/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-08-14 tyx the first version */ #include #include #include #include #include #if defined(RT_WLAN_PROT_ENABLE) && defined(RT_WLAN_PROT_LWIP_ENABLE) #ifdef RT_USING_LWIP #include #include #ifdef LWIP_USING_DHCPD #include #endif #ifdef RT_USING_NETDEV #include #endif #define DBG_TAG "WLAN.lwip" #ifdef RT_WLAN_LWIP_DEBUG #define DBG_LVL DBG_LOG #else #define DBG_LVL DBG_INFO #endif /* RT_WLAN_LWIP_DEBUG */ #include #ifndef IPADDR_STRLEN_MAX #define IPADDR_STRLEN_MAX (32) #endif #ifndef RT_WLAN_PROT_LWIP_NAME #define RT_WLAN_PROT_LWIP_NAME ("lwip") #endif struct lwip_prot_des { struct rt_wlan_prot prot; struct eth_device eth; rt_int8_t connected_flag; struct rt_timer timer; struct rt_work work; }; static void netif_is_ready(struct rt_work *work, void *parameter) { ip_addr_t ip_addr_zero = { 0 }; struct rt_wlan_device *wlan = parameter; struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot; struct eth_device *eth_dev = &lwip_prot->eth; rt_base_t level; struct rt_wlan_buff buff; rt_uint32_t ip_addr[4]; char str[IPADDR_STRLEN_MAX]; rt_timer_stop(&lwip_prot->timer); if (ip_addr_cmp(&(eth_dev->netif->ip_addr), &ip_addr_zero) != 0) { rt_timer_start(&lwip_prot->timer); goto exit; } rt_memset(&ip_addr, 0, sizeof(ip_addr)); #if LWIP_IPV4 && LWIP_IPV6 if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V4) { ip_addr[0] = ip4_addr_get_u32(ð_dev->netif->ip_addr.u_addr.ip4); buff.data = &ip_addr[0]; buff.len = sizeof(ip_addr[0]); } else if (eth_dev->netif->ip_addr.type == IPADDR_TYPE_V6) { *(ip6_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr.u_addr.ip6; buff.data = ip_addr; buff.len = sizeof(ip_addr); } else { LOG_W("F:%s L:%d ip addr type not support", __FUNCTION__, __LINE__); } #else #if LWIP_IPV4 ip_addr[0] = ip4_addr_get_u32(ð_dev->netif->ip_addr); buff.data = &ip_addr[0]; buff.len = sizeof(ip_addr[0]); #else *(ip_addr_t *)(&ip_addr[0]) = eth_dev->netif->ip_addr; buff.data = ip_addr; buff.len = sizeof(ip_addr); #endif #endif if (rt_wlan_prot_ready(wlan, &buff) != 0) { rt_timer_start(&lwip_prot->timer); goto exit; } rt_memset(str, 0, IPADDR_STRLEN_MAX); rt_enter_critical(); rt_memcpy(str, ipaddr_ntoa(&(eth_dev->netif->ip_addr)), IPADDR_STRLEN_MAX); rt_exit_critical(); LOG_I("Got IP address : %s", str); exit: level = rt_hw_interrupt_disable(); if (work) { rt_memset(work, 0, sizeof(struct rt_work)); } rt_hw_interrupt_enable(level); } static void timer_callback(void *parameter) { #ifdef RT_WLAN_WORK_THREAD_ENABLE struct rt_workqueue *workqueue; struct rt_wlan_device *wlan = parameter; struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot; struct rt_work *work = &lwip_prot->work; rt_base_t level; workqueue = rt_wlan_get_workqueue(); if (workqueue != RT_NULL) { level = rt_hw_interrupt_disable(); rt_work_init(work, netif_is_ready, parameter); rt_hw_interrupt_enable(level); if (rt_workqueue_dowork(workqueue, work) != RT_EOK) { level = rt_hw_interrupt_disable(); rt_memset(work, 0, sizeof(struct rt_work)); rt_hw_interrupt_enable(level); } } #else netif_is_ready(RT_NULL, parameter); #endif } static void netif_set_connected(void *parameter) { struct rt_wlan_device *wlan = parameter; struct lwip_prot_des *lwip_prot = wlan->prot; struct eth_device *eth_dev = &lwip_prot->eth; if (lwip_prot->connected_flag) { if (wlan->mode == RT_WLAN_STATION) { LOG_D("F:%s L:%d dhcp start run", __FUNCTION__, __LINE__); netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL); #ifdef RT_LWIP_DHCP dhcp_start(eth_dev->netif); #endif rt_timer_start(&lwip_prot->timer); } else if (wlan->mode == RT_WLAN_AP) { LOG_D("F:%s L:%d dhcpd start run", __FUNCTION__, __LINE__); netifapi_netif_common(eth_dev->netif, netif_set_link_up, NULL); #ifdef LWIP_USING_DHCPD { char netif_name[8]; int i; rt_memset(netif_name, 