//***************************************************************************** // // adc.c - Driver for the ADC. // // Copyright (c) 2005-2011 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 8049 of the Stellaris Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup adc_api //! @{ // //***************************************************************************** #include "inc/hw_adc.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "inc/hw_sysctl.h" #include "driverlib/adc.h" #include "driverlib/debug.h" #include "driverlib/interrupt.h" //***************************************************************************** // // These defines are used by the ADC driver to simplify access to the ADC // sequencer's registers. // //***************************************************************************** #define ADC_SEQ (ADC_O_SSMUX0) #define ADC_SEQ_STEP (ADC_O_SSMUX1 - ADC_O_SSMUX0) #define ADC_SSMUX (ADC_O_SSMUX0 - ADC_O_SSMUX0) #define ADC_SSEMUX (ADC_O_SSEMUX0 - ADC_O_SSMUX0) #define ADC_SSCTL (ADC_O_SSCTL0 - ADC_O_SSMUX0) #define ADC_SSFIFO (ADC_O_SSFIFO0 - ADC_O_SSMUX0) #define ADC_SSFSTAT (ADC_O_SSFSTAT0 - ADC_O_SSMUX0) #define ADC_SSOP (ADC_O_SSOP0 - ADC_O_SSMUX0) #define ADC_SSDC (ADC_O_SSDC0 - ADC_O_SSMUX0) //***************************************************************************** // // The currently configured software oversampling factor for each of the ADC // sequencers. // //***************************************************************************** static unsigned char g_pucOversampleFactor[3]; //***************************************************************************** // //! Registers an interrupt handler for an ADC interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param pfnHandler is a pointer to the function to be called when the //! ADC sample sequence interrupt occurs. //! //! This function sets the handler to be called when a sample sequence //! interrupt occurs. This will enable the global interrupt in the interrupt //! controller; the sequence interrupt must be enabled with ADCIntEnable(). It //! is the interrupt handler's responsibility to clear the interrupt source via //! ADCIntClear(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void ADCIntRegister(unsigned long ulBase, unsigned long ulSequenceNum, void (*pfnHandler)(void)) { unsigned long ulInt; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Determine the interrupt to register based on the sequence number. // ulInt = ((ulBase == ADC0_BASE) ? (INT_ADC0SS0 + ulSequenceNum) : (INT_ADC1SS0 + ulSequenceNum)); // // Register the interrupt handler. // IntRegister(ulInt, pfnHandler); // // Enable the timer interrupt. // IntEnable(ulInt); } //***************************************************************************** // //! Unregisters the interrupt handler for an ADC interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This function unregisters the interrupt handler. This will disable the //! global interrupt in the interrupt controller; the sequence interrupt must //! be disabled via ADCIntDisable(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void ADCIntUnregister(unsigned long ulBase, unsigned long ulSequenceNum) { unsigned long ulInt; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Determine the interrupt to unregister based on the sequence number. // ulInt = ((ulBase == ADC0_BASE) ? (INT_ADC0SS0 + ulSequenceNum) : (INT_ADC1SS0 + ulSequenceNum)); // // Disable the interrupt. // IntDisable(ulInt); // // Unregister the interrupt handler. // IntUnregister(ulInt); } //***************************************************************************** // //! Disables a sample sequence interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This function disables the requested sample sequence interrupt. //! //! \return None. // //***************************************************************************** void ADCIntDisable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Disable this sample sequence interrupt. // HWREG(ulBase + ADC_O_IM) &= ~(1 << ulSequenceNum); } //***************************************************************************** // //! Enables a sample sequence interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This function enables the requested sample sequence interrupt. Any //! outstanding interrupts are cleared before enabling the sample sequence //! interrupt. //! //! \return None. // //***************************************************************************** void ADCIntEnable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Clear any outstanding interrupts on this sample sequence. // HWREG(ulBase + ADC_O_ISC) = 1 << ulSequenceNum; // // Enable this sample sequence interrupt. // HWREG(ulBase + ADC_O_IM) |= 1 << ulSequenceNum; } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param bMasked is false if the raw interrupt status is required and true if //! the masked interrupt status is required. //! //! This returns the interrupt status for the specified sample sequence. //! Either the raw interrupt status or the status of interrupts that are //! allowed to reflect to the processor can be returned. //! //! \return The current raw or masked interrupt status. // //***************************************************************************** unsigned long ADCIntStatus(unsigned long ulBase, unsigned long ulSequenceNum, tBoolean bMasked) { unsigned long ulTemp; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { ulTemp = HWREG(ulBase + ADC_O_ISC) & (0x10001 << ulSequenceNum); } else { ulTemp = HWREG(ulBase + ADC_O_RIS) & (0x10000 | (1 << ulSequenceNum)); // // If the digital comparator status bit is set, reflect it to the // appropriate sequence bit. // if(ulTemp & 0x10000) { ulTemp |= 0xF0000; ulTemp &= ~(0x10000 << ulSequenceNum); } } // // Return the interrupt status // return(ulTemp); } //***************************************************************************** // //! Clears sample sequence interrupt source. