RXFULL: Rx buffer full interrupt mask
* @arg SPI_IT_TXEPT: Tx buffer empty interrupt mask
* @param NewState: new state of the specified SPI interrupt.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_CONFIG_IT(SPI_IT));
if (NewState != DISABLE)
{
/* Enable the selected SPI Global interrupt */
SPIx->GCTL |= SPI_INT_EN;
/* Enable the selected SPI interrupt */
SPIx->INTEN |= SPI_IT;
}
else
{
/* Disable the selected SPI interrupt */
SPIx->INTEN &= (uint16_t)~SPI_IT;
/* Disable the selected SPI Global interrupt */
SPIx->GCTL &= (uint16_t)~SPI_INT_EN;
}
}
/**
* @brief Enables or disables the SPIx DMA interface.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_DMAReq: specifies the SPI DMA transfer request
* to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg SPI_DMAReq_EN: DMA transfer request enable
* @param NewState: new state of the selected SPI DMA transfer
* request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_DMAReq, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_DMAREQ(SPI_DMAReq));
if (NewState != DISABLE)
{
/* Enable the selected SPI DMA requests */
SPIx->GCTL |= SPI_DMAReq;
}
else
{
/* Disable the selected SPI DMA requests */
SPIx->GCTL &= (uint32_t)~SPI_DMAReq;
}
}
/**
* @brief configure tn Fifo trigger level bit.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_FifoTriggerValue: specifies the Fifo trigger level
* This parameter can be any combination of the following values:
* SPI_TXTLF : SPI TX FIFO Trigger value set
* SPI_RXTLF : SPI RX FIFO Trigger value set
* @param NewState: new state of the selected SPI DMA transfer
* request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_FifoTrigger(SPI_TypeDef* SPIx, uint16_t SPI_FifoTriggerValue, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_SPI_FIFOTRIGGER(SPI_FifoTriggerValue));
if (NewState != DISABLE)
{
/* Enable the selected SPI DMA requests */
SPIx->GCTL |= SPI_FifoTriggerValue;
}
else
{
/* Disable the selected SPI DMA requests */
SPIx->GCTL &= (uint32_t)~SPI_FifoTriggerValue;
}
}
/**
* @brief Transmits a Data through the SPIx peripheral.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param Data : Data to be transmitted..
* @retval : None
*/
void SPI_SendData(SPI_TypeDef* SPIx, uint32_t Data)
{
uint8_t temp;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Write in the TXREG register the data to be sent */
temp=SPIx->EXTCTL;
SPIx->TXREG = Data;
if(temp>0x8||temp==0) SPIx->TXREG = Data>>8;
if(temp>0x10||temp==0) SPIx->TXREG = Data>>16;
if(temp>0x18||temp==0) SPIx->TXREG = Data>>24;
}
/**
* @brief Returns the most recent received data by the SPIx peripheral.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @retval : The value of the received data.
*/
uint32_t SPI_ReceiveData(SPI_TypeDef* SPIx)
{
uint32_t temp=0;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
temp=temp;
temp |=(uint32_t)SPIx->RXREG;
if(SPIx->EXTCTL>8||SPIx->EXTCTL==0) temp |=(uint32_t) (SPIx->RXREG)<<8;
if(SPIx->EXTCTL>16||SPIx->EXTCTL==0) temp |=(uint32_t)( SPIx->RXREG)<<16;
if(SPIx->EXTCTL>24||SPIx->EXTCTL==0) temp |=(uint32_t)( SPIx->RXREG)<<24;
return temp;
}
/**
* @brief Slave chip csn single by selected
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @param SPI_CSInternalSelected: specifies the SPI CS internal selected.
* This parameter can be one of the following values:
* @arg SPI_CS_BIT0: cs bit 0 selected
* @arg SPI_CS_BIT1: cs bit 1 selected
* @arg SPI_CS_BIT2: cs bit 2 selected
* @arg SPI_CS_BIT3: cs bit 3 selected
* @arg SPI_CS_BIT4: cs bit 4 selected
* @arg SPI_CS_BIT5: cs bit 5 selected
* @arg SPI_CS_BIT6: cs bit 6 selected
* @arg SPI_CS_BIT7: cs bit 7 selected
* @param NewState: new state of the selected SPI CS pin
* request.
