/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-03-18 ZYH first version */ #include #include #include #ifdef RT_USING_SPI #include "drv_spi.h" #include #include #include "dmalock.h" #include #include #include #include "utils.h" #define DRV_SPI_DEVICE(spi_bus) (struct drv_spi_bus *)(spi_bus) #define MAX_CLOCK (40000000UL) struct drv_spi_bus { struct rt_spi_bus parent; spi_device_num_t spi_instance; dmac_channel_number_t dma_send_channel; dmac_channel_number_t dma_recv_channel; struct rt_completion dma_completion; }; struct drv_cs { int cs_index; int cs_pin; }; static volatile spi_t *const spi_instance[4] = { (volatile spi_t *)SPI0_BASE_ADDR, (volatile spi_t *)SPI1_BASE_ADDR, (volatile spi_t *)SPI_SLAVE_BASE_ADDR, (volatile spi_t *)SPI3_BASE_ADDR }; static rt_err_t drv_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { rt_err_t ret = RT_EOK; int freq = 0; struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus); struct drv_cs * cs = (struct drv_cs *)device->parent.user_data; RT_ASSERT(bus != RT_NULL); gpiohs_set_drive_mode(cs->cs_pin, GPIO_DM_OUTPUT); gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH); #ifdef BSP_USING_SPI1_AS_QSPI /* Todo:QSPI*/ #else spi_init(bus->spi_instance, configuration->mode & RT_SPI_MODE_3, SPI_FF_STANDARD, configuration->data_width, 0); #endif freq = spi_set_clk_rate(bus->spi_instance, configuration->max_hz > MAX_CLOCK ? MAX_CLOCK : configuration->max_hz); rt_kprintf("set spi freq %d\n", freq); return ret; } void __spi_set_tmod(uint8_t spi_num, uint32_t tmod) { RT_ASSERT(spi_num < SPI_DEVICE_MAX); volatile spi_t *spi_handle = spi[spi_num]; uint8_t tmod_offset = 0; switch(spi_num) { case 0: case 1: case 2: tmod_offset = 8; break; case 3: default: tmod_offset = 10; break; } set_bit(&spi_handle->ctrlr0, 3 << tmod_offset, tmod << tmod_offset); } int dma_irq_callback(void *ctx) { struct rt_completion * cmp = ctx; if(cmp) { rt_completion_done(cmp); } } static rt_uint32_t drv_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus); struct drv_cs * cs = (struct drv_cs *)device->parent.user_data; struct rt_spi_configuration *cfg = &device->config; uint32_t * tx_buff = RT_NULL; uint32_t * rx_buff = RT_NULL; int i; rt_ubase_t dummy = 0xFFFFFFFFU; if(cfg->data_width != 8) { return 0; } RT_ASSERT(bus != RT_NULL); if(message->cs_take) { gpiohs_set_pin(cs->cs_pin, GPIO_PV_LOW); } if(message->length) { bus->dma_send_channel = DMAC_CHANNEL_MAX; bus->dma_recv_channel = DMAC_CHANNEL_MAX; rt_completion_init(&bus->dma_completion); if(message->recv_buf) { dmalock_sync_take(&bus->dma_recv_channel, RT_WAITING_FOREVER); sysctl_dma_select(bus->dma_recv_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + bus->spi_instance * 2); rx_buff = rt_calloc(message->length * 4, 1); if(!rx_buff) { goto transfer_done; } } if(message->send_buf) { dmalock_sync_take(&bus->dma_send_channel, RT_WAITING_FOREVER); sysctl_dma_select(bus->dma_send_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + bus->spi_instance * 2); tx_buff = rt_malloc(message->length * 4); if(!tx_buff) { goto transfer_done; } for(i = 0; i < message->length; i++) { tx_buff[i] = ((uint8_t *)message->send_buf)[i]; } } if(message->send_buf && message->recv_buf) { dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1); __spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS_RECV); spi_instance[bus->spi_instance]->dmacr = 0x3; spi_instance[bus->spi_instance]->ssienr = 0x01; dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT, DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length); dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE, DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length); } else if(message->send_buf) { dmac_irq_register(bus->dma_send_channel, dma_irq_callback, &bus->dma_completion, 1); __spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS); spi_instance[bus->spi_instance]->dmacr = 0x2; spi_instance[bus->spi_instance]->ssienr = 0x01; dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE, DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length); } else if(message->recv_buf) { dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1); __spi_set_tmod(bus->spi_instance, SPI_TMOD_RECV); spi_instance[bus->spi_instance]->ctrlr1 = message->length - 1; spi_instance[bus->spi_instance]->dmacr = 0x1; spi_instance[bus->spi_instance]->ssienr = 0x01; spi_instance[bus->spi_instance]->dr[0] = 0xFF; dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT, DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length); } else { goto transfer_done; } spi_instance[bus->spi_instance]->ser = 1U << cs->cs_index; rt_completion_wait(&bus->dma_completion, RT_WAITING_FOREVER); if(message->recv_buf) dmac_irq_unregister(bus->dma_recv_channel); else dmac_irq_unregister(bus->dma_send_channel); // wait until all data has been transmitted while ((spi_instance[bus->spi_instance]->sr & 0x05) != 0x04) ; spi_instance[bus->spi_instance]->ser = 0x00; spi_instance[bus->spi_instance]->ssienr = 0x00; if(message->recv_buf) { for(i = 0; i < message->length; i++) { ((uint8_t *)message->recv_buf)[i] = (uint8_t)rx_buff[i]; } } transfer_done: dmalock_release(bus->dma_send_channel); dmalock_release(bus->dma_recv_channel); if(tx_buff) { rt_free(tx_buff); } if(rx_buff) { rt_free(rx_buff); } } if(message->cs_release) { gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH); } return message->length; } const static struct rt_spi_ops drv_spi_ops = { drv_spi_configure, drv_spi_xfer }; int rt_hw_spi_init(void) { rt_err_t ret = RT_EOK; #ifdef BSP_USING_SPI1 { static struct drv_spi_bus spi_bus1; spi_bus1.spi_instance = SPI_DEVICE_1; ret = rt_spi_bus_register(&spi_bus1.parent, "spi1", &drv_spi_ops); #ifdef BSP_SPI1_USING_SS0 { static struct rt_spi_device spi_device10; static struct drv_cs cs10 = { .cs_index = SPI_CHIP_SELECT_0, .cs_pin = SPI1_CS0_PIN }; rt_spi_bus_attach_device(&spi_device10, "spi10", "spi1", (void *)&cs10); } #endif #ifdef BSP_SPI1_USING_SS1 { static struct rt_spi_device spi_device11; static struct drv_cs cs11 = { .cs_index = SPI_CHIP_SELECT_1, .cs_pin = SPI1_CS1_PIN }; rt_spi_bus_attach_device(&spi_device11, "spi11", "spi1", (void *)&cs11); } #endif #ifdef BSP_SPI1_USING_SS2 { static struct rt_spi_device spi_device12; static struct drv_cs cs12 = { .cs_index = SPI_CHIP_SELECT_2, .cs_pin = SPI1_CS2_PIN }; rt_spi_bus_attach_device(&spi_device12, "spi12", "spi1", (void *)&cs12); } #endif #ifdef BSP_SPI1_USING_SS3 { static struct rt_spi_device spi_device13; static struct drv_cs cs13 = { .cs_index = SPI_CHIP_SELECT_2, .cs_pin = SPI1_CS2_PIN }; rt_spi_bus_attach_device(&spi_device13, "spi13", "spi1", (void *)&cs13); } #endif } #endif return ret; } INIT_DEVICE_EXPORT(rt_hw_spi_init); #endif