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! The specified sample sequence interrupt is cleared, so that it no longer //! asserts. This must be done in the interrupt handler to keep it from being //! called again immediately upon exit. //! //! \note Because there is a write buffer in the Cortex-M3 processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void ADCIntClear(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arugments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Clear the interrupt. // HWREG(ulBase + ADC_O_ISC) = 1 << ulSequenceNum; } //***************************************************************************** // //! Enables a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! Allows the specified sample sequence to be captured when its trigger is //! detected. A sample sequence must be configured before it is enabled. //! //! \return None. // //***************************************************************************** void ADCSequenceEnable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arugments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Enable the specified sequence. // HWREG(ulBase + ADC_O_ACTSS) |= 1 << ulSequenceNum; } //***************************************************************************** // //! Disables a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! Prevents the specified sample sequence from being captured when its trigger //! is detected. A sample sequence should be disabled before it is configured. //! //! \return None. // //***************************************************************************** void ADCSequenceDisable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arugments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Disable the specified sequences. // HWREG(ulBase + ADC_O_ACTSS) &= ~(1 << ulSequenceNum); } //***************************************************************************** // //! Configures the trigger source and priority of a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param ulTrigger is the trigger source that initiates the sample sequence; //! must be one of the \b ADC_TRIGGER_* values. //! \param ulPriority is the relative priority of the sample sequence with //! respect to the other sample sequences. //! //! This function configures the initiation criteria for a sample sequence. //! Valid sample sequences range from zero to three; sequence zero will capture //! up to eight samples, sequences one and two will capture up to four samples, //! and sequence three will capture a single sample. The trigger condition and //! priority (with respect to other sample sequence execution) is set. //! //! The \e ulTrigger parameter can take on the following values: //! //! - \b ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the //! ADCProcessorTrigger() function. //! - \b ADC_TRIGGER_COMP0 - A trigger generated by the first analog //! comparator; configured with ComparatorConfigure(). //! - \b ADC_TRIGGER_COMP1 - A trigger generated by the second analog //! comparator; configured with ComparatorConfigure(). //! - \b ADC_TRIGGER_COMP2 - A trigger generated by the third analog //! comparator; configured with ComparatorConfigure(). //! - \b ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port //! B4 pin. //! - \b ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with //! TimerControlTrigger(). //! - \b ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator; //! configured with PWMGenIntTrigEnable(). //! - \b ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; //! configured with PWMGenIntTrigEnable(). //! - \b ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; //! configured with PWMGenIntTrigEnable(). //! - \b ADC_TRIGGER_PWM3 - A trigger generated by the fourth PWM generator; //! configured with PWMGenIntTrigEnable(). //! - \b ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the //! sample sequence to capture repeatedly (so long as //! there is not a higher priority source active). //! //! Note that not all trigger sources are available on all Stellaris family //! members; consult the data sheet for the device in question to determine the //! availability of triggers. //! //! The \e ulPriority parameter is a value between 0 and 3, where 0 represents //! the highest priority and 3 the lowest. Note that when programming the //! priority among a set of sample sequences, each must have unique priority; //! it is up to the caller to guarantee the uniqueness of the priorities. //! //! \return None. // //***************************************************************************** void ADCSequenceConfigure(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long ulTrigger, unsigned long ulPriority) { // // Check the arugments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); ASSERT((ulTrigger == ADC_TRIGGER_PROCESSOR) || (ulTrigger == ADC_TRIGGER_COMP0) || (ulTrigger == ADC_TRIGGER_COMP1) || (ulTrigger == ADC_TRIGGER_COMP2) || (ulTrigger == ADC_TRIGGER_EXTERNAL) || (ulTrigger == ADC_TRIGGER_TIMER) || (ulTrigger == ADC_TRIGGER_PWM0) || (ulTrigger == ADC_TRIGGER_PWM1) || (ulTrigger == ADC_TRIGGER_PWM2) || (ulTrigger == ADC_TRIGGER_PWM3) || (ulTrigger == ADC_TRIGGER_ALWAYS)); ASSERT(ulPriority < 4); // // Compute the shift for the bits that control this sample sequence. // ulSequenceNum *= 4; // // Set the trigger event for this sample sequence. // HWREG(ulBase + ADC_O_EMUX) = ((HWREG(ulBase + ADC_O_EMUX) & ~(0xf << ulSequenceNum)) | ((ulTrigger & 0xf) << ulSequenceNum)); // // Set the priority for this sample sequence. // HWREG(ulBase + ADC_O_SSPRI) = ((HWREG(ulBase + ADC_O_SSPRI) & ~(0xf << ulSequenceNum)) | ((ulPriority & 0x3) << ulSequenceNum)); } //***************************************************************************** // //! Configure a step of the sample sequencer. