/* * Copyright (c) 2006-2024, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2024-03-19 Evlers first implementation */ #include "drv_usart_v2.h" #ifdef RT_USING_SERIAL_V2 #if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && \ !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \ !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && \ !defined(BSP_USING_UART6) && !defined(BSP_USING_UART7) #error "Please define at least one UARTx" #endif #include enum { #ifdef BSP_USING_UART0 UART0_INDEX, #endif #ifdef BSP_USING_UART1 UART1_INDEX, #endif #ifdef BSP_USING_UART2 UART2_INDEX, #endif #ifdef BSP_USING_UART3 UART3_INDEX, #endif #ifdef BSP_USING_UART4 UART4_INDEX, #endif #ifdef BSP_USING_UART5 UART5_INDEX, #endif #ifdef BSP_USING_UART6 UART6_INDEX, #endif #ifdef BSP_USING_UART7 UART7_INDEX, #endif }; static struct gd32_uart uart_obj[] = { #ifdef BSP_USING_UART0 { "uart0", USART0, // uart peripheral index USART0_IRQn, // uart iqrn RCU_USART0, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOA, GPIO_AF_7, GPIO_PIN_9, // tx port, tx alternate, tx pin GPIOA, GPIO_AF_7, GPIO_PIN_10, // rx port, rx alternate, rx pin #else GPIOA, GPIO_PIN_9, // tx port, tx pin GPIOA, GPIO_PIN_10, // rx port, rx pin #endif #ifdef BSP_UART0_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(1, 5, 4), #endif #ifdef BSP_UART0_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(1, 7, 4), #endif }, #endif #ifdef BSP_USING_UART1 { "uart1", USART1, // uart peripheral index USART1_IRQn, // uart iqrn RCU_USART1, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOA, GPIO_AF_7, GPIO_PIN_2, // tx port, tx alternate, tx pin GPIOA, GPIO_AF_7, GPIO_PIN_3, // rx port, rx alternate, rx pin #else GPIOA, GPIO_PIN_2, // tx port, tx pin GPIOA, GPIO_PIN_3, // rx port, rx pin #endif #ifdef BSP_UART1_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 5, 4), #endif #ifdef BSP_UART1_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 6, 4), #endif }, #endif #ifdef BSP_USING_UART2 { "uart2", USART2, // uart peripheral index USART2_IRQn, // uart iqrn RCU_USART2, RCU_GPIOB, RCU_GPIOB, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOB, GPIO_AF_7, GPIO_PIN_10, // tx port, tx alternate, tx pin GPIOB, GPIO_AF_7, GPIO_PIN_11, // rx port, rx alternate, rx pin #else GPIOB, GPIO_PIN_10, // tx port, tx pin GPIOB, GPIO_PIN_11, // rx port, rx pin #endif #ifdef BSP_UART2_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 1, 4), #endif #ifdef BSP_UART2_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 3, 4), #endif }, #endif #ifdef BSP_USING_UART3 { "uart3", UART3, // uart peripheral index UART3_IRQn, // uart iqrn RCU_UART3, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOC, GPIO_AF_8, GPIO_PIN_10, // tx port, tx alternate, tx pin GPIOC, GPIO_AF_8, GPIO_PIN_11, // rx port, rx alternate, rx pin #else GPIOC, GPIO_PIN_10, // tx port, tx pin GPIOC, GPIO_PIN_11, // rx port, rx pin #endif #ifdef BSP_UART3_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 2, 4), #endif #ifdef BSP_UART3_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 4, 4), #endif }, #endif #ifdef BSP_USING_UART4 { "uart4", UART4, // uart peripheral index UART4_IRQn, // uart iqrn RCU_UART4, RCU_GPIOC, RCU_GPIOD, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOC, GPIO_AF_8, GPIO_PIN_12, // tx port, tx alternate, tx pin GPIOD, GPIO_AF_8, GPIO_PIN_2, // rx port, rx alternate, rx pin #else GPIOC, GPIO_PIN_12, // tx port, tx pin GPIOD, GPIO_PIN_2, // rx port, rx pin #endif #ifdef BSP_UART4_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 0, 4), #endif #ifdef BSP_UART4_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 7, 4), #endif }, #endif #ifdef BSP_USING_UART5 { "uart5", USART5, // uart peripheral index USART5_IRQn, // uart iqrn RCU_USART5, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOC, GPIO_AF_8, GPIO_PIN_6, // tx port, tx alternate, tx pin GPIOC, GPIO_AF_8, GPIO_PIN_7, // rx port, rx alternate, rx pin #else GPIOC, GPIO_PIN_6, // tx port, tx pin GPIOC, GPIO_PIN_7, // rx port, rx pin #endif #ifdef BSP_UART5_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(1, 1, 5), #endif #ifdef BSP_UART5_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(1, 7, 5), #endif }, #endif #ifdef BSP_USING_UART6 { "uart6", UART6, // uart peripheral index UART6_IRQn, // uart iqrn RCU_UART6, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOE, GPIO_AF_8, GPIO_PIN_7, // tx port, tx alternate, tx pin GPIOE, GPIO_AF_8, GPIO_PIN_8, // rx port, rx alternate, rx pin #else GPIOE, GPIO_PIN_7, // tx port, tx pin GPIOE, GPIO_PIN_8, // rx