/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-03-04 stevetong459 first version * 2022-07-15 Aligagago add APM32F4 series MCU support * 2022-12-26 luobeihai add APM32F0 series MCU support * 2023-03-27 luobeihai add APM32E1/S1 series MCU support */ #include #if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3) #define DBG_TAG "drv.adc" #define DBG_LVL DBG_INFO #include #define DRV_ADC_CHANNEL_MAX_NUM 16 #define DRV_ADC_TIME_OUT 0xFFF #define APM32_ADC_GET_PORT(pin_num) ((GPIO_T *)(GPIOA_BASE + (0x400u * (((pin_num) >> 4) & 0xFu)))) #define APM32_ADC_GET_PIN(pin_num) ((uint16_t)(1u << ((pin_num) & 0xFu))) struct apm32_adc { const char *name; ADC_T *adc; ADC_Config_T adc_config; rt_base_t channel_pin[DRV_ADC_CHANNEL_MAX_NUM]; struct rt_adc_device adc_dev; }; #if defined(SOC_SERIES_APM32F1) || defined(SOC_SERIES_APM32E1) || defined(SOC_SERIES_APM32S1) static struct apm32_adc adc_config[] = { #ifdef BSP_USING_ADC1 { "adc1", ADC1, { ADC_MODE_INDEPENDENT, DISABLE, DISABLE, ADC_EXT_TRIG_CONV_None, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4), GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4), GET_PIN(C, 5) }, }, #endif #ifdef BSP_USING_ADC2 { "adc2", ADC2, { ADC_MODE_INDEPENDENT, DISABLE, DISABLE, ADC_EXT_TRIG_CONV_None, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4), GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4), GET_PIN(C, 5) }, }, #endif #ifdef BSP_USING_ADC3 { "adc3", ADC3, { ADC_MODE_INDEPENDENT, DISABLE, DISABLE, ADC_EXT_TRIG_CONV_None, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6), GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10) }, }, #endif }; #elif defined(SOC_SERIES_APM32F4) static struct apm32_adc adc_config[] = { #ifdef BSP_USING_ADC1 { "adc1", ADC1, { ADC_RESOLUTION_12BIT, DISABLE, DISABLE, ADC_EXT_TRIG_EDGE_NONE, ADC_EXT_TRIG_CONV_TMR1_CC1, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4), GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4), GET_PIN(C, 5) }, }, #endif #ifdef BSP_USING_ADC2 { "adc2", ADC2, { ADC_RESOLUTION_12BIT, DISABLE, DISABLE, ADC_EXT_TRIG_EDGE_NONE, ADC_EXT_TRIG_CONV_TMR1_CC1, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4), GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4), GET_PIN(C, 5) }, }, #endif #ifdef BSP_USING_ADC3 { "adc3", ADC3, { ADC_RESOLUTION_12BIT, DISABLE, DISABLE, ADC_EXT_TRIG_EDGE_NONE, ADC_EXT_TRIG_CONV_TMR1_CC1, ADC_DATA_ALIGN_RIGHT, 1 }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6), GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10), GET_PIN(F, 3), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3) }, }, #endif }; #elif defined(SOC_SERIES_APM32F0) static struct apm32_adc adc_config[] = { #ifdef BSP_USING_ADC1 { "adc1", ADC, { ADC_RESOLUTION_12B, ADC_DATA_ALIGN_RIGHT, ADC_SCAN_DIR_UPWARD, ADC_CONVERSION_SINGLE, ADC_EXT_TRIG_CONV_TRG0, ADC_EXT_TRIG_EDGE_NONE }, { GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4), GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1), GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4), GET_PIN(C, 5) }, }, #endif }; #endif static rt_err_t apm32_adc_channel_check(struct rt_adc_device *device, rt_uint32_t channel) { struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data); if ((adc_cfg->adc == ADC1) || (adc_cfg->adc == ADC2)) { if (channel <= 15) { return RT_EOK; } } #if defined(SOC_SERIES_APM32F1) || defined(SOC_SERIES_APM32E1) if (adc_cfg->adc == ADC3) { if (channel <= 8) { return RT_EOK; } } #endif #if defined(SOC_SERIES_APM32F4) if (adc_cfg->adc == ADC3) { if (channel <= 13) { return RT_EOK; } } #endif LOG_E("channel %d of %s is not supported.", channel, adc_cfg->name); return -RT_ERROR; } static rt_err_t apm32_adc_gpio_init(struct rt_adc_device *device, rt_uint32_t channel) { struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data); GPIO_Config_T hw_gpio_config; if (apm32_adc_channel_check(device, channel) != RT_EOK) { return -RT_ERROR; } #if defined(SOC_SERIES_APM32F1) || defined(SOC_SERIES_APM32E1) || defined(SOC_SERIES_APM32S1) RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu)); hw_gpio_config.mode = GPIO_MODE_ANALOG; #elif defined(SOC_SERIES_APM32F4) RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu)); hw_gpio_config.mode = GPIO_MODE_AN; #elif