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param ulStep is the step to be configured. //! \param ulConfig is the configuration of this step; must be a logical OR of //! \b ADC_CTL_TS, \b ADC_CTL_IE, \b ADC_CTL_END, \b ADC_CTL_D, one of the //! input channel selects (\b ADC_CTL_CH0 through \b ADC_CTL_CH15), and one of //! the digital comparator selects (\b ADC_CTL_CMP0 through \b ADC_CTL_CMP7). //! //! This function will set the configuration of the ADC for one step of a //! sample sequence. The ADC can be configured for single-ended or //! differential operation (the \b ADC_CTL_D bit selects differential //! operation when set), the channel to be sampled can be chosen (the //! \b ADC_CTL_CH0 through \b ADC_CTL_CH15 values), and the internal //! temperature sensor can be selected (the \b ADC_CTL_TS bit). Additionally, //! this step can be defined as the last in the sequence (the \b ADC_CTL_END //! bit) and it can be configured to cause an interrupt when the step is //! complete (the \b ADC_CTL_IE bit). If the digital comparators are present //! on the device, this step may also be configured to send the ADC sample to //! the selected comparator using \b ADC_CTL_CMP0 through \b ADC_CTL_CMP7. //! The configuration is used by the ADC at the appropriate time when the //! trigger for this sequence occurs. //! //! \note If the Digitial Comparator is present and enabled using the //! \b ADC_CTL_CMP0 through \b ADC_CTL_CMP7 selects, the ADC sample will NOT be //! written into the ADC sequence data FIFO. //! //! The \e ulStep parameter determines the order in which the samples are //! captured by the ADC when the trigger occurs. It can range from zero to //! seven for the first sample sequence, from zero to three for the second and //! third sample sequence, and can only be zero for the fourth sample sequence. //! //! Differential mode only works with adjacent channel pairs (for example, 0 //! and 1). The channel select must be the number of the channel pair to //! sample (for example, \b ADC_CTL_CH0 for 0 and 1, or \b ADC_CTL_CH1 for 2 //! and 3) or undefined results are returned by the ADC. Additionally, if //! differential mode is selected when the temperature sensor is being sampled, //! undefined results are returned by the ADC. //! //! It is the responsibility of the caller to ensure that a valid configuration //! is specified; this function does not check the validity of the specified //! configuration. //! //! \return None. // //***************************************************************************** void ADCSequenceStepConfigure(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long ulStep, unsigned long ulConfig) { unsigned long ulTemp; // // Check the arugments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); ASSERT(((ulSequenceNum == 0) && (ulStep < 8)) || ((ulSequenceNum == 1) && (ulStep < 4)) || ((ulSequenceNum == 2) && (ulStep < 4)) || ((ulSequenceNum == 3) && (ulStep < 1))); // // Get the offset of the sequence to be configured. // ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum); // // Compute the shift for the bits that control this step. // ulStep *= 4; // // Set the analog mux value for this step. // HWREG(ulBase + ADC_SSMUX) = ((HWREG(ulBase + ADC_SSMUX) & ~(0x0000000f << ulStep)) | ((ulConfig & 0x0f) << ulStep)); // // Set the upper bits of the analog mux value for this step. // HWREG(ulBase + ADC_SSEMUX) = ((HWREG(ulBase + ADC_SSEMUX) & ~(0x0000000f << ulStep)) | (((ulConfig & 0xf00) >> 8) << ulStep)); // // Set the control value for this step. // HWREG(ulBase + ADC_SSCTL) = ((HWREG(ulBase + ADC_SSCTL) & ~(0x0000000f << ulStep)) | (((ulConfig & 0xf0) >> 4) << ulStep)); // // Enable digital comparator if specified in the ulConfig bit-fields. // if(ulConfig & 0x000F0000) { // // Program the comparator for the specified step. // ulTemp = HWREG(ulBase + ADC_SSDC); ulTemp &= ~(0xF << ulStep); ulTemp |= (((ulConfig & 0x00070000) >> 16) << ulStep); HWREG(ulBase + ADC_SSDC) = ulTemp; // // Enable the comparator. // ulTemp = HWREG(ulBase + ADC_SSOP); ulTemp |= (1 << ulStep); HWREG(ulBase + ADC_SSOP) = ulTemp; } // // Disable digital comparator if not specified. // else { ulTemp = HWREG(ulBase + ADC_SSOP); ulTemp &= ~(1 << ulStep); HWREG(ulBase + ADC_SSOP) = ulTemp; } } //***************************************************************************** // //! Determines if a sample sequence overflow occurred. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This determines if a sample sequence overflow has occurred. This will //! happen if the captured samples are not read from the FIFO before the next //! trigger occurs. //! //! \return Returns zero if there was not an overflow, and non-zero if there //! was. // //***************************************************************************** long ADCSequenceOverflow(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Determine if there was an overflow on this sequence. // return(HWREG(ulBase + ADC_O_OSTAT) & (1 << ulSequenceNum)); } //***************************************************************************** // //! Clears the overflow condition on a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This will clear an overflow condition on one of the sample sequences. The //! overflow condition must be cleared in order to detect a subsequent overflow //! condition (it otherwise causes no harm). //! //! \return None. // //***************************************************************************** void ADCSequenceOverflowClear(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Clear the overflow condition for this sequence. // HWREG(ulBase + ADC_O_OSTAT) = 1 << ulSequenceNum; } //***************************************************************************** // //! Determines if a sample sequence underflow occurred. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This determines if a sample sequence underflow has occurred. This will //! happen if too many samples are read from the FIFO. //! //! \return Returns zero if there was not an underflow, and non-zero if there //! was. // //***************************************************************************** long ADCSequenceUnderflow(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Determine if there was an underflow on this sequence. // return(HWREG(ulBase + ADC_O_USTAT) & (1 << ulSequenceNum)); } //***************************************************************************** // //! Clears the underflow condition on a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This will clear an underflow condition on one of the sample sequences. The //! underflow condition must be cleared in order to detect a subsequent //! underflow condition (it otherwise causes no harm). //! //! \return None. // //***************************************************************************** void ADCSequenceUnderflowClear(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Clear the underflow condition for this sequence. // HWREG(ulBase + ADC_O_USTAT) = 1 << ulSequenceNum; } //***************************************************************************** // //! Gets the captured data for a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param pulBuffer is the address where the data is stored. //! //! This function copies data from the specified sample sequence output FIFO to //! a memory resident buffer. The number of samples available in the hardware //! FIFO are copied into the buffer, which is assumed to be large enough to //! hold that many samples. This will only return the samples that are //! presently available, which may not be the entire sample sequence if it is //! in the process of being executed. //! //! \return Returns the number of samples copied to the buffer. // //***************************************************************************** long ADCSequenceDataGet(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long *pulBuffer) { unsigned long ulCount; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Get the offset of the sequence to be read. // ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum); // // Read samples from the FIFO until it is empty. // ulCount = 0; while(!(HWREG(ulBase + ADC_SSFSTAT) & ADC_SSFSTAT0_EMPTY) && (ulCount < 8)) { // // Read the FIFO and copy it to the destination. // *pulBuffer++ = HWREG(ulBase + ADC_SSFIFO); // // Increment the count of samples read. // ulCount++; } // // Return the number of samples read. // return(ulCount); } //***************************************************************************** // //! Causes a processor trigger for a sample sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number, with //! \b ADC_TRIGGER_WAIT or \b ADC_TRIGGER_SIGNAL optionally ORed into it. //! //! This function triggers a processor-initiated sample sequence if the sample //! sequence trigger is configured to \b ADC_TRIGGER_PROCESSOR. If //! \b ADC_TRIGGER_WAIT is ORed into the sequence number, the //! processor-initiated trigger is delayed until a later processor-initiated //! trigger to a different ADC module that specifies \b ADC_TRIGGER_SIGNAL, //! allowing multiple ADCs to start from a processor-initiated trigger in a //! synchronous manner. //! //! \return None. // //***************************************************************************** void ADCProcessorTrigger(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT((ulSequenceNum & 0xf) < 4); // // Generate a processor trigger for this sample sequence. // HWREG(ulBase + ADC_O_PSSI) |= ((ulSequenceNum & 0xffff0000) | (1 << (ulSequenceNum & 0xf))); } //***************************************************************************** // //! Configures the software oversampling factor of the ADC. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param ulFactor is the number of samples to be averaged. //! //! This function configures the software oversampling for the ADC, which can //! be used to provide better resolution on the sampled data. Oversampling is //! accomplished by averaging multiple samples from the same analog input. //! Three different oversampling rates are supported; 2x, 4x, and 8x. //! //! Oversampling is only supported on the sample sequencers that are more than //! one sample in depth (that is, the fourth sample sequencer is not //! supported). Oversampling by 2x (for example) divides the depth of the //! sample sequencer by two; so 2x oversampling on the first sample sequencer //! can only provide four samples per trigger. This also means that 8x //! oversampling is only available on the first sample sequencer. //! //! \return None. // //***************************************************************************** void ADCSoftwareOversampleConfigure(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long ulFactor) { unsigned long ulValue; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 3); ASSERT(((ulFactor == 2) || (ulFactor == 4) || (ulFactor == 8)) && ((ulSequenceNum == 0) || (ulFactor != 8))); // // Convert the oversampling factor to a shift factor. // for(ulValue = 0, ulFactor >>= 1; ulFactor; ulValue++, ulFactor >>= 1) { } // // Save the sfiht factor. // g_pucOversampleFactor[ulSequenceNum] = ulValue; } //***************************************************************************** // //! Configures a step of the software oversampled sequencer. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param ulStep is the step to be configured. //! \param ulConfig is the configuration of this step. //! //! This function configures a step of the sample sequencer when using the //! software oversampling feature. The number of steps available depends on //! the oversampling factor set by ADCSoftwareOversampleConfigure(). The value //! of \e ulConfig is the same as defined for ADCSequenceStepConfigure(). //! //! \return None. // //***************************************************************************** void ADCSoftwareOversampleStepConfigure(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long ulStep, unsigned long ulConfig) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 3); ASSERT(((ulSequenceNum == 0) && (ulStep < (8 >> g_pucOversampleFactor[ulSequenceNum]))) || (ulStep < (4 >> g_pucOversampleFactor[ulSequenceNum]))); // // Get the offset of the sequence to be configured. // ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum); // // Compute the shift for the bits that control this step. // ulStep *= 4 << g_pucOversampleFactor[ulSequenceNum]; // // Loop through the hardware steps that make up this step of the software // oversampled sequence. // for(ulSequenceNum = 1 << g_pucOversampleFactor[ulSequenceNum]; ulSequenceNum; ulSequenceNum--) { // // Set the analog mux value for this step. // HWREG(ulBase + ADC_SSMUX) = ((HWREG(ulBase + ADC_SSMUX) & ~(0x0000000f << ulStep)) | ((ulConfig & 0x0f) << ulStep)); // // Set the upper bits of the analog mux value for this step. // HWREG(ulBase + ADC_SSEMUX) = ((HWREG(ulBase + ADC_SSEMUX) & ~(0x0000000f << ulStep)) | (((ulConfig & 0xf00) >> 8) << ulStep)); // // Set the control value for this step. // HWREG(ulBase + ADC_SSCTL) = ((HWREG(ulBase + ADC_SSCTL) & ~(0x0000000f << ulStep)) | (((ulConfig & 0xf0) >> 4) << ulStep)); if(ulSequenceNum != 1) { HWREG(ulBase + ADC_SSCTL) &= ~((ADC_SSCTL0_IE0 | ADC_SSCTL0_END0) << ulStep); } // // Go to the next hardware step. // ulStep += 4; } } //***************************************************************************** // //! Gets the captured data for a sample sequence using software oversampling. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! \param pulBuffer is the address where the data is stored. //! \param ulCount is the number of samples to be read. //! //! This function copies data from the specified sample sequence output FIFO to //! a memory resident buffer with software oversampling applied. The requested //! number of samples are copied into the data buffer; if there are not enough //! samples in the hardware FIFO to satisfy this many oversampled data items //! then incorrect results are returned. It is the caller's responsibility to //! read only the samples that are available and wait until enough data is //! available, for example as a result of receiving an interrupt. //! //! \return None. // //***************************************************************************** void ADCSoftwareOversampleDataGet(unsigned long ulBase, unsigned long ulSequenceNum, unsigned long *pulBuffer, unsigned long ulCount) { unsigned long ulIdx, ulAccum; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 3); ASSERT(((ulSequenceNum == 0) && (ulCount < (8 >> g_pucOversampleFactor[ulSequenceNum]))) || (ulCount < (4 >> g_pucOversampleFactor[ulSequenceNum]))); // // Get the offset of the sequence to be read. // ulBase += ADC_SEQ + (ADC_SEQ_STEP * ulSequenceNum); // // Read the samples from the FIFO until it is empty. // while(ulCount--) { // // Compute the sum of the samples. // ulAccum = 0; for(ulIdx = 1 << g_pucOversampleFactor[ulSequenceNum]; ulIdx; ulIdx--) { // // Read the FIFO and add it to the accumulator. // ulAccum += HWREG(ulBase + ADC_SSFIFO); } // // Write the averaged sample to the output buffer. // *pulBuffer++ = ulAccum >> g_pucOversampleFactor[ulSequenceNum]; } } //***************************************************************************** // //! Configures the hardware oversampling factor of the ADC. //! //! \param ulBase is the base address of the ADC module. //! \param ulFactor is the number of samples to be averaged. //! //! This function configures the hardware oversampling for the ADC, which can //! be used to provide better resolution on the sampled data. Oversampling is //! accomplished by averaging multiple samples from the same analog input. Six //! different oversampling rates are supported; 2x, 4x, 8x, 16x, 32x, and 64x. //! Specifying an oversampling factor of zero will disable hardware //! oversampling. //! //! Hardware oversampling applies uniformly to all sample sequencers. It does //! not reduce the depth of the sample sequencers like the software //! oversampling APIs; each sample written into the sample sequence FIFO is a //! fully oversampled analog input reading. //! //! Enabling hardware averaging increases the precision of the ADC at the cost //! of throughput. For example, enabling 4x