port, rx pin #endif #ifdef BSP_UART6_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 3, 5), #endif #ifdef BSP_UART6_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 1, 5), #endif }, #endif #ifdef BSP_USING_UART7 { "uart7", UART7, // uart peripheral index UART7_IRQn, // uart iqrn RCU_UART7, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock #if defined SOC_SERIES_GD32F4xx GPIOE, GPIO_AF_8, GPIO_PIN_0, // tx port, tx alternate, tx pin GPIOE, GPIO_AF_8, GPIO_PIN_1, // rx port, rx alternate, rx pin #else GPIOE, GPIO_PIN_0, // tx port, tx pin GPIOE, GPIO_PIN_1, // rx port, rx pin #endif #ifdef BSP_UART7_RX_USING_DMA .dma.rx = DRV_DMA_CONFIG(0, 6, 5), #endif #ifdef BSP_UART7_TX_USING_DMA .dma.tx = DRV_DMA_CONFIG(0, 0, 5), #endif }, #endif }; #ifdef RT_SERIAL_USING_DMA static void dma_recv_isr (struct rt_serial_device *serial) { struct gd32_uart *uart; rt_size_t recv_len, counter; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); recv_len = 0; counter = dma_transfer_number_get(uart->dma.rx.periph, uart->dma.rx.channel); if (counter <= uart->dma.last_index) { recv_len = uart->dma.last_index - counter; } else { recv_len = serial->config.rx_bufsz + uart->dma.last_index - counter; } if (recv_len) { uart->dma.last_index = counter; rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8)); } } #endif static void usart_isr (struct rt_serial_device *serial) { struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE) != RESET) { struct rt_serial_rx_fifo *rx_fifo; rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); rt_ringbuffer_putchar(&(rx_fifo->rb), usart_data_receive(uart->periph)); rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND); /* Clear RXNE interrupt flag */ usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE); } else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TBE) != RESET) { struct rt_serial_tx_fifo *tx_fifo; tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); rt_uint8_t put_char = 0; if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char)) { usart_data_transmit(uart->periph, put_char); } else { usart_interrupt_disable(uart->periph, USART_INT_TBE); usart_interrupt_enable(uart->periph, USART_INT_TC); } usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TBE); } else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TC) != RESET) { usart_interrupt_disable(uart->periph, USART_INT_TC); rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE); usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TC); } #ifdef RT_SERIAL_USING_DMA else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_IDLE) != RESET) { volatile uint8_t data = (uint8_t)usart_data_receive(uart->periph); dma_recv_isr(serial); usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_IDLE); } #endif else { if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_ORERR) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_ORERR); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_NERR) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_NERR); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_FERR) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_FERR); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE_ORERR) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE_ORERR); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_PERR) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_PERR); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_CTS) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_CTS); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_LBD) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_LBD); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_EB) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_EB); } if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RT) != RESET) { usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RT); } } } #if defined(BSP_UART0_RX_USING_DMA) || \ defined(BSP_UART1_RX_USING_DMA) || \ defined(BSP_UART2_RX_USING_DMA) || \ defined(BSP_UART3_RX_USING_DMA) || \ defined(BSP_UART4_RX_USING_DMA) || \ defined(BSP_UART5_RX_USING_DMA) || \ defined(BSP_UART6_RX_USING_DMA) || \ defined(BSP_UART7_RX_USING_DMA) static void dma_rx_isr (struct rt_serial_device *serial) { struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); if ((dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF) != RESET) || (dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF) != RESET)) { dma_recv_isr(serial); /* clear dma flag */ dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF); dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF); } } #endif #if defined(BSP_UART0_TX_USING_DMA) || \ defined(BSP_UART1_TX_USING_DMA) || \ defined(BSP_UART2_TX_USING_DMA) || \ defined(BSP_UART3_TX_USING_DMA) || \ defined(BSP_UART4_TX_USING_DMA) || \ defined(BSP_UART5_TX_USING_DMA) || \ defined(BSP_UART6_TX_USING_DMA) || \ defined(BSP_UART7_TX_USING_DMA) static void dma_tx_isr (struct rt_serial_device *serial) { struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); if (dma_interrupt_flag_get(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF) != RESET) { rt_size_t trans_total_index; /* clear dma flag */ dma_interrupt_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF); /* disable dma tx channel */ dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel); trans_total_index = dma_transfer_number_get(uart->dma.tx.periph, uart->dma.tx.channel); if (trans_total_index == 0) { rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE); } } } #endif #if defined(BSP_USING_UART0) void USART0_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART0_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART0 */ #if defined(BSP_USING_UART1) void USART1_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART1_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART1 */ #if defined(BSP_USING_UART2) void USART2_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART2_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART2 */ #if defined(BSP_USING_UART3) void UART3_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART3_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART3 */ #if defined(BSP_USING_UART4) void UART4_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART4_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART4 */ #if defined(BSP_USING_UART5) void USART5_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART5_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART5 */ #if defined(BSP_USING_UART6) void UART6_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART6_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART6 */ #if defined(BSP_USING_UART7) void UART7_IRQHandler (void) { /* enter interrupt */ rt_interrupt_enter(); usart_isr(&uart_obj[UART7_INDEX].serial); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART7 */ #ifdef BSP_UART0_RX_USING_DMA void DMA1_Channel5_IRQHandler (void) { dma_rx_isr(&uart_obj[UART0_INDEX].serial); } #endif #ifdef BSP_UART0_TX_USING_DMA void DMA1_Channel7_IRQHandler (void) { dma_tx_isr(&uart_obj[UART0_INDEX].serial); } #endif #ifdef BSP_UART1_RX_USING_DMA void DMA0_Channel5_IRQHandler (void) { dma_rx_isr(&uart_obj[UART1_INDEX].serial); } #endif #ifdef BSP_UART1_TX_USING_DMA void DMA0_Channel6_IRQHandler (void) { dma_tx_isr(&uart_obj[UART1_INDEX].serial); } #endif #ifdef BSP_UART2_RX_USING_DMA void DMA0_Channel1_IRQHandler (void) { dma_rx_isr(&uart_obj[UART2_INDEX].serial); } #endif #ifdef BSP_UART2_TX_USING_DMA void DMA0_Channel3_IRQHandler (void) { dma_tx_isr(&uart_obj[UART2_INDEX].serial); } #endif #ifdef BSP_UART3_RX_USING_DMA void DMA0_Channel2_IRQHandler (void) { dma_rx_isr(&uart_obj[UART3_INDEX].serial); } #endif #ifdef BSP_UART3_TX_USING_DMA void DMA0_Channel4_IRQHandler (void) { dma_tx_isr(&uart_obj[UART3_INDEX].serial); } #endif #ifdef BSP_UART4_RX_USING_DMA void DMA0_Channel0_IRQHandler (void) { dma_rx_isr(&uart_obj[UART4_INDEX].serial); } #endif #ifdef BSP_UART4_TX_USING_DMA void DMA0_Channel7_IRQHandler (void) { dma_tx_isr(&uart_obj[UART4_INDEX].serial); } #endif #ifdef BSP_UART5_RX_USING_DMA void DMA1_Channel1_IRQHandler (void) { dma_rx_isr(&uart_obj[UART5_INDEX].serial); } #endif #ifdef BSP_UART5_TX_USING_DMA void DMA1_Channel7_IRQHandler (void) { dma_tx_isr(&uart_obj[UART5_INDEX].serial); } #endif #ifdef BSP_UART6_RX_USING_DMA void DMA0_Channel3_IRQHandler (void) { dma_rx_isr(&uart_obj[UART6_INDEX].serial); } #endif #ifdef BSP_UART6_TX_USING_DMA void DMA0_Channel1_IRQHandler (void) { dma_tx_isr(&uart_obj[UART6_INDEX].serial); } #endif #ifdef BSP_UART7_RX_USING_DMA void DMA0_Channel6_IRQHandler (void) { dma_rx_isr(&uart_obj[UART7_INDEX].serial); } #endif #ifdef BSP_UART7_TX_USING_DMA void DMA0_Channel0_IRQHandler (void) { dma_tx_isr(&uart_obj[UART7_INDEX].serial); } #endif /** * @brief UART MSP Initialization * This function configures the hardware resources used in this example: * - Peripheral's clock enable * - Peripheral's GPIO Configuration * - NVIC configuration for UART interrupt request enable * @param huart: UART handle pointer * @retval None */ void gd32_uart_gpio_init (struct gd32_uart *uart) { /* enable USART clock */ rcu_periph_clock_enable(uart->tx_gpio_clk); rcu_periph_clock_enable(uart->rx_gpio_clk); rcu_periph_clock_enable(uart->per_clk); #if defined SOC_SERIES_GD32F4xx /* connect port to USARTx_Tx */ gpio_af_set(uart->tx_port, uart->tx_af, uart->tx_pin); /* connect port to USARTx_Rx */ gpio_af_set(uart->rx_port, uart->rx_af, uart->rx_pin); /* configure USART Tx as alternate function push-pull */ gpio_mode_set(uart->tx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->tx_pin); gpio_output_options_set(uart->tx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->tx_pin); /* configure USART Rx as alternate function push-pull */ gpio_mode_set(uart->rx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->rx_pin); gpio_output_options_set(uart->rx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->rx_pin); #else /* connect port to USARTx_Tx */ gpio_init(uart->tx_port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, uart->tx_pin); /* connect port to USARTx_Rx */ gpio_init(uart->rx_port, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, uart->rx_pin); #endif NVIC_SetPriority(uart->irqn, 0); NVIC_EnableIRQ(uart->irqn); } /** * @brief uart configure * @param serial, cfg * @retval None */ static rt_err_t gd32_uart_configure (struct rt_serial_device *serial, struct serial_configure *cfg) { struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); RT_ASSERT(cfg != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); #ifdef RT_SERIAL_USING_DMA uart->dma.last_index = serial->config.rx_bufsz; #endif gd32_uart_gpio_init(uart); usart_baudrate_set(uart->periph, cfg->baud_rate); switch (cfg->data_bits) { case DATA_BITS_9: usart_word_length_set(uart->periph, USART_WL_9BIT); break; default: usart_word_length_set(uart->periph, USART_WL_8BIT); break; } switch (cfg->stop_bits) { case STOP_BITS_2: usart_stop_bit_set(uart->periph, USART_STB_2BIT); break; default: usart_stop_bit_set(uart->periph, USART_STB_1BIT); break; } switch (cfg->parity) { case PARITY_ODD: usart_parity_config(uart->periph, USART_PM_ODD); break; case PARITY_EVEN: usart_parity_config(uart->periph, USART_PM_EVEN); break; default: usart_parity_config(uart->periph, USART_PM_NONE); break; } usart_receive_config(uart->periph, USART_RECEIVE_ENABLE); usart_transmit_config(uart->periph, USART_TRANSMIT_ENABLE); usart_enable(uart->periph); return RT_EOK; } #ifdef RT_SERIAL_USING_DMA static void _uart_dma_receive (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size) { dma_single_data_parameter_struct dma_init_struct = { 0 }; /* clear all the interrupt flags */ dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FEE); dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_SDE); dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_TAE); dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_HTF); dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FTF); dma_channel_disable(uart->dma.rx.periph, uart->dma.rx.channel); dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel); /* configure receive DMA */ rcu_periph_clock_enable(uart->dma.rx.rcu); dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel); dma_init_struct.number = size; dma_init_struct.memory0_addr = (uint32_t)buffer; dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph); dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_ENABLE; dma_init_struct.direction = DMA_PERIPH_TO_MEMORY; dma_init_struct.priority = DMA_PRIORITY_HIGH; dma_single_data_mode_init(uart->dma.rx.periph, uart->dma.rx.channel, &dma_init_struct); dma_channel_subperipheral_select(uart->dma.rx.periph, uart->dma.rx.channel, uart->dma.rx.subperiph); /* enable transmit complete interrupt */ nvic_irq_enable(uart->dma.rx.irq, 2, 0); dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_HTFIE); dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_FTFIE); /* enable dma channel */ dma_channel_enable(uart->dma.rx.periph, uart->dma.rx.channel); /* enable usart idle interrupt */ usart_interrupt_enable(uart->periph, USART_INT_IDLE); /* enable dma receive */ usart_dma_receive_config(uart->periph, USART_RECEIVE_DMA_ENABLE); } static void _uart_dma_transmit (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size) { /* Set the data length and data pointer */ DMA_CHM0ADDR(uart->dma.tx.periph, uart->dma.tx.channel) = (uint32_t)buffer; DMA_CHCNT(uart->dma.tx.periph, uart->dma.tx.channel) = size; /* enable dma transmit */ usart_dma_transmit_config(uart->periph, USART_TRANSMIT_DMA_ENABLE); /* enable dma channel */ dma_channel_enable(uart->dma.tx.periph, uart->dma.tx.channel); } static