/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-11-19 SummerGift first version * 2018-12-25 zylx fix some bugs */ #include "board.h" #include "drv_config.h" #include #include "lwipopts.h" #include "drv_eth.h" /* * Emac driver uses CubeMX tool to generate emac and phy's configuration, * the configuration files can be found in CubeMX_Config floder. */ /* debug option */ //#define ETH_RX_DUMP //#define ETH_TX_DUMP //#define DRV_DEBUG #define LOG_TAG "drv.emac" #include #define MAX_ADDR_LEN 6 struct rt_stm32_eth { /* inherit from ethernet device */ struct eth_device parent; /* interface address info, hw address */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* ETH_Speed */ uint32_t ETH_Speed; /* ETH_Duplex_Mode */ uint32_t ETH_Mode; }; static ETH_DMADescTypeDef *DMARxDscrTab, *DMATxDscrTab; static rt_uint8_t *Rx_Buff, *Tx_Buff; static ETH_HandleTypeDef EthHandle; static struct rt_stm32_eth stm32_eth_device; #if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP) #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ') static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen) { unsigned char *buf = (unsigned char *)ptr; int i, j; for (i = 0; i < buflen; i += 16) { rt_kprintf("%08X: ", i); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%02X ", buf[i + j]); else rt_kprintf(" "); rt_kprintf(" "); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.'); rt_kprintf("\n"); } } #endif extern void phy_reset(void); /* EMAC initialization function */ static rt_err_t rt_stm32_eth_init(rt_device_t dev) { __HAL_RCC_ETH_CLK_ENABLE(); phy_reset(); /* ETHERNET Configuration */ EthHandle.Instance = ETH; EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0]; EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE; EthHandle.Init.Speed = ETH_SPEED_100M; EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX; EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII; EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE; #ifdef RT_LWIP_USING_HW_CHECKSUM EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE; #else EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE; #endif HAL_ETH_DeInit(&EthHandle); /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */ if (HAL_ETH_Init(&EthHandle) != HAL_OK) { LOG_E("eth hardware init failed"); return -RT_ERROR; } else { LOG_D("eth hardware init success"); } /* Initialize Tx Descriptors list: Chain Mode */ HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, Tx_Buff, ETH_TXBUFNB); /* Initialize Rx Descriptors list: Chain Mode */ HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, Rx_Buff, ETH_RXBUFNB); /* ETH interrupt Init */ HAL_NVIC_SetPriority(ETH_IRQn, 0x07, 0); HAL_NVIC_EnableIRQ(ETH_IRQn); /* Enable MAC and DMA transmission and reception */ if (HAL_ETH_Start(&EthHandle) == HAL_OK) { LOG_D("emac hardware start"); } else { LOG_E("emac hardware start faild"); return -RT_ERROR; } return RT_EOK; } static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag) { LOG_D("emac open"); return RT_EOK; } static rt_err_t rt_stm32_eth_close(rt_device_t dev) { LOG_D("emac close"); return RT_EOK; } static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { LOG_D("emac read"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { LOG_D("emac write"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args) { switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* ethernet device interface */ /* transmit data*/ rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p) { rt_err_t ret = RT_ERROR; HAL_StatusTypeDef state; struct pbuf *q; uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr); __IO ETH_DMADescTypeDef *DmaTxDesc; uint32_t framelength = 0; uint32_t bufferoffset = 0; uint32_t byteslefttocopy = 0; uint32_t payloadoffset = 0; DmaTxDesc = EthHandle.TxDesc; bufferoffset = 0; /* copy frame from pbufs to driver buffers */ for (q = p; q != NULL; q = q->next) { /* Is this buffer available? If not, goto error */ if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) { LOG_D("buffer not valid"); ret = ERR_USE; goto error; } /* Get bytes in current lwIP buffer */ byteslefttocopy = q->len; payloadoffset = 0; /* Check if the length of data to copy is bigger than Tx buffer size*/ while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE) { /* Copy data to Tx buffer*/ memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset)); /* Point to next descriptor */ DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr); /* Check if the buffer is available */ if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) { LOG_E("dma tx desc buffer is not valid"); ret = ERR_USE; goto error; } buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr); byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset); payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset); framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset); bufferoffset = 0; } /* Copy the remaining bytes */ memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), byteslefttocopy); bufferoffset = bufferoffset + byteslefttocopy; framelength = framelength + byteslefttocopy; } #ifdef ETH_TX_DUMP dump_hex(buffer, p->tot_len); #endif /* Prepare transmit descriptors to give to DMA */ /* TODO Optimize data send speed*/ LOG_D("transmit frame lenth :%d", framelength); /* wait for unlocked */ while (EthHandle.Lock == HAL_LOCKED); state = HAL_ETH_TransmitFrame(&EthHandle, framelength); if (state != HAL_OK) { LOG_E("eth transmit frame faild: %d", state); } ret = ERR_OK; error: /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */ if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET) { /* Clear TUS ETHERNET DMA flag */ EthHandle.Instance->DMASR = ETH_DMASR_TUS; /* Resume DMA transmission*/ EthHandle.Instance->DMATPDR = 0; } return ret; } /* receive data*/ struct pbuf *rt_stm32_eth_rx(rt_device_t dev) { struct pbuf *p = NULL; struct pbuf *q = NULL; HAL_StatusTypeDef state; uint16_t len = 0; uint8_t *buffer; __IO ETH_DMADescTypeDef *dmarxdesc; uint32_t bufferoffset = 0; uint32_t payloadoffset = 0; uint32_t byteslefttocopy = 0; uint32_t i = 0; /* Get received frame */ state = HAL_ETH_GetReceivedFrame_IT(&EthHandle); if (state != HAL_OK) { LOG_D("receive frame faild"); return NULL; } /* Obtain the size of the packet and put it into the "len" variable. */ len = EthHandle.RxFrameInfos.length; buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer; LOG_D("receive frame len : %d", len); if (len > 0) { /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */ p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); } #ifdef ETH_RX_DUMP dump_hex(buffer, p->tot_len); #endif if (p != NULL) { dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc; bufferoffset = 0; for (q = p; q != NULL; q = q->next) { byteslefttocopy = q->len; payloadoffset = 0; /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/ while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE) { /* Copy data to pbuf */ memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset)); /* Point to next descriptor */ dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr); buffer = (uint8_t *)(dmarxdesc->Buffer1Addr); byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset); payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset); bufferoffset = 0; } /* Copy remaining data in pbuf */ memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), byteslefttocopy); bufferoffset = bufferoffset + byteslefttocopy; } } /* Release descriptors to DMA */ /* Point to first descriptor */ dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc; /* Set Own bit in Rx descriptors: gives the buffers back to DMA */ for (i = 0; i < EthHandle.RxFrameInfos.SegCount; i++) { dmarxdesc->Status |= ETH_DMARXDESC_OWN; dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr); } /* Clear Segment_Count */ EthHandle.RxFrameInfos.SegCount = 0; /* When Rx Buffer unavailable flag is set: clear it and resume reception */ if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET) { /* Clear RBUS ETHERNET DMA flag */ EthHandle.Instance->DMASR = ETH_DMASR_RBUS; /* Resume DMA reception */ EthHandle.Instance->DMARPDR = 0; } return p; } /* interrupt service routine */ void ETH_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_ETH_IRQHandler(&EthHandle); /* leave interrupt */ rt_interrupt_leave(); } void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth) { rt_err_t result; result = eth_device_ready(&(stm32_eth_device.parent)); if (result != RT_EOK) LOG_E("RX err = %d", result); } void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth) { LOG_E("eth err"); } #ifdef PHY_USING_INTERRUPT_MODE static void eth_phy_isr(void *args) { rt_uint32_t status = 0; static rt_uint8_t link_status = 1; HAL_ETH_ReadPHYRegister(&EthHandle, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status); LOG_D("phy interrupt status reg is 0x%X", status); HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BASIC_STATUS_REG, (uint32_t *)&status); LOG_D("phy basic status reg is 0x%X", status); if (status & PHY_LINKED_STATUS_MASK) { if (link_status == 0) { link_status = 1; LOG_D("link up"); /* send link up. */ eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); } } else { if (link_status == 1) { link_status = 0; LOG_I("link down"); /* send link down. */ eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE); } } } #endif /* PHY_USING_INTERRUPT_MODE */ static uint8_t phy_speed = 0; #define PHY_LINK_MASK (1<<0) static void phy_monitor_thread_entry(void *parameter) { uint8_t phy_addr = 0xFF; uint8_t phy_speed_new = 0; rt_uint32_t status = 0; uint8_t detected_count = 0; while(phy_addr == 0xFF) { /* phy search */ rt_uint32_t i, temp; for (i = 0; i <= 0x1F; i++) { EthHandle.Init.PhyAddress = i; HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ID1_REG, (uint32_t *)&temp); if (temp != 0xFFFF && temp != 0x00) { phy_addr = i; break; } } detected_count++; rt_thread_mdelay(1000); if (detected_count > 10) { LOG_E("No PHY device was detected, please check hardware!"); } } LOG_D("Found a phy, address:0x%02X", phy_addr); /* RESET PHY */ LOG_D("RESET PHY!"); HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK); rt_thread_mdelay(2000); HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK); while (1) { phy_speed_new = 0; if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BASIC_STATUS_REG, (uint32_t *)&status) == HAL_OK) { LOG_D("PHY BASIC STATUS REG:0x%04X", status); if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK)) { rt_uint32_t SR; phy_speed_new = PHY_LINK_MASK; if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_Status_REG, (uint32_t *)&SR) == HAL_OK) { LOG_D("PHY Control/Status REG:0x%04X ", SR); if (SR & PHY_100M_MASK) { phy_speed_new |= PHY_100M_MASK; } else if (SR & PHY_10M_MASK) { phy_speed_new |= PHY_10M_MASK; } if (SR & PHY_FULL_DUPLEX_MASK) { phy_speed_new |= PHY_FULL_DUPLEX_MASK; } } else { LOG_D("PHY Control/Status REG read error."); continue; } } } else { continue; } /* linkchange */ if (phy_speed_new != phy_speed) { if (phy_speed_new & PHY_LINK_MASK) { LOG_D("link up "); if (phy_speed_new & PHY_100M_MASK) { LOG_D("100Mbps"); stm32_eth_device.ETH_Speed = ETH_SPEED_100M; } else { stm32_eth_device.ETH_Speed = ETH_SPEED_10M; LOG_D("10Mbps"); } if (phy_speed_new & PHY_FULL_DUPLEX_MASK) { LOG_D("full-duplex"); stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX; } else { LOG_D("half-duplex"); stm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX; } /* send link up. */ eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); #ifdef PHY_USING_INTERRUPT_MODE /* configuration intterrupt pin */ rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP); rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs"); rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE); /* enable phy interrupt */ HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_MSAK_REG, PHY_INT_MASK); break; #endif } /* link up. */ else { LOG_I("link down"); /* send link down. */ eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE); } phy_speed = phy_speed_new; } rt_thread_delay(RT_TICK_PER_SECOND); } } /* Register the EMAC device */ static int rt_hw_stm32_eth_init(void) { rt_err_t state = RT_EOK; /* Prepare receive and send buffers */ Rx_Buff = (rt_uint8_t *)rt_calloc(ETH_RXBUFNB, ETH_MAX_PACKET_SIZE); if (Rx_Buff == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } Tx_Buff = (rt_uint8_t *)rt_calloc(ETH_TXBUFNB, ETH_MAX_PACKET_SIZE); if (Rx_Buff == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } DMARxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_RXBUFNB, sizeof(ETH_DMADescTypeDef)); if (DMARxDscrTab == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } DMATxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_TXBUFNB, sizeof(ETH_DMADescTypeDef)); if (DMATxDscrTab == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } stm32_eth_device.ETH_Speed = ETH_SPEED_100M; stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX; /* OUI 00-80-E1 STMICROELECTRONICS. */ stm32_eth_device.dev_addr[0] = 0x00; stm32_eth_device.dev_addr[1] = 0x80; stm32_eth_device.dev_addr[2] = 0xE1; /* generate MAC addr from 96bit unique ID (only for test). */ stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4); stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2); stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0); stm32_eth_device.parent.parent.init = rt_stm32_eth_init; stm32_eth_device.parent.parent.open = rt_stm32_eth_open; stm32_eth_device.parent.parent.close = rt_stm32_eth_close; stm32_eth_device.parent.parent.read = rt_stm32_eth_read; stm32_eth_device.parent.parent.write = rt_stm32_eth_write; stm32_eth_device.parent.parent.control = rt_stm32_eth_control; stm32_eth_device.parent.parent.user_data = RT_NULL; stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx; stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx; /* register eth device */ state = eth_device_init(&(stm32_eth_device.parent), "e0"); if (RT_EOK == state) { LOG_D("emac device init success"); } else { LOG_E("emac device init faild: %d", state); state = -RT_ERROR; goto __exit; } /* start phy monitor */ rt_thread_t tid; tid = rt_thread_create("phy", phy_monitor_thread_entry, RT_NULL, 1024, RT_THREAD_PRIORITY_MAX - 2, 2); if (tid != RT_NULL) { rt_thread_startup(tid); } else { state = -RT_ERROR; } __exit: if (state != RT_EOK) { if (Rx_Buff) { rt_free(Rx_Buff); } if (Tx_Buff) { rt_free(Tx_Buff); } if (DMARxDscrTab) { rt_free(DMARxDscrTab); } if (DMATxDscrTab) { rt_free(DMATxDscrTab); } } return state; } INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);