oversampling reduces the //! throughput of a 250 Ksps ADC to 62.5 Ksps. //! //! \note Hardware oversampling is available beginning with Rev C0 of the //! Stellaris microcontroller. //! //! \return None. // //***************************************************************************** void ADCHardwareOversampleConfigure(unsigned long ulBase, unsigned long ulFactor) { unsigned long ulValue; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(((ulFactor == 0) || (ulFactor == 2) || (ulFactor == 4) || (ulFactor == 8) || (ulFactor == 16) || (ulFactor == 32) || (ulFactor == 64))); // // Convert the oversampling factor to a shift factor. // for(ulValue = 0, ulFactor >>= 1; ulFactor; ulValue++, ulFactor >>= 1) { } // // Write the shift factor to the ADC to configure the hardware oversampler. // HWREG(ulBase + ADC_O_SAC) = ulValue; } //***************************************************************************** // //! Configures an ADC digital comparator. //! //! \param ulBase is the base address of the ADC module. //! \param ulComp is the index of the comparator to configure. //! \param ulConfig is the configuration of the comparator. //! //! This function will configure a comparator. The \e ulConfig parameter is //! the result of a logical OR operation between the \b ADC_COMP_TRIG_xxx, and //! \b ADC_COMP_INT_xxx values. //! //! The \b ADC_COMP_TRIG_xxx term can take on the following values: //! //! - \b ADC_COMP_TRIG_NONE to never trigger PWM fault condition. //! - \b ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when //! ADC output is in the low-band. //! - \b ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC //! output transitions into the low-band. //! - \b ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when //! ADC output is in the low-band only if ADC output has been in the high-band //! since the last trigger output. //! - \b ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC //! output transitions into low-band only if ADC output has been in the //! high-band since the last trigger output. //! - \b ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when //! ADC output is in the mid-band. //! - \b ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC //! output transitions into the mid-band. //! - \b ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when //! ADC output is in the high-band. //! - \b ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC //! output transitions into the high-band. //! - \b ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when //! ADC output is in the high-band only if ADC output has been in the low-band //! since the last trigger output. //! - \b ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC //! output transitions into high-band only if ADC output has been in the //! low-band since the last trigger output. //! //! The \b ADC_COMP_INT_xxx term can take on the following values: //! //! - \b ADC_COMP_INT_NONE to never generate ADC interrupt. //! - \b ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC //! output is in the low-band. //! - \b ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output //! transitions into the low-band. //! - \b ADC_COMP__INT_LOW_HALWAYS to always generate ADC interrupt when ADC //! output is in the low-band only if ADC output has been in the high-band //! since the last trigger output. //! - \b ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output //! transitions into low-band only if ADC output has been in the high-band //! since the last trigger output. //! - \b ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC //! output is in the mid-band. //! - \b ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output //! transitions into the mid-band. //! - \b ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC //! output is in the high-band. //! - \b ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output //! transitions into the high-band. //! - \b ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC //! output is in the high-band only if ADC output has been in the low-band //! since the last trigger output. //! - \b ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output //! transitions into high-band only if ADC output has been in the low-band //! since the last trigger output. //! //! \return None. // //***************************************************************************** void ADCComparatorConfigure(unsigned long ulBase, unsigned long ulComp, unsigned long ulConfig) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulComp < 8); // // Save the new setting. // HWREG(ulBase + ADC_O_DCCTL0 + (ulComp * 4)) = ulConfig; } //***************************************************************************** // //! Defines the ADC digital comparator regions. //! //! \param ulBase is the base address of the ADC module. //! \param ulComp is the index of the comparator to configure. //! \param ulLowRef is the reference point for the low/mid band threshold. //! \param ulHighRef is the reference point for the mid/high band threshold. //! //! The ADC digital comparator operation is based on three ADC value regions: //! - \b low-band is defined as any ADC value less than or equal to the //! \e ulLowRef value. //! - \b mid-band is defined as any ADC value greater than the \e ulLowRef //! value but less than or equal to the \e ulHighRef value. //! - \b high-band is defined as any ADC value greater than the \e ulHighRef //! value. //! //! \return None. // //***************************************************************************** void ADCComparatorRegionSet(unsigned long ulBase, unsigned long ulComp, unsigned