void gd32_dma_config (struct rt_serial_device *serial, rt_ubase_t flag) { struct gd32_uart *uart; struct rt_serial_rx_fifo *rx_fifo; dma_single_data_parameter_struct dma_init_struct = { 0 }; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX); /* enable rx dma */ if (flag == RT_DEVICE_FLAG_DMA_TX) { /* clear all the interrupt flags */ dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FEE); dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_SDE); dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_TAE); dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_HTF); dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FTF); dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel); dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel); /* configure receive DMA */ rcu_periph_clock_enable(uart->dma.tx.rcu); dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel); dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph); dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT; dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE; dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE; dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE; dma_init_struct.direction = DMA_MEMORY_TO_PERIPH; dma_init_struct.priority = DMA_PRIORITY_HIGH; dma_single_data_mode_init(uart->dma.tx.periph, uart->dma.tx.channel, &dma_init_struct); dma_channel_subperipheral_select(uart->dma.tx.periph, uart->dma.tx.channel, uart->dma.tx.subperiph); /* enable tx dma interrupt */ nvic_irq_enable(uart->dma.tx.irq, 2, 0); /* enable transmit complete interrupt */ dma_interrupt_enable(uart->dma.tx.periph, uart->dma.tx.channel, DMA_CHXCTL_FTFIE); } /* enable rx dma */ if (flag == RT_DEVICE_FLAG_DMA_RX) { rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx; /* start dma transfer */ _uart_dma_receive(uart, rx_fifo->buffer, serial->config.rx_bufsz); } } #endif /** * @brief uart control * @param serial, arg * @retval None */ static rt_err_t gd32_uart_control (struct rt_serial_device *serial, int cmd, void *arg) { struct gd32_uart *uart; #ifdef RT_SERIAL_USING_DMA rt_ubase_t ctrl_arg = (rt_ubase_t)arg; #endif RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING)) { if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX) ctrl_arg = RT_DEVICE_FLAG_DMA_RX; else ctrl_arg = RT_DEVICE_FLAG_INT_RX; } else if (ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING)) { if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) ctrl_arg = RT_DEVICE_FLAG_DMA_TX; else ctrl_arg = RT_DEVICE_FLAG_INT_TX; } switch (cmd) { case RT_DEVICE_CTRL_CLR_INT: /* disable rx irq */ NVIC_DisableIRQ(uart->irqn); /* disable interrupt */ if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) { usart_interrupt_disable(uart->periph, USART_INT_RBNE); } else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX) { usart_interrupt_disable(uart->periph, USART_INT_TBE); } #ifdef RT_SERIAL_USING_DMA /* disable DMA */ else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX) { usart_interrupt_disable(uart->periph, USART_INT_RBNE); NVIC_DisableIRQ(uart->dma.rx.irq); dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel); } else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX) { usart_interrupt_disable(uart->periph, USART_INT_TBE); NVIC_DisableIRQ(uart->dma.tx.irq); dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel); } #endif break; case RT_DEVICE_CTRL_SET_INT: /* enable rx irq */ NVIC_EnableIRQ(uart->irqn); /* enable interrupt */ if (ctrl_arg == RT_DEVICE_FLAG_INT_RX) { usart_interrupt_enable(uart->periph, USART_INT_RBNE); } else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX) { usart_interrupt_enable(uart->periph, USART_INT_TBE); } break; case RT_DEVICE_CTRL_CONFIG: if(ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX)) { #ifdef RT_SERIAL_USING_DMA gd32_dma_config(serial, ctrl_arg); #endif } else { gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg); } break; case RT_DEVICE_CHECK_OPTMODE: if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX) return RT_SERIAL_TX_BLOCKING_NO_BUFFER; else return RT_SERIAL_TX_BLOCKING_BUFFER; case RT_DEVICE_CTRL_CLOSE: usart_deinit(uart->periph); break; } return RT_EOK; } /** * @brief uart put char * @param serial, ch * @retval None */ static int gd32_uart_putc (struct rt_serial_device *serial, char ch) { struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); usart_data_transmit(uart->periph, ch); while((usart_flag_get(uart->periph, USART_FLAG_TBE) == RESET)); return RT_EOK; } /** * @brief uart get char * @param serial * @retval None */ static int gd32_uart_getc (struct rt_serial_device *serial) { int ch; struct gd32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); ch = -1; if (usart_flag_get(uart->periph, USART_FLAG_RBNE) != RESET) ch = usart_data_receive(uart->periph); return ch; } static rt_ssize_t gd32_transmit (struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, rt_uint32_t tx_flag) { struct gd32_uart *uart; RT_ASSERT(buf != RT_NULL); RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct gd32_uart, serial); if (size == 0) { return 0; } if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) { _uart_dma_transmit(uart, buf, size); return size; } gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag); return size; } static const struct rt_uart_ops gd32_uart_ops = { .configure = gd32_uart_configure, .control = gd32_uart_control, .putc = gd32_uart_putc, .getc = gd32_uart_getc, #ifdef RT_SERIAL_USING_DMA .transmit = gd32_transmit, #else .transmit = RT_NULL, #endif }; static void gd32_uart_get_config (void) { struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; #ifdef BSP_USING_UART0 uart_obj[UART0_INDEX].uart_dma_flag = 0; uart_obj[UART0_INDEX].serial.config = config; uart_obj[UART0_INDEX].serial.config.rx_bufsz = BSP_UART0_RX_BUFSIZE; uart_obj[UART0_INDEX].serial.config.tx_bufsz = BSP_UART0_TX_BUFSIZE; #ifdef BSP_UART0_RX_USING_DMA uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART0_TX_USING_DMA uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART1 uart_obj[UART1_INDEX].uart_dma_flag = 0; uart_obj[UART1_INDEX].serial.config = config; uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE; uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE; #ifdef BSP_UART1_RX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART1_TX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART2 uart_obj[UART2_INDEX].uart_dma_flag = 0; uart_obj[UART2_INDEX].serial.config = config; uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE; uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE; #ifdef BSP_UART2_RX_USING_DMA uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART2_TX_USING_DMA uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART3 uart_obj[UART3_INDEX].uart_dma_flag = 0; uart_obj[UART3_INDEX].serial.config = config; uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE; uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE; #ifdef BSP_UART3_RX_USING_DMA uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART3_TX_USING_DMA uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART4 uart_obj[UART4_INDEX].uart_dma_flag = 0; uart_obj[UART4_INDEX].serial.config = config; uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE; uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE; #ifdef BSP_UART4_RX_USING_DMA uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART4_TX_USING_DMA uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART5 uart_obj[UART5_INDEX].uart_dma_flag = 0; uart_obj[UART5_INDEX].serial.config = config; uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE; uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE; #ifdef BSP_UART5_RX_USING_DMA uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART5_TX_USING_DMA uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART6 uart_obj[UART6_INDEX].uart_dma_flag = 0; uart_obj[UART6_INDEX].serial.config = config; uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE; uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE; #ifdef BSP_UART6_RX_USING_DMA uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART6_TX_USING_DMA uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif #ifdef BSP_USING_UART7 uart_obj[UART7_INDEX].uart_dma_flag = 0; uart_obj[UART7_INDEX].serial.config = config; uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE; uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE; #ifdef BSP_UART7_RX_USING_DMA uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; #endif #ifdef BSP_UART7_TX_USING_DMA uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; #endif #endif } /** * @brief uart init * @param None * @retval None */ int rt_hw_usart_init (void) { int i; int result; gd32_uart_get_config(); for (i = 0; i < sizeof(uart_obj) / sizeof(uart_obj[0]); i++) { uart_obj[i].serial.ops = &gd32_uart_ops; /* register UART1 device */ result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].device_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | uart_obj[i].uart_dma_flag, (void *)&uart_obj[i]); RT_ASSERT(result == RT_EOK); } return result; } #endif