* This parameter can be: ENABLE or DISABLE.
* @retval : None
*/
void SPI_CSInternalSelected(SPI_TypeDef* SPIx, uint16_t SPI_CSInternalSelected,FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CS(SPI_CSInternalSelected));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* selected cs pin according SCSR Value */
SPIx->SCSR &= SPI_CSInternalSelected;
}
else
{
/* release cs pin according SCSR Value*/
SPIx->SCSR |= ~SPI_CSInternalSelected;
}
}
/**
* @brief Configures internally by software the NSS pin for the selected
* SPI.
* @param SPIx: where x can be 1, 2 to select the SPI peripheral.
* @param SPI_NSSInternalSoft: specifies the SPI NSS internal state.
* This parameter can be one of the following values:
* @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
* @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
* @retval : None
*/
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));
if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
{
/* Set NSS pin internally by software */
SPIx->GCTL |= SPI_NSSInternalSoft_Set;
}
else
{
/* Reset NSS pin internally by software */
SPIx->GCTL &= SPI_NSSInternalSoft_Reset;
}
}
/**
* @brief Configures the data size for the selected SPI.
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @param SPI_DataSize: specifies the SPI data size.
* This parameter can be one of the following values:
* @arg SPI_DataSize_32b: Set data frame format to 32bit
* @arg SPI_DataSize_16b: Set data frame format to 16bit
* @arg SPI_DataSize_8b: Set data frame format to 8bit
* @retval : None
*/
void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DATASIZE(SPI_DataSize));
/* Clear data_sel bit */
SPIx->GCTL &= SPI_DataSize_Mask;
/* Set new data_sel bit value */
SPIx->GCTL |= SPI_DataSize;
}
/**
* @brief Selects the data transfer direction in bi-directional mode
* for the specified SPI.
* @param SPIx: where x can be 0, 1 to select the SPI peripheral.
* @param SPI_Direction: specifies the data transfer direction in
* bi-directional mode.
* This parameter can be one of the following values:
* @arg SPI_Direction_Tx: Selects Tx transmission direction
* @arg SPI_Direction_Rx: Selects Rx receive direction
@arg SPI_Disable_Tx: Selects Rx receive direction
@arg SPI_Disable_Rx: Selects Rx receive direction
* @retval : None
*/
void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DIRECTION(SPI_Direction));
/* Set the Tx only mode */
if(SPI_Direction==SPI_Direction_Tx)
{
SPIx->GCTL |= SPI_Direction_Tx;
}
/* Set the Rx only mode */
if(SPI_Direction==SPI_Direction_Rx)
{
SPIx->GCTL |= SPI_Direction_Rx;
}
/* Disable the Tx only mode */
if(SPI_Direction==SPI_Disable_Tx)
{
SPIx->GCTL &= SPI_Disable_Tx;
}
/* Disable the Rx only mode */
if(SPI_Direction==SPI_Disable_Rx)
{
SPIx->GCTL &= SPI_Disable_Rx;
}
}
/**
* @brief Checks whether the specified SPI flag is set or not.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_FLAG: specifies the SPI flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXAVL: Rx buffer has bytes flag
* @arg SPI_FLAG_TXEPT: Tx buffer and tx shifter empty flag
* @retval : The new state of SPI_FLAG (SET or RESET).