long ulLowRef, unsigned long ulHighRef) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulComp < 8); ASSERT((ulLowRef < 1024) && (ulLowRef <= ulHighRef)); ASSERT(ulHighRef < 1024); // // Save the new region settings. // HWREG(ulBase + ADC_O_DCCMP0 + (ulComp * 4)) = (ulHighRef << 16) | ulLowRef; } //***************************************************************************** // //! Resets the current ADC digital comparator conditions. //! //! \param ulBase is the base address of the ADC module. //! \param ulComp is the index of the comparator. //! \param bTrigger is the flag to indicate reset of Trigger conditions. //! \param bInterrupt is the flag to indicate reset of Interrupt conditions. //! //! Because the digital comparator uses current and previous ADC values, this //! function is provide to allow the comparator to be reset to its initial //! value to prevent stale data from being used when a sequence is enabled. //! //! \return None. // //***************************************************************************** void ADCComparatorReset(unsigned long ulBase, unsigned long ulComp, tBoolean bTrigger, tBoolean bInterrupt) { unsigned long ulTemp = 0; // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulComp < 8); // // Set the appropriate bits to reset the trigger and/or interrupt // comparator conditions. // if(bTrigger) { ulTemp |= (1 << (16 + ulComp)); } if(bInterrupt) { ulTemp |= (1 << ulComp); } HWREG(ulBase + ADC_O_DCRIC) = ulTemp; } //***************************************************************************** // //! Disables a sample sequence comparator interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This function disables the requested sample sequence comparator interrupt. //! //! \return None. // //***************************************************************************** void ADCComparatorIntDisable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Disable this sample sequence comparator interrupt. // HWREG(ulBase + ADC_O_IM) &= ~(0x10000 << ulSequenceNum); } //***************************************************************************** // //! Enables a sample sequence comparator interrupt. //! //! \param ulBase is the base address of the ADC module. //! \param ulSequenceNum is the sample sequence number. //! //! This function enables the requested sample sequence comparator interrupt. //! //! \return None. // //***************************************************************************** void ADCComparatorIntEnable(unsigned long ulBase, unsigned long ulSequenceNum) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT(ulSequenceNum < 4); // // Enable this sample sequence interrupt. // HWREG(ulBase + ADC_O_IM) |= 0x10000 << ulSequenceNum; } //***************************************************************************** // //! Gets the current comparator interrupt status. //! //! \param ulBase is the base address of the ADC module. //! //! This returns the digitial comparator interrupt status bits. This status //! is sequence agnostic. //! //! \return The current comparator interrupt status. // //***************************************************************************** unsigned long ADCComparatorIntStatus(unsigned long ulBase) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); // // Return the digitial comparator interrupt status. // return(HWREG(ulBase + ADC_O_DCISC)); } //***************************************************************************** // //! Clears sample sequence comparator interrupt source. //! //! \param ulBase is the base address of the ADC module. //! \param ulStatus is the bit-mapped interrupts status to clear. //! //! The specified interrupt status is cleared. //! //! \return None. // //***************************************************************************** void ADCComparatorIntClear(unsigned long ulBase, unsigned long ulStatus) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); // // Clear the interrupt. // HWREG(ulBase + ADC_O_DCISC) = ulStatus; } //***************************************************************************** // //! Selects the ADC reference. //! //! \param ulBase is the base address of the ADC module. //! \param ulRef is the reference to use. //! //! The ADC reference is set as specified by \e ulRef. It must be one of //! \b ADC_REF_INT, \b ADC_REF_EXT_3V, or \b ADC_REF_EXT_1V for internal or //! external reference. If \b ADC_REF_INT is chosen, then an internal 3V //! reference is used and no external reference is needed. If //! \b ADC_REF_EXT_3V is chosen, then a 3V reference must be supplied to the //! AVREF pin. If \b ADC_REF_EXT_1V is chosen, then a 1V external referece //! must be supplied to the AVREF pin. //! //! \note The ADC reference can only be selected on parts that have an external //! reference. Consult the data sheet for your part to determine if there is //! an external reference. //! //! \return None. // //***************************************************************************** void ADCReferenceSet(unsigned long ulBase, unsigned long ulRef) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT((ulRef == ADC_REF_INT) || (ulRef == ADC_REF_EXT_3V) || (ulRef == ADC_REF_EXT_1V)); // // Set the reference. // HWREG(ulBase + ADC_O_CTL) = (HWREG(ulBase + ADC_O_CTL) & ~ADC_CTL_VREF) | ulRef; } //***************************************************************************** // //! Returns the current setting of the ADC reference. //! //! \param ulBase is the base address of the ADC module. //! //! Returns the value of the ADC reference setting. The returned value is one //! of \b ADC_REF_INT, \b