defined(SOC_SERIES_APM32F0) RCM_EnableAHBPeriphClock(RCM_AHB_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu)); hw_gpio_config.mode = GPIO_MODE_AN; #endif hw_gpio_config.pin = APM32_ADC_GET_PIN(adc_cfg->channel_pin[channel]); GPIO_Config(APM32_ADC_GET_PORT(adc_cfg->channel_pin[channel]), &hw_gpio_config); return RT_EOK; } /** * @brief This function will control the adc to enable or disable. * * @param device is a pointer to adc device. * * @param channel is the adc channel. * * @param enabled is the status to indicate enable or disable. * * @return RT_EOK indicates successful enable or disable adc, other value indicates failed. */ static rt_err_t apm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled) { struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data); RT_ASSERT(device != RT_NULL); #if defined(SOC_SERIES_APM32F0) if (enabled) { RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1); if (apm32_adc_gpio_init(device, channel) != RT_EOK) { return -RT_ERROR; } ADC_Config(&adc_cfg->adc_config); ADC_Enable(); } else { ADC_Disable(); } #elif defined(SOC_SERIES_APM32F1) || defined(SOC_SERIES_APM32E1) || defined(SOC_SERIES_APM32S1) \ || defined(SOC_SERIES_APM32F4) if (enabled) { if (adc_cfg->adc == ADC1) { RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1); } else if (adc_cfg->adc == ADC2) { RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC2); } #ifdef BSP_USING_ADC3 else if (adc_cfg->adc == ADC3) { RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC3); } #endif /* BSP_USING_ADC3 */ if (apm32_adc_gpio_init(device, channel) != RT_EOK) { return -RT_ERROR; } ADC_Config(adc_cfg->adc, &adc_cfg->adc_config); ADC_Enable(adc_cfg->adc); } else { ADC_Disable(adc_cfg->adc); } #endif /* SOC_SERIES_APM32F0 */ return RT_EOK; } /** * @brief This function will get the adc conversion value. * * @param device is a pointer to adc device. * * @param channel is the adc channel. * * @param value is a pointer to the adc conversion value. * * @return RT_EOK indicates successful get adc value, other value indicates failed. */ static rt_err_t apm32_adc_get_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value) { #if !defined(SOC_SERIES_APM32F0) struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data); #endif volatile rt_uint32_t counter = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(value != RT_NULL); if (apm32_adc_channel_check(device, channel) != RT_EOK) { return -RT_ERROR; } #if defined(SOC_SERIES_APM32F1) || defined(SOC_SERIES_APM32E1) || defined(SOC_SERIES_APM32S1) ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_13CYCLES5); ADC_StartCalibration(adc_cfg->adc); /* Check the end of ADC calibration */ while (ADC_ReadCalibrationStartFlag(adc_cfg->adc)) { if (++counter > DRV_ADC_TIME_OUT) { return -RT_ETIMEOUT; } } ADC_EnableSoftwareStartConv(adc_cfg->adc); while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC)) { if (++counter > DRV_ADC_TIME_OUT) { return -RT_ETIMEOUT; } } *value = ADC_ReadConversionValue(adc_cfg->adc); #elif defined(SOC_SERIES_APM32F4) ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_15CYCLES); ADC_SoftwareStartConv(adc_cfg->adc); while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC)) { if (++counter > DRV_ADC_TIME_OUT) { return -RT_ETIMEOUT; } } *value = ADC_ReadConversionValue(adc_cfg->adc); #elif defined(SOC_SERIES_APM32F0) ADC_ConfigChannel((uint16_t)(1u << ((channel) & 0xFu)), ADC_SAMPLE_TIME_239_5); ADC_StartConversion(); while (!ADC_ReadStatusFlag(ADC_FLAG_CC)) { if (++counter > DRV_ADC_TIME_OUT) { return -RT_ETIMEOUT; } } *value = ADC_ReadConversionValue(); #endif return RT_EOK; } static const struct rt_adc_ops apm32_adc_ops = { .enabled = apm32_adc_enabled, .convert = apm32_adc_get_value, }; /** * @brief ADC initialization function. * * @return RT_EOK indicates successful initialization, other value indicates failed; */ static int rt_hw_adc_init(void) { rt_err_t result = RT_EOK; rt_size_t obj_num = sizeof(adc_config) / sizeof(struct apm32_adc); rt_uint32_t i = 0; for (i = 0; i < obj_num; i++) { /* register ADC device */ if (rt_hw_adc_register(&adc_config[i].adc_dev, adc_config[i].name, &apm32_adc_ops, &adc_config[i]) == RT_EOK) { LOG_D("%s init success", adc_config[i].name); } else { LOG_D("%s init failed", adc_config[i].name); result = -RT_ERROR; } } return result; } INIT_BOARD_EXPORT(rt_hw_adc_init); #endif /* BSP_USING_ADCX */