/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2011-07-25 weety first version */ #include #include #include #include #include #define DBG_TAG "SDIO" #ifdef RT_SDIO_DEBUG #define DBG_LVL DBG_LOG #else #define DBG_LVL DBG_INFO #endif /* RT_SDIO_DEBUG */ #include static rt_list_t blk_devices = RT_LIST_OBJECT_INIT(blk_devices); #define BLK_MIN(a, b) ((a) < (b) ? (a) : (b)) #define RT_DEVICE_CTRL_BLK_SSIZEGET 0x1268 /**< get number of bytes per sector */ #define RT_DEVICE_CTRL_ALL_BLK_SSIZEGET 0x80081272 /**< get number of bytes per sector * sector counts*/ struct mmcsd_blk_device { struct rt_mmcsd_card *card; rt_list_t list; struct rt_device dev; struct dfs_partition part; struct rt_device_blk_geometry geometry; rt_size_t max_req_size; }; #ifndef RT_MMCSD_MAX_PARTITION #define RT_MMCSD_MAX_PARTITION 16 #endif #define RT_GPT_PARTITION_MAX 128 static int __send_status(struct rt_mmcsd_card *card, rt_uint32_t *status, unsigned retries) { int err; struct rt_mmcsd_cmd cmd; cmd.busy_timeout = 0; cmd.cmd_code = SEND_STATUS; cmd.arg = card->rca << 16; cmd.flags = RESP_R1 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, retries); if (err) return err; if (status) *status = cmd.resp[0]; return 0; } static int card_busy_detect(struct rt_mmcsd_card *card, unsigned int timeout_ms, rt_uint32_t *resp_errs) { int timeout = rt_tick_from_millisecond(timeout_ms); int err = 0; rt_uint32_t status; rt_tick_t start; start = rt_tick_get(); do { rt_bool_t out = (int)(rt_tick_get() - start) > timeout; err = __send_status(card, &status, 5); if (err) { LOG_E("error %d requesting status", err); return err; } /* Accumulate any response error bits seen */ if (resp_errs) *resp_errs |= status; if (out) { LOG_E("wait card busy timeout"); return -RT_ETIMEOUT; } /* * Some cards mishandle the status bits, * so make sure to check both the busy * indication and the card state. */ } while (!(status & R1_READY_FOR_DATA) || (R1_CURRENT_STATE(status) == 7)); return err; } rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card) { rt_int32_t err; rt_uint32_t blocks; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; rt_uint32_t timeout_us; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = APP_CMD; cmd.arg = card->rca << 16; cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, 0); if (err) return -RT_ERROR; if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) return -RT_ERROR; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS; cmd.arg = 0; cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); data.timeout_ns = card->tacc_ns * 100; data.timeout_clks = card->tacc_clks * 100; timeout_us = data.timeout_ns / 1000; timeout_us += data.timeout_clks * 1000 / (card->host->io_cfg.clock / 1000); if (timeout_us > 100000) { data.timeout_ns = 100000000; data.timeout_clks = 0; } data.blksize = 4; data.blks = 1; data.flags = DATA_DIR_READ; data.buf = &blocks; rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); req.cmd = &cmd; req.data = &data; mmcsd_send_request(card->host, &req); if (cmd.err || data.err) return -RT_ERROR; return blocks; } static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card, rt_uint32_t sector, void *buf, rt_size_t blks, rt_uint8_t dir) { struct rt_mmcsd_cmd cmd, stop; struct rt_mmcsd_data data; struct rt_mmcsd_req req; struct rt_mmcsd_host *host = card->host; rt_uint32_t r_cmd, w_cmd; mmcsd_host_lock(host); rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.arg = sector; if (!