ADC_REF_EXT_3V, or \b ADC_REF_EXT_1V. //! //! \note The value returned by this function is only meaningful if used on a //! part that is capable of using an external reference. Consult the data //! sheet for your part to determine if it has an external reference input. //! //! \return The current setting of the ADC reference. // //***************************************************************************** unsigned long ADCReferenceGet(unsigned long ulBase) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); // // Return the value of the reference. // return(HWREG(ulBase + ADC_O_CTL) & ADC_CTL_VREF); } //***************************************************************************** // //! Selects the ADC resolution. //! //! \param ulBase is the base address of the ADC module. //! \param ulResolution is the ADC bit resolution. //! //! The ADC resolution is set as specified by \e ulResolution. It must be one //! of \b ADC_RES_12BIT or \b ADC_RES_10BIT. //! //! \note The ADC resolution can only be set on parts that are capable of //! greater than 10-bit conversions. Consult the data sheet for your part to //! determine if it is capable of 12-bit conversions. //! //! \return None. // //***************************************************************************** void ADCResolutionSet(unsigned long ulBase, unsigned long ulResolution) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT((ulResolution == ADC_RES_10BIT) || (ulResolution == ADC_RES_12BIT)); // // Set the resolution. // HWREG(ulBase + ADC_O_CTL) = (HWREG(ulBase + ADC_O_CTL) & ~ADC_CTL_RES) | ulResolution; } //***************************************************************************** // //! Gets the setting of ADC resolution. //! //! \param ulBase is the base address of the ADC module. //! //! The ADC resolution is returned as one of \b ADC_RES_12BIT or //! \b ADC_RES_10BIT. //! //! \note The value returned by this function is only meaningful if used on a //! part that is capable of higher than 10-bit ADC resolution. Consult the //! data sheet for your part to determine if it is capable of 12-bit //! conversions. //! //! \return The current setting of the ADC resolution. // //***************************************************************************** unsigned long ADCResolutionGet(unsigned long ulBase) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); // // Get the resolution and return it to the caller. // return(HWREG(ulBase + ADC_O_CTL) & ADC_CTL_RES); } //***************************************************************************** // //! Sets the phase delay between a trigger and the start of a sequence. //! //! \param ulBase is the base address of the ADC module. //! \param ulPhase is the phase delay, specified as one of \b ADC_PHASE_0, //! \b ADC_PHASE_22_5, \b ADC_PHASE_45, \b ADC_PHASE_67_5, \b ADC_PHASE_90, //! \b ADC_PHASE_112_5, \b ADC_PHASE_135, \b ADC_PHASE_157_5, \b ADC_PHASE_180, //! \b ADC_PHASE_202_5, \b ADC_PHASE_225, \b ADC_PHASE_247_5, \b ADC_PHASE_270, //! \b ADC_PHASE_292_5, \b ADC_PHASE_315, or \b ADC_PHASE_337_5. //! //! This function sets the phase delay between the detection of an ADC trigger //! event and the start of the sample sequence. By selecting a different phase //! delay for a pair of ADC modules (such as \b ADC_PHASE_0 and //! \b ADC_PHASE_180) and having each ADC module sample the same analog input, //! it is possible to increase the sampling rate of the analog input (with //! samples N, N+2, N+4, and so on, coming from the first ADC and samples N+1, //! N+3, N+5, and so on, coming from the second ADC). The ADC module has a //! single phase delay that is applied to all sample sequences within that //! module. //! //! \note This capability is not available on all parts. //! //! \return None. // //***************************************************************************** void ADCPhaseDelaySet(unsigned long ulBase, unsigned long ulPhase) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); ASSERT((ulPhase == ADC_PHASE_0) || (ulPhase == ADC_PHASE_22_5) || (ulPhase == ADC_PHASE_45) || (ulPhase == ADC_PHASE_67_5) || (ulPhase == ADC_PHASE_90) || (ulPhase == ADC_PHASE_112_5) || (ulPhase == ADC_PHASE_135) || (ulPhase == ADC_PHASE_157_5) || (ulPhase == ADC_PHASE_180) || (ulPhase == ADC_PHASE_202_5) || (ulPhase == ADC_PHASE_225) || (ulPhase == ADC_PHASE_247_5) || (ulPhase == ADC_PHASE_270) || (ulPhase == ADC_PHASE_292_5) || (ulPhase == ADC_PHASE_315) || (ulPhase == ADC_PHASE_337_5)); // // Set the phase delay. // HWREG(ulBase + ADC_O_SPC) = ulPhase; } //***************************************************************************** // //! Gets the phase delay between a trigger and the start of a sequence. //! //! \param ulBase is the base address of the ADC module. //! //! This function gets the current phase delay between the detection of an ADC //! trigger event and the start of the sample sequence. //! //! \return Returns the phase delay, specified as one of \b ADC_PHASE_0, //! \b ADC_PHASE_22_5, \b ADC_PHASE_45, \b ADC_PHASE_67_5, \b ADC_PHASE_90, //! \b ADC_PHASE_112_5, \b ADC_PHASE_135, \b ADC_PHASE_157_5, \b ADC_PHASE_180, //! \b ADC_PHASE_202_5, \b ADC_PHASE_225, \b ADC_PHASE_247_5, \b ADC_PHASE_270, //! \b ADC_PHASE_292_5, \b ADC_PHASE_315, or \b ADC_PHASE_337_5. // //***************************************************************************** unsigned long ADCPhaseDelayGet(unsigned long ulBase) { // // Check the arguments. // ASSERT((ulBase == ADC0_BASE) || (ulBase == ADC1_BASE)); // // Return the phase delay. // return(HWREG(ulBase + ADC_O_SPC)); } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************