*/
FlagStatus SPI_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_GET_FLAG(SPI_FLAG));
if(SPIx->EXTCTL==8)
{
/* Check the status of the specified SPI flag */
if ((SPIx->CSTAT & SPI_FLAG) != (uint16_t)RESET)
{
/* SPI_FLAG is set */
bitstatus = SET;
}
else
{
/* SPI_FLAG is reset */
bitstatus = RESET;
}
/* Return the SPI_FLAG status */
return bitstatus;
}
else
{
uint8_t number;
if(SPIx->EXTCTL>0&&SPIx->EXTCTL<=8)
number=1;
else if(SPIx->EXTCTL<=16)
number=2;
else if(SPIx->EXTCTL<=24)
number=3;
else if(SPIx->EXTCTL<=31||SPIx->EXTCTL==0)
number=4;
if(((SPIx->CSTAT&0xf00)>>8)>=number)
{
return SET;
}
else
{
return RESET;
}
}
}
/**
* @brief Checks whether the specified SPI interrupt has occurred or not.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_IT: specifies the SPI interrupt source to check.
* This parameter can be one of the following values:
* @arg SPI_IT_TX: Tx buffer empty interrupt
* @arg SPI_IT_RX: Rx buffer interrupt
* @arg SPI_IT_UNDERRUN: under Error interrupt in slave mode
* @arg SPI_IT_RXOVER: RX OVER Error interrupt
* @arg SPI_IT_RXMATCH: spectials rx data numbers interrupt
* @arg SPI_IT_RXFULL: Rx buffer full interrupt
* @arg SPI_IT_TXEPT: Tx buffer and tx shifter empty interrupt
* @retval : The new state of SPI_IT (SET or RESET).
*/
ITStatus SPI_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_IT)
{
ITStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_GET_IT(SPI_IT));
/* Check the status of the specified SPI interrupt */
if ((SPIx->INTSTAT & SPI_IT) != (uint16_t)RESET)
{
/* SPI_IT is set */
bitstatus = SET;
}
else
{
/* SPI_IT is reset */
bitstatus = RESET;
}
/* Return the SPI_IT status */
return bitstatus;
}
/**
* @brief Clears the SPIx Error interrupt pending bit.
* @param SPIx: where x can be :
* 0, 1 in SPI mode
* @param SPI_IT: specifies the SPI interrupt pending bit to clear.
* @arg SPI_IT_TX: Tx buffer empty interrupt
* @arg SPI_IT_RX: Rx buffer interrupt
* @arg SPI_IT_UNDERRUN: under Error interrupt in slave mode
* @arg SPI_IT_RXOVER: RX OVER Error interrupt
* @arg SPI_IT_RXMATCH: spectials rx data numbers interrupt
* @arg SPI_IT_RXFULL: Rx buffer full interrupt
* @arg SPI_IT_TXEPT: Tx buffer and tx shifter empty interrupt
* This function clears only ERR intetrrupt pending bit.
* @retval : None
*/
void SPI_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_IT)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_CLEAR_IT(SPI_IT));
/* Clear the selected SPI IT INTERRUPT */
SPIx->INTCLR |= (uint16_t)SPI_IT;
}
/**
* @brief SPI Hole a count Received bytes in next receive process.
* @param SPIx: where x can be 0, 1 in SPI mode
* @param Number: specifies the SPI receive Number.
* This parament can be 1-65535.
* This function can use only in SPI master single receive mode.
* @retval : None
*/
void SPI_RxBytes(SPI_TypeDef* SPIx, uint16_t Number)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/*set the received bytes in next receive process */
SPIx->RXDNR = Number;
}
/**
* @brief slave mode tx data transmit phase adjust set.
* @param SPIx: where x can be 0, 1 in SPI mode
* @param AdjustValue: specifies the SPI receive Number.
* This parament can be :
* SPI_SlaveAdjust_FAST: fast speed use
* SPI_SlaveAdjust_LOW: low speed use
* This function can use only in SPI master single receive mode.
* @retval : None
*/
void SPI_SlaveAdjust(SPI_TypeDef* SPIx, uint16_t AdjustValue)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_SlaveAdjust(AdjustValue));
/*set the AdjustValue according to txedge bit of CCTL register*/
SPIx->CCTL |= AdjustValue;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/*-------------------------(C) COPYRIGHT 2017 MindMotion ----------------------*/