(card->flags & CARD_FLAG_SDHC)) { cmd.arg <<= 9; } cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; data.blksize = SECTOR_SIZE; data.blks = blks; if (blks > 1) { if (!controller_is_spi(card->host) || !dir) { req.stop = &stop; stop.cmd_code = STOP_TRANSMISSION; stop.arg = 0; stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC; } r_cmd = READ_MULTIPLE_BLOCK; w_cmd = WRITE_MULTIPLE_BLOCK; } else { req.stop = RT_NULL; r_cmd = READ_SINGLE_BLOCK; w_cmd = WRITE_BLOCK; } if (!controller_is_spi(card->host) && (card->flags & 0x8000)) { /* last request is WRITE,need check busy */ card_busy_detect(card, 10000, RT_NULL); } if (!dir) { cmd.cmd_code = r_cmd; data.flags |= DATA_DIR_READ; card->flags &= 0x7fff; } else { cmd.cmd_code = w_cmd; data.flags |= DATA_DIR_WRITE; card->flags |= 0x8000; } mmcsd_set_data_timeout(&data, card); data.buf = buf; mmcsd_send_request(host, &req); mmcsd_host_unlock(host); if (cmd.err || data.err || stop.err) { LOG_E("mmcsd request blocks error"); LOG_E("%d,%d,%d, 0x%08x,0x%08x", cmd.err, data.err, stop.err, data.flags, sector); return -RT_ERROR; } return RT_EOK; } static rt_err_t rt_mmcsd_init(rt_device_t dev) { return RT_EOK; } static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_mmcsd_close(rt_device_t dev) { return RT_EOK; } static rt_err_t rt_mmcsd_control(rt_device_t dev, int cmd, void *args) { struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data; switch (cmd) { case RT_DEVICE_CTRL_BLK_GETGEOME: rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry)); break; case RT_DEVICE_CTRL_BLK_PARTITION: rt_memcpy(args, &blk_dev->part, sizeof(struct dfs_partition)); break; case RT_DEVICE_CTRL_BLK_SSIZEGET: rt_memcpy(args, &blk_dev->geometry.bytes_per_sector, sizeof(rt_uint32_t)); break; case RT_DEVICE_CTRL_ALL_BLK_SSIZEGET: { rt_uint64_t count_mul_per = blk_dev->geometry.bytes_per_sector * blk_dev->geometry.sector_count; rt_memcpy(args, &count_mul_per, sizeof(rt_uint64_t)); } break; default: break; } return RT_EOK; } static rt_ssize_t rt_mmcsd_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { rt_err_t err = 0; rt_size_t offset = 0; rt_size_t req_size = 0; rt_size_t remain_size = size; void *rd_ptr = (void *)buffer; struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data; struct dfs_partition *part = &blk_dev->part; if (dev == RT_NULL) { rt_set_errno(-EINVAL); return 0; } rt_sem_take(part->lock, RT_WAITING_FOREVER); while (remain_size) { req_size = (remain_size > blk_dev->max_req_size) ? blk_dev->max_req_size : remain_size; err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos + offset, rd_ptr, req_size, 0); if (err) break; offset += req_size; rd_ptr = (void *)((rt_uint8_t *)rd_ptr + (req_size << 9)); remain_size -= req_size; } rt_sem_release(part->lock); /* the length of reading must align to SECTOR SIZE */ if (err) { rt_set_errno(-EIO); return 0; } return size - remain_size; } static rt_ssize_t rt_mmcsd_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { rt_err_t err = 0; rt_size_t offset = 0; rt_size_t req_size = 0; rt_size_t remain_size = size; void *wr_ptr = (void *)buffer; struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data; struct dfs_partition *part = &blk_dev->part; if (dev == RT_NULL) { rt_set_errno(-EINVAL); return 0; } rt_sem_take(part->lock, RT_WAITING_FOREVER); while (remain_size) { req_size = (remain_size > blk_dev->max_req_size) ? blk_dev->max_req_size : remain_size; err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos + offset, wr_ptr, req_size, 1); if (err) break; offset += req_size; wr_ptr = (void *)((rt_uint8_t *)wr_ptr + (req_size << 9)); remain_size -= req_size; } rt_sem_release(part->lock); /* the length of reading must align to SECTOR SIZE */ if (err) { rt_set_errno(-EIO); return 0; } return size - remain_size; } static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card) { struct rt_mmcsd_cmd cmd; int err; /* Block-addressed cards ignore MMC_SET_BLOCKLEN. */ if (card->flags & CARD_FLAG_SDHC) return 0; mmcsd_host_lock(card->host); cmd.cmd_code = SET_BLOCKLEN; cmd.arg = 512; cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, 5); mmcsd_host_unlock(card->host); if (err) { LOG_E("MMCSD: unable to set block size to %d: %d", cmd.arg, err); return -RT_ERROR; } return 0; } rt_int32_t read_lba(struct rt_mmcsd_card *card, size_t lba, uint8_t *buffer, size_t count) { rt_uint8_t status = 0; status = mmcsd_set_blksize(card); if (status) { return status; } rt_thread_mdelay(1); status = rt_mmcsd_req_blk(card, lba, buffer, count, 0); return status; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops mmcsd_blk_ops = { rt_mmcsd_init, rt_mmcsd_open, rt_mmcsd_close, rt_mmcsd_read, rt_mmcsd_write, rt_mmcsd_control }; #endif #ifdef RT_USING_DFS_V2 static ssize_t rt_mmcsd_fops_read(struct dfs_file *file, void *buf, size_t count, off_t *pos) { int result = 0; rt_device_t dev = (rt_device_t)file->vnode->data; struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data; int bytes_per_sector = blk_dev->geometry.bytes_per_sector; int blk_pos = *pos / bytes_per_sector; int first_offs = *pos % bytes_per_sector; char *rbuf; int rsize = 0; rbuf = rt_malloc(bytes_per_sector); if (!rbuf) { return 0; } /* ** #1: read first unalign block size. */ result = rt_mmcsd_read(dev, blk_pos, rbuf, 1); if (result != 1) { rt_free(rbuf); return 0; } if (count > bytes_per_sector - first_offs) { rsize = bytes_per_sector - first_offs; } else { rsize = count; } rt_memcpy(buf, rbuf + first_offs, rsize); blk_pos++; /* ** #2: read continuous block size. */ while (rsize < count) { result = rt_mmcsd_read(dev, blk_pos++, rbuf, 1); if (result != 1) { break; } if (count - rsize >= bytes_per_sector) { rt_memcpy(buf + rsize, rbuf, bytes_per_sector); rsize += bytes_per_sector; } else { rt_memcpy(buf + rsize, rbuf, count - rsize); rsize = count; } } rt_free(rbuf); *pos += rsize; return rsize; } static int rt_mmcsd_fops_ioctl(struct dfs_file *file, int cmd, void *arg) { rt_device_t dev = (rt_device_t)file->vnode->data; return rt_mmcsd_control(dev,cmd,arg); } static int rt_mmcsd_fops_open(struct dfs_file *file) { rt_device_t dev = (rt_device_t)file->vnode->data; rt_mmcsd_control(dev, RT_DEVICE_CTRL_ALL_BLK_SSIZEGET, &file->vnode->size); return RT_EOK; } static int rt_mmcsd_fops_close(struct dfs_file *file) { return RT_EOK; } static ssize_t rt_mmcsd_fops_write(struct dfs_file *file, const void *buf, size_t count, off_t *pos) { int result = 0; rt_device_t dev = (rt_device_t)file->vnode->data; struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data; int bytes_per_sector = blk_dev->geometry.bytes_per_sector; int blk_pos = *pos / bytes_per_sector; int first_offs = *pos % bytes_per_sector; char *rbuf = 0; int wsize = 0; /* ** #1: write first unalign block size. */ if (first_offs != 0) { if (count > bytes_per_sector - first_offs) { wsize = bytes_per_sector - first_offs; } else { wsize = count; } rbuf = rt_malloc(bytes_per_sector); if (!rbuf) { return 0; } result = rt_mmcsd_read(dev, blk_pos, rbuf, 1); if (result != 1) { rt_free(rbuf); return 0; } rt_memcpy(rbuf + first_offs, buf, wsize); result = rt_mmcsd_write(dev, blk_pos, rbuf, 1); if (result != 1) { rt_free(rbuf); return 0; } rt_free(rbuf); blk_pos += 1; } /* ** #2: write continuous block size. */ if ((count - wsize) / bytes_per_sector != 0) { result = rt_mmcsd_write(dev, blk_pos, buf + wsize, (count - wsize) / bytes_per_sector); wsize += result * bytes_per_sector; blk_pos += result; if (result != (count - wsize) / bytes_per_sector) { *pos += wsize; return wsize; } } /* ** # 3: write last unalign block size. */ if ((count - wsize) != 0) { rbuf = rt_malloc(bytes_per_sector); if (rbuf != RT_NULL) { result = rt_mmcsd_read(dev, blk_pos, rbuf, 1); if (result == 1) { rt_memcpy(rbuf, buf + wsize, count - wsize); result = rt_mmcsd_write(dev, blk_pos, rbuf, 1); if (result == 1) { wsize += count - wsize; } } rt_free(rbuf); } } *pos += wsize; return wsize; } static int rt_mmcsd_fops_poll(struct dfs_file *file, struct rt_pollreq *req) { int mask = 0; return mask; } static int rt_mmcsd_fops_flush(struct dfs_file *file) { return RT_EOK; } const static struct dfs_file_ops mmcsd_blk_fops = { rt_mmcsd_fops_open, rt_mmcsd_fops_close, rt_mmcsd_fops_ioctl, rt_mmcsd_fops_read, rt_mmcsd_fops_write, rt_mmcsd_fops_flush, generic_dfs_lseek, RT_NULL, RT_NULL, rt_mmcsd_fops_poll }; #endif rt_int32_t gpt_device_probe(struct rt_mmcsd_card *card) { rt_int32_t err = RT_EOK; rt_uint8_t i, status; char dname[10]; char sname[16]; struct mmcsd_blk_device *blk_dev = RT_NULL; blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device)); if (!blk_dev) { LOG_E("mmcsd:malloc memory failed!"); return -1; } blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs * card->host->max_seg_size) >> 9, (card->host->max_blk_count * card->host->max_blk_size) >> 9); blk_dev->part.offset = 0; blk_dev->part.size = 0; rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, 0); blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO); /* register mmcsd device */ blk_dev->dev.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->dev.ops = &mmcsd_blk_ops; #else blk_dev->dev.init = rt_mmcsd_init; blk_dev->dev.open = rt_mmcsd_open; blk_dev->dev.close = rt_mmcsd_close; blk_dev->dev.read = rt_mmcsd_read; blk_dev->dev.write = rt_mmcsd_write; blk_dev->dev.control = rt_mmcsd_control; #endif blk_dev->card = card; blk_dev->geometry.bytes_per_sector = 1 << 9; blk_dev->geometry.block_size = card->card_blksize; blk_dev->geometry.sector_count = card->card_capacity * (1024 / 512); blk_dev->dev.user_data = blk_dev; rt_device_register(&(blk_dev->dev), card->host->name, RT_DEVICE_FLAG_RDWR); #ifdef RT_USING_POSIX_DEVIO #ifdef RT_USING_DFS_V2 blk_dev->dev.fops = &mmcsd_blk_fops; #endif #endif rt_list_insert_after(&blk_devices, &blk_dev->list); for (i = 0; i < RT_GPT_PARTITION_MAX; i++) { blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device)); if (!blk_dev) { LOG_E("mmcsd:malloc memory failed!"); break; } blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs * card->host->max_seg_size) >> 9, (card->host->max_blk_count * card->host->max_blk_size) >> 9); /* get the first partition */ status = gpt_get_partition_param(card, &blk_dev->part, i); if (status == RT_EOK) { rt_snprintf(dname, sizeof(dname) - 1, "%s%d", card->host->name, i); rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, i + 1); blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO); /* register mmcsd device */ blk_dev->dev.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->dev.ops = &mmcsd_blk_ops; #else blk_dev->dev.init = rt_mmcsd_init; blk_dev->dev.open = rt_mmcsd_open; blk_dev->dev.close = rt_mmcsd_close; blk_dev->dev.read = rt_mmcsd_read; blk_dev->dev.write = rt_mmcsd_write; blk_dev->dev.control = rt_mmcsd_control; #endif blk_dev->card = card; blk_dev->geometry.bytes_per_sector = 1 << 9; blk_dev->geometry.block_size = card->card_blksize; blk_dev->geometry.sector_count = blk_dev->part.size; blk_dev->dev.user_data = blk_dev; rt_device_register(&(blk_dev->dev), dname, RT_DEVICE_FLAG_RDWR); #ifdef RT_USING_POSIX_DEVIO #ifdef RT_USING_DFS_V2 blk_dev->dev.fops = &mmcsd_blk_fops; #endif #endif rt_list_insert_after(&blk_devices, &blk_dev->list); } else { rt_free(blk_dev); blk_dev = RT_NULL; break; } #ifdef RT_USING_DFS_MNTTABLE if (blk_dev) { LOG_I("try to mount file system!"); /* try to mount file system on this block device */ dfs_mount_device(&(blk_dev->dev)); } #endif } gpt_free(); return err; } rt_int32_t mbr_device_probe(struct rt_mmcsd_card *card) { rt_int32_t err = 0; rt_uint8_t i, status; rt_uint8_t *sector; char dname[10]; char sname[16]; struct mmcsd_blk_device *blk_dev = RT_NULL; err = mmcsd_set_blksize(card); if (err) { return err; } rt_thread_mdelay(1); /* get the first sector to read partition table */ sector = (rt_uint8_t *)rt_malloc(SECTOR_SIZE); if (sector == RT_NULL) { LOG_E("allocate partition sector buffer failed!"); return -RT_ENOMEM; } status = rt_mmcsd_req_blk(card, 0, sector, 1, 0); if (status == RT_EOK) { blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device)); if (!blk_dev) { LOG_E("mmcsd:malloc memory failed!"); return -1; } blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs * card->host->max_seg_size) >> 9, (card->host->max_blk_count * card->host->max_blk_size) >> 9); blk_dev->part.offset = 0; blk_dev->part.size = 0; rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, 0); blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO); /* register mmcsd device */ blk_dev->dev.