0, sizeof(netif_name)); for (i = 0; i < sizeof(eth_dev->netif->name); i++) { netif_name[i] = eth_dev->netif->name[i]; } dhcpd_start(netif_name); } #endif } } else { if (wlan->mode == RT_WLAN_STATION) { LOG_D("F:%s L:%d dhcp stop run", __FUNCTION__, __LINE__); netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL); #ifdef RT_LWIP_DHCP { ip_addr_t ip_addr = { 0 }; dhcp_stop(eth_dev->netif); netif_set_addr(eth_dev->netif, &ip_addr, &ip_addr, &ip_addr); } #endif rt_timer_stop(&lwip_prot->timer); } else if (wlan->mode == RT_WLAN_AP) { LOG_D("F:%s L:%d dhcpd stop run", __FUNCTION__, __LINE__); netifapi_netif_common(eth_dev->netif, netif_set_link_down, NULL); } } } static void rt_wlan_lwip_event_handle(struct rt_wlan_prot *port, struct rt_wlan_device *wlan, int event) { struct lwip_prot_des *lwip_prot = (struct lwip_prot_des *)wlan->prot; rt_bool_t flag_old; flag_old = lwip_prot->connected_flag; switch (event) { case RT_WLAN_PROT_EVT_CONNECT: { LOG_D("event: CONNECT"); lwip_prot->connected_flag = RT_TRUE; break; } case RT_WLAN_PROT_EVT_DISCONNECT: { LOG_D("event: DISCONNECT"); lwip_prot->connected_flag = RT_FALSE; break; } case RT_WLAN_PROT_EVT_AP_START: { LOG_D("event: AP_START"); lwip_prot->connected_flag = RT_TRUE; break; } case RT_WLAN_PROT_EVT_AP_STOP: { LOG_D("event: AP_STOP"); lwip_prot->connected_flag = RT_FALSE; break; } case RT_WLAN_PROT_EVT_AP_ASSOCIATED: { LOG_D("event: ASSOCIATED"); break; } case RT_WLAN_PROT_EVT_AP_DISASSOCIATED: { LOG_D("event: DISASSOCIATED"); break; } default : { LOG_D("event: UNKNOWN"); break; } } if (flag_old != lwip_prot->connected_flag) { #ifdef RT_WLAN_WORK_THREAD_ENABLE rt_wlan_workqueue_dowork(netif_set_connected, wlan); #else netif_set_connected(wlan); #endif } } static rt_err_t rt_wlan_lwip_protocol_control(rt_device_t device, int cmd, void *args) { struct eth_device *eth_dev = (struct eth_device *)device; struct rt_wlan_device *wlan; rt_err_t err = RT_EOK; RT_ASSERT(eth_dev != RT_NULL); LOG_D("F:%s L:%d device:0x%08x user_data:0x%08x", __FUNCTION__, __LINE__, eth_dev, eth_dev->parent.user_data); switch (cmd) { case NIOCTL_GADDR: /* get MAC address */ wlan = eth_dev->parent.user_data; err = rt_device_control((rt_device_t)wlan, RT_WLAN_CMD_GET_MAC, args); break; default : break; } return err; } static rt_err_t rt_wlan_lwip_protocol_recv(struct rt_wlan_device *wlan, void *buff, int len) { struct eth_device *eth_dev = &((struct lwip_prot_des *)wlan->prot)->eth; struct pbuf *p = RT_NULL; LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__); if (eth_dev == RT_NULL) { return -RT_ERROR; } #ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE { p = buff; if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK) { return -RT_ERROR; } return RT_EOK; } #else { int count = 0; while (p == RT_NULL) { p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); if (p != RT_NULL) break; p = pbuf_alloc(PBUF_RAW, len, PBUF_RAM); if (p != RT_NULL) break; LOG_D("F:%s L:%d wait for pbuf_alloc!", __FUNCTION__, __LINE__); rt_thread_delay(1); count++; //wait for 10ms or give up!! if (count >= 10) { LOG_W("F:%s L:%d pbuf allocate fail!!!", __FUNCTION__, __LINE__); return -RT_ENOMEM; } } /*copy data dat -> pbuf*/ pbuf_take(p, buff, len); if ((eth_dev->netif->input(p, eth_dev->netif)) != ERR_OK) { LOG_D("F:%s L:%d IP input error", __FUNCTION__, __LINE__); pbuf_free(p); p = RT_NULL; } LOG_D("F:%s L:%d netif iput success! len:%d", __FUNCTION__, __LINE__, len); return RT_EOK; } #endif } static rt_err_t rt_wlan_lwip_protocol_send(rt_device_t device, struct pbuf *p) { struct rt_wlan_device *wlan = ((struct eth_device *)device)->parent.user_data; LOG_D("F:%s L:%d run", __FUNCTION__, __LINE__); if (wlan == RT_NULL) { return RT_EOK; } #ifdef RT_WLAN_PROT_LWIP_PBUF_FORCE { rt_wlan_prot_transfer_dev(wlan, p, p->tot_len); return RT_EOK; } #else { rt_uint8_t *frame; /* sending data directly */ if (p->len == p->tot_len) { frame = (rt_uint8_t *)p->payload; rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len); LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len); return RT_EOK; } frame = rt_malloc(p->tot_len); if (frame == RT_NULL) { LOG_E("F:%s L:%d malloc out_buf fail\n", __FUNCTION__, __LINE__); return -RT_ENOMEM; } /*copy pbuf -> data dat*/ pbuf_copy_partial(p, frame, p->tot_len, 0); /* send data */ rt_wlan_prot_transfer_dev(wlan, frame, p->tot_len); LOG_D("F:%s L:%d run len:%d", __FUNCTION__, __LINE__, p->tot_len); rt_free(frame); return RT_EOK; } #endif } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops wlan_lwip_ops = { RT_NULL, RT_NULL, RT_NULL, RT_NULL, RT_NULL, rt_wlan_lwip_protocol_control }; #endif static struct rt_wlan_prot *rt_wlan_lwip_protocol_register(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan) { struct eth_device *eth = RT_NULL; static rt_uint8_t id = 0; char eth_name[4], timer_name[16]; rt_device_t device = RT_NULL; struct lwip_prot_des *lwip_prot; if (wlan == RT_NULL || prot == RT_NULL) return RT_NULL;; LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan); do { /* find ETH device name */ eth_name[0] = 'w'; eth_name[1] = '0' + id++; eth_name[2] = '\0'; device = rt_device_find(eth_name); } while (device); if (id > 9) { LOG_E("F:%s L:%d not find Empty name", __FUNCTION__, __LINE__, eth_name); return RT_NULL; } if (rt_device_open((rt_device_t)wlan, RT_DEVICE_OFLAG_RDWR) != RT_EOK) { LOG_E("F:%s L:%d open wlan failed", __FUNCTION__, __LINE__); return RT_NULL; } lwip_prot = rt_malloc(sizeof(struct lwip_prot_des)); if (lwip_prot == RT_NULL) { LOG_E("F:%s L:%d malloc mem failed", __FUNCTION__, __LINE__); rt_device_close((rt_device_t)wlan); return RT_NULL; } rt_memset(lwip_prot, 0, sizeof(struct lwip_prot_des)); eth = &lwip_prot->eth; #ifdef RT_USING_DEVICE_OPS eth->parent.ops = &wlan_lwip_ops; #else eth->parent.init = RT_NULL; eth->parent.open = RT_NULL; eth->parent.close = RT_NULL; eth->parent.read = RT_NULL; eth->parent.write = RT_NULL; eth->parent.control = rt_wlan_lwip_protocol_control; #endif eth->parent.user_data = wlan; eth->eth_rx = RT_NULL; eth->eth_tx = rt_wlan_lwip_protocol_send; /* register ETH device */ if (eth_device_init(eth, eth_name) != RT_EOK) { LOG_E("eth device init failed"); rt_device_close((rt_device_t)wlan); rt_free(lwip_prot); return RT_NULL; } rt_memcpy(&lwip_prot->prot, prot, sizeof(struct rt_wlan_prot)); if (wlan->mode == RT_WLAN_STATION) { rt_sprintf(timer_name, "timer_%s", eth_name); rt_timer_init(&lwip_prot->timer, timer_name, timer_callback, wlan, rt_tick_from_millisecond(1000), RT_TIMER_FLAG_SOFT_TIMER | RT_TIMER_FLAG_ONE_SHOT); } netif_set_up(eth->netif); LOG_I("eth device init ok name:%s", eth_name); #ifdef RT_USING_NETDEV wlan->netdev = netdev_get_by_name(eth_name); #endif return &lwip_prot->prot; } static void rt_wlan_lwip_protocol_unregister(struct rt_wlan_prot *prot, struct rt_wlan_device *wlan) { /*TODO*/ LOG_D("F:%s L:%d is run wlan:0x%08x", __FUNCTION__, __LINE__, wlan); } static struct rt_wlan_prot_ops ops = { rt_wlan_lwip_protocol_recv, rt_wlan_lwip_protocol_register, rt_wlan_lwip_protocol_unregister }; int rt_wlan_lwip_init(void) { static struct rt_wlan_prot prot; rt_wlan_prot_event_t event; rt_memset(&prot, 0, sizeof(prot)); rt_strncpy(&prot.name[0], RT_WLAN_PROT_LWIP_NAME, RT_WLAN_PROT_NAME_LEN); prot.ops = &ops; if (rt_wlan_prot_regisetr(&prot) != RT_EOK) { LOG_E("F:%s L:%d protocol regisetr failed", __FUNCTION__, __LINE__); return -1; } for (event = RT_WLAN_PROT_EVT_INIT_DONE; event < RT_WLAN_PROT_EVT_MAX; event++) { rt_wlan_prot_event_register(&prot, event, rt_wlan_lwip_event_handle); } return 0; } INIT_PREV_EXPORT(rt_wlan_lwip_init); #endif #endif