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->dev.ops = &mmcsd_blk_ops; #else blk_dev->dev.init = rt_mmcsd_init; blk_dev->dev.open = rt_mmcsd_open; blk_dev->dev.close = rt_mmcsd_close; blk_dev->dev.read = rt_mmcsd_read; blk_dev->dev.write = rt_mmcsd_write; blk_dev->dev.control = rt_mmcsd_control; #endif blk_dev->card = card; blk_dev->geometry.bytes_per_sector = 1 << 9; blk_dev->geometry.block_size = card->card_blksize; blk_dev->geometry.sector_count = card->card_capacity * (1024 / 512); blk_dev->dev.user_data = blk_dev; rt_device_register(&(blk_dev->dev), card->host->name, RT_DEVICE_FLAG_RDWR); rt_list_insert_after(&blk_devices, &blk_dev->list); for (i = 0; i < RT_MMCSD_MAX_PARTITION; i++) { blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device)); if (!blk_dev) { LOG_E("mmcsd:malloc memory failed!"); break; } blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs * card->host->max_seg_size) >> 9, (card->host->max_blk_count * card->host->max_blk_size) >> 9); /* get the first partition */ status = dfs_filesystem_get_partition(&blk_dev->part, sector, i); if (status == RT_EOK) { rt_snprintf(dname, sizeof(dname) - 1, "%s%d", card->host->name, i); rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, i + 1); blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO); /* register mmcsd device */ blk_dev->dev.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->dev.ops = &mmcsd_blk_ops; #else blk_dev->dev.init = rt_mmcsd_init; blk_dev->dev.open = rt_mmcsd_open; blk_dev->dev.close = rt_mmcsd_close; blk_dev->dev.read = rt_mmcsd_read; blk_dev->dev.write = rt_mmcsd_write; blk_dev->dev.control = rt_mmcsd_control; #endif blk_dev->card = card; blk_dev->geometry.bytes_per_sector = 1 << 9; blk_dev->geometry.block_size = card->card_blksize; blk_dev->geometry.sector_count = blk_dev->part.size; blk_dev->dev.user_data = blk_dev; rt_device_register(&(blk_dev->dev), dname, RT_DEVICE_FLAG_RDWR); rt_list_insert_after(&blk_devices, &blk_dev->list); } else { rt_free(blk_dev); blk_dev = RT_NULL; break; } #ifdef RT_USING_DFS_MNTTABLE if (blk_dev) { LOG_I("try to mount file system!"); /* try to mount file system on this block device */ dfs_mount_device(&(blk_dev->dev)); } #endif } } else { LOG_E("read mmcsd first sector failed"); err = -RT_ERROR; } /* release sector buffer */ rt_free(sector); return err; } rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card) { uint32_t err = 0; LOG_D("probe mmcsd block device!"); if (check_gpt(card) != 0) { err = gpt_device_probe(card); } else { err = mbr_device_probe(card); } return err; } void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card) { rt_list_t *l, *n; struct mmcsd_blk_device *blk_dev; for (l = (&blk_devices)->next, n = l->next; l != &blk_devices; l = n, n = n->next) { blk_dev = (struct mmcsd_blk_device *)rt_list_entry(l, struct mmcsd_blk_device, list); if (blk_dev->card == card) { /* unmount file system */ const char *mounted_path = dfs_filesystem_get_mounted_path(&(blk_dev->dev)); if (mounted_path) { dfs_unmount(mounted_path); LOG_D("unmount file system %s for device %s.\r\n", mounted_path, blk_dev->dev.parent.name); } rt_sem_delete(blk_dev->part.lock); rt_device_unregister(&blk_dev->dev); rt_list_remove(&blk_dev->list); rt_free(blk_dev); } } } /* * This function will initialize block device on the mmc/sd. * * @deprecated since 2.1.0, this function does not need to be invoked * in the system initialization. */ int rt_mmcsd_blk_init(void) { /* nothing */ return 0; }