/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2021-06-01 KyleChan first version */ #include #include #include #define DBG_TAG "UART" #define DBG_LVL DBG_INFO #include #ifdef RT_USING_POSIX_STDIO #include #include #include #include #include #ifdef RT_USING_POSIX_TERMIOS #include #endif #ifdef getc #undef getc #endif #ifdef putc #undef putc #endif static rt_err_t serial_fops_rx_ind(rt_device_t dev, rt_size_t size) { rt_wqueue_wakeup(&(dev->wait_queue), (void*)POLLIN); return RT_EOK; } /* fops for serial */ static int serial_fops_open(struct dfs_fd *fd) { rt_err_t ret = 0; rt_uint16_t flags = 0; rt_device_t device; device = (rt_device_t)fd->data; RT_ASSERT(device != RT_NULL); switch (fd->flags & O_ACCMODE) { case O_RDONLY: LOG_D("fops open: O_RDONLY!"); flags = RT_DEVICE_FLAG_RDONLY; break; case O_WRONLY: LOG_D("fops open: O_WRONLY!"); flags = RT_DEVICE_FLAG_WRONLY; break; case O_RDWR: LOG_D("fops open: O_RDWR!"); flags = RT_DEVICE_FLAG_RDWR; break; default: LOG_E("fops open: unknown mode - %d!", fd->flags & O_ACCMODE); break; } if ((fd->flags & O_ACCMODE) != O_WRONLY) rt_device_set_rx_indicate(device, serial_fops_rx_ind); ret = rt_device_open(device, flags); if (ret == RT_EOK) return 0; return ret; } static int serial_fops_close(struct dfs_fd *fd) { rt_device_t device; device = (rt_device_t)fd->data; rt_device_set_rx_indicate(device, RT_NULL); rt_device_close(device); return 0; } static int serial_fops_ioctl(struct dfs_fd *fd, int cmd, void *args) { rt_device_t device; device = (rt_device_t)fd->data; switch (cmd) { case FIONREAD: break; case FIONWRITE: break; } return rt_device_control(device, cmd, args); } static int serial_fops_read(struct dfs_fd *fd, void *buf, size_t count) { int size = 0; rt_device_t device; device = (rt_device_t)fd->data; do { size = rt_device_read(device, -1, buf, count); if (size <= 0) { if (fd->flags & O_NONBLOCK) { size = -EAGAIN; break; } rt_wqueue_wait(&(device->wait_queue), 0, RT_WAITING_FOREVER); } }while (size <= 0); return size; } static int serial_fops_write(struct dfs_fd *fd, const void *buf, size_t count) { rt_device_t device; device = (rt_device_t)fd->data; return rt_device_write(device, -1, buf, count); } static int serial_fops_poll(struct dfs_fd *fd, struct rt_pollreq *req) { int mask = 0; int flags = 0; rt_device_t device; struct rt_serial_device *serial; device = (rt_device_t)fd->data; RT_ASSERT(device != RT_NULL); serial = (struct rt_serial_device *)device; /* only support POLLIN */ flags = fd->flags & O_ACCMODE; if (flags == O_RDONLY || flags == O_RDWR) { rt_base_t level; struct rt_serial_rx_fifo* rx_fifo; rt_poll_add(&(device->wait_queue), req); rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx; level = rt_hw_interrupt_disable(); if (rt_ringbuffer_data_len(&rx_fifo->rb)) mask |= POLLIN; rt_hw_interrupt_enable(level); } // mask|=POLLOUT; return mask; } const static struct dfs_file_ops _serial_fops = { serial_fops_open, serial_fops_close, serial_fops_ioctl, serial_fops_read, serial_fops_write, RT_NULL, /* flush */ RT_NULL, /* lseek */ RT_NULL, /* getdents */ serial_fops_poll, }; #endif /* RT_USING_POSIX_STDIO */ static rt_size_t rt_serial_get_linear_buffer(struct rt_ringbuffer *rb, rt_uint8_t **ptr) { rt_size_t size; RT_ASSERT(rb != RT_NULL); *ptr = RT_NULL; /* whether has enough data */ size = rt_ringbuffer_data_len(rb); /* no data */ if (size == 0) return 0; *ptr = &rb->buffer_ptr[rb->read_index]; if(rb->buffer_size - rb->read_index > size) { return size; } return rb->buffer_size - rb->read_index; } static rt_size_t rt_serial_update_read_index(struct rt_ringbuffer *rb, rt_uint16_t read_index) { rt_size_t size; RT_ASSERT(rb != RT_NULL); /* whether has enough data */ size = rt_ringbuffer_data_len(rb); /* no data */ if (size == 0) return 0; /* less data */ if(size < read_index) read_index = size; if(rb->buffer_size - rb->read_index > read_index) { rb->read_index += read_index; return read_index; } read_index = rb->buffer_size - rb->read_index; /* we are going into the other side of the mirror */ rb->read_mirror = ~rb->read_mirror; rb->read_index = 0; return read_index; } static rt_size_t rt_serial_update_write_index(struct rt_ringbuffer *rb, rt_uint16_t write_index) { rt_uint16_t size; RT_ASSERT(rb != RT_NULL); /* whether has enough space */ size = rt_ringbuffer_space_len(rb); /* no space */ if (size == 0) return 0; /* drop some data */ if (size < write_index) write_index = size; if (rb->buffer_size - rb->write_index > write_index) { /* this should not cause overflow because there is enough space for * length of data in current mirror */ rb->write_index += write_index; return write_index; } /* we are going into the other side of the mirror */ rb->write_mirror = ~rb->write_mirror; rb->write_index = write_index - (rb->buffer_size - rb->write_index); return write_index; } /** * @brief Serial polling receive data routine, This function will receive data * in a continuous loop by one by one byte. * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Receive data buffer. * @param size Receive data buffer length. * @return Return the final length of data received. */ rt_size_t _serial_poll_rx(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size) { struct rt_serial_device *serial; rt_size_t getc_size; int getc_element; /* Gets one byte of data received */ rt_uint8_t *getc_buffer; /* Pointer to the receive data buffer */ RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; RT_ASSERT(serial != RT_NULL); getc_buffer = (rt_uint8_t *)buffer; getc_size = size; while(size) { getc_element = serial->ops->getc(serial); if (getc_element == -1) break; *getc_buffer = getc_element; ++ getc_buffer; -- size; if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM) { /* If open_flag satisfies RT_DEVICE_FLAG_STREAM * and the received character is '\n', exit the loop directly */ if (getc_element == '\n') break; } } return getc_size - size; } /** * @brief Serial polling transmit data routines, This function will transmit * data in a continuous loop by one by one byte. * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Transmit data buffer. * @param size Transmit data buffer length. * @return Return the final length of data received. */ rt_size_t _serial_poll_tx(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; rt_size_t putc_size; rt_uint8_t *putc_buffer; /* Pointer to the transmit data buffer */ RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; RT_ASSERT(serial != RT_NULL); putc_buffer = (rt_uint8_t *)buffer; putc_size = size; while (size) { if (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM) { /* If open_flag satisfies RT_DEVICE_FLAG_STREAM and the received character is '\n', * inserts '\r' character before '\n' character for the effect of carriage return newline */ if (*putc_buffer == '\n') serial->ops->putc(serial, '\r'); } serial->ops->putc(serial, *putc_buffer); ++ putc_buffer; -- size; } return putc_size - size; } /** * @brief Serial receive data routines, This function will receive * data by using fifo * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Receive data buffer. * @param size Receive data buffer length. * @return Return the final length of data received. */ static rt_size_t _serial_fifo_rx(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size) { struct rt_serial_device *serial; struct rt_serial_rx_fifo *rx_fifo; rt_base_t level; rt_size_t recv_len; /* The length of data from the ringbuffer */ RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL)); rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx; if (dev->open_flag & RT_SERIAL_RX_BLOCKING) { if (size > serial->config.rx_bufsz) { LOG_W("(%s) serial device received data:[%d] larger than " "rx_bufsz:[%d], please increase the BSP_UARTx_RX_BUFSIZE option", dev->parent.name, size, serial->config.rx_bufsz); return 0; } /* Get the length of the data from the ringbuffer */ recv_len = rt_ringbuffer_data_len(&(rx_fifo->rb)); if (recv_len < size) { /* When recv_len is less than size, rx_cpt_index is updated to the size * and rt_current_thread is suspend until rx_cpt_index is equal to 0 */ rx_fifo->rx_cpt_index = size; rt_completion_wait(&(rx_fifo->rx_cpt), RT_WAITING_FOREVER); } } /* This part of the code is open_flag as RT_SERIAL_RX_NON_BLOCKING */ level = rt_hw_interrupt_disable(); /* When open_flag is RT_SERIAL_RX_NON_BLOCKING, * the data is retrieved directly from the ringbuffer and returned */ recv_len = rt_ringbuffer_get(&(rx_fifo->rb), buffer, size); rt_hw_interrupt_enable(level); return recv_len; } /** * @brief Serial transmit data routines, This function will transmit * data by using blocking_nbuf. * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Transmit data buffer. * @param size Transmit data buffer length. * @return Return the final length of data transmit. */ static rt_size_t _serial_fifo_tx_blocking_nbuf(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo = RT_NULL; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL)); tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); /* When serial transmit in tx_blocking mode, * if the activated mode is RT_TRUE, it will return directly */ if (tx_fifo->activated == RT_TRUE) return 0; tx_fifo->activated = RT_TRUE; /* Call the transmit interface for transmission */ serial->ops->transmit(serial, (rt_uint8_t *)buffer, size, RT_SERIAL_TX_BLOCKING); /* Waiting for the transmission to complete */ rt_completion_wait(&(tx_fifo->tx_cpt), RT_WAITING_FOREVER); return size; } /** * @brief Serial transmit data routines, This function will transmit * data by using blocking_buf. * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Transmit data buffer. * @param size Transmit data buffer length. * @return Return the final length of data transmit. */ static rt_size_t _serial_fifo_tx_blocking_buf(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo = RT_NULL; rt_size_t length = size; rt_size_t offset = 0; if (size == 0) return 0; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL)); tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); if (rt_thread_self() == RT_NULL || (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)) { /* using poll tx when the scheduler not startup or in stream mode */ return _serial_poll_tx(dev, pos, buffer, size); } /* When serial transmit in tx_blocking mode, * if the activated mode is RT_TRUE, it will return directly */ if (tx_fifo->activated == RT_TRUE) return 0; tx_fifo->activated = RT_TRUE; while (size) { /* Copy one piece of data into the ringbuffer at a time * until the length of the data is equal to size */ tx_fifo->put_size = rt_ringbuffer_put(&(tx_fifo->rb), (rt_uint8_t *)buffer + offset, size); offset += tx_fifo->put_size; size -= tx_fifo->put_size; /* Call the transmit interface for transmission */ serial->ops->transmit(serial, (rt_uint8_t *)buffer + offset, tx_fifo->put_size, RT_SERIAL_TX_BLOCKING); /* Waiting for the transmission to complete */ rt_completion_wait(&(tx_fifo->tx_cpt), RT_WAITING_FOREVER); } return length; } /** * @brief Serial transmit data routines, This function will transmit * data by using nonblocking. * @param dev The pointer of device driver structure * @param pos Empty parameter. * @param buffer Transmit data buffer. * @param size Transmit data buffer length. * @return Return the final length of data transmit. */ static rt_size_t _serial_fifo_tx_nonblocking(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo; rt_base_t level; rt_size_t length; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL)); tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx; level = rt_hw_interrupt_disable(); if (tx_fifo->activated == RT_FALSE) { /* When serial transmit in tx_non_blocking mode, if the activated mode is RT_FALSE, * start copying data into the ringbuffer */ tx_fifo->activated = RT_TRUE; /* Copying data into the ringbuffer */ length = rt_ringbuffer_put(&(tx_fifo->rb), buffer, size); rt_hw_interrupt_enable(level); rt_uint8_t *put_ptr = RT_NULL; /* Get the linear length buffer from rinbuffer */ tx_fifo->put_size = rt_serial_get_linear_buffer(&(tx_fifo->rb), &put_ptr); /* Call the transmit interface for transmission */ serial->ops->transmit(serial, put_ptr, tx_fifo->put_size, RT_SERIAL_TX_NON_BLOCKING); /* In tx_nonblocking mode, there is no need to call rt_completion_wait() APIs to wait * for the rt_current_thread to resume */ return length; } /* If the activated mode is RT_FALSE, it means that serial device is transmitting, * where only the data in the ringbuffer and there is no need to call the transmit() API. * Note that this part of the code requires disable interrupts * to prevent multi thread reentrant */ /* Copying data into the ringbuffer */ length = rt_ringbuffer_put(&(tx_fifo->rb), buffer, size); rt_hw_interrupt_enable(level); return length; } /** * @brief Enable serial transmit mode. * @param dev The pointer of device driver structure * @param rx_oflag The flag of that the serial port opens. * @return Return the status of the operation. */ static rt_err_t rt_serial_tx_enable(struct rt_device *dev, rt_uint16_t tx_oflag) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo = RT_NULL; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; if (serial->config.tx_bufsz == 0) { /* Cannot use RT_SERIAL_TX_NON_BLOCKING when tx_bufsz is 0 */ if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING) { LOG_E("(%s) serial device with misconfigure: tx_bufsz = 0", dev->parent.name); return -RT_EINVAL; } #ifndef RT_USING_DEVICE_OPS dev->write = _serial_poll_tx; #endif dev->open_flag |= RT_SERIAL_TX_BLOCKING; return RT_EOK; } /* Limits the minimum value of tx_bufsz */ if (serial->config.tx_bufsz < RT_SERIAL_TX_MINBUFSZ) serial->config.tx_bufsz = RT_SERIAL_TX_MINBUFSZ; if (tx_oflag == RT_SERIAL_TX_BLOCKING) { /* When using RT_SERIAL_TX_BLOCKING, it is necessary to determine * whether serial device needs to use buffer */ rt_err_t optmode; /* The operating mode used by serial device */ /* Call the Control() API to get the operating mode */ optmode = serial->ops->control(serial, RT_DEVICE_CHECK_OPTMODE, (void *)RT_DEVICE_FLAG_TX_BLOCKING); if (optmode == RT_SERIAL_TX_BLOCKING_BUFFER) { /* If use RT_SERIAL_TX_BLOCKING_BUFFER, the ringbuffer is initialized */ tx_fifo = (struct rt_serial_tx_fifo *) rt_malloc (sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz); RT_ASSERT(tx_fifo != RT_NULL); rt_ringbuffer_init(&(tx_fifo->rb), tx_fifo->buffer, serial->config.tx_bufsz); serial->serial_tx = tx_fifo; #ifndef RT_USING_DEVICE_OPS dev->write = _serial_fifo_tx_blocking_buf; #endif } else { /* If not use RT_SERIAL_TX_BLOCKING_BUFFER, * the control() API is called to configure the serial device */ tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc (sizeof(struct rt_serial_tx_fifo)); RT_ASSERT(tx_fifo != RT_NULL); serial->serial_tx = tx_fifo; #ifndef RT_USING_DEVICE_OPS dev->write = _serial_fifo_tx_blocking_nbuf; #endif /* Call the control() API to configure the serial device by RT_SERIAL_TX_BLOCKING*/ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_SERIAL_TX_BLOCKING); } tx_fifo->activated = RT_FALSE; tx_fifo->put_size = 0; rt_completion_init(&(tx_fifo->tx_cpt)); dev->open_flag |= RT_SERIAL_TX_BLOCKING; return RT_EOK; } /* When using RT_SERIAL_TX_NON_BLOCKING, ringbuffer needs to be initialized, * and initialize the tx_fifo->activated value is RT_FALSE. */ tx_fifo = (struct rt_serial_tx_fifo *) rt_malloc (sizeof(struct rt_serial_tx_fifo) + serial->config.tx_bufsz); RT_ASSERT(tx_fifo != RT_NULL); tx_fifo->activated = RT_FALSE; tx_fifo->put_size = 0; rt_ringbuffer_init(&(tx_fifo->rb), tx_fifo->buffer, serial->config.tx_bufsz); serial->serial_tx = tx_fifo; #ifndef RT_USING_DEVICE_OPS dev->write = _serial_fifo_tx_nonblocking; #endif dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING; /* Call the control() API to configure the serial device by RT_SERIAL_TX_NON_BLOCKING*/ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_SERIAL_TX_NON_BLOCKING); return RT_EOK; } /** * @brief Enable serial receive mode. * @param dev The pointer of device driver structure * @param rx_oflag The flag of that the serial port opens. * @return Return the status of the operation. */ static rt_err_t rt_serial_rx_enable(struct rt_device *dev, rt_uint16_t rx_oflag) { struct rt_serial_device *serial; struct rt_serial_rx_fifo *rx_fifo = RT_NULL; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; if (serial->config.rx_bufsz == 0) { /* Cannot use RT_SERIAL_RX_NON_BLOCKING when rx_bufsz is 0 */ if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING) { LOG_E("(%s) serial device with misconfigure: rx_bufsz = 0", dev->parent.name); return -RT_EINVAL; } #ifndef RT_USING_DEVICE_OPS dev->read = _serial_poll_rx; #endif dev->open_flag |= RT_SERIAL_RX_BLOCKING; return RT_EOK; } /* Limits the minimum value of rx_bufsz */ if (serial->config.rx_bufsz < RT_SERIAL_RX_MINBUFSZ) serial->config.rx_bufsz = RT_SERIAL_RX_MINBUFSZ; rx_fifo = (struct rt_serial_rx_fifo *) rt_malloc (sizeof(struct rt_serial_rx_fifo) + serial->config.rx_bufsz); RT_ASSERT(rx_fifo != RT_NULL); rt_ringbuffer_init(&(rx_fifo->rb), rx_fifo->buffer, serial->config.rx_bufsz); serial->serial_rx = rx_fifo; #ifndef RT_USING_DEVICE_OPS dev->read = _serial_fifo_rx; #endif if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING) { dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING; /* Call the control() API to configure the serial device by RT_SERIAL_RX_NON_BLOCKING*/ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_SERIAL_RX_NON_BLOCKING); return RT_EOK; } /* When using RT_SERIAL_RX_BLOCKING, rt_completion_init() and rx_cpt_index are initialized */ rx_fifo->rx_cpt_index = 0; rt_completion_init(&(rx_fifo->rx_cpt)); dev->open_flag |= RT_SERIAL_RX_BLOCKING; /* Call the control() API to configure the serial device by RT_SERIAL_RX_BLOCKING*/ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_SERIAL_RX_BLOCKING); return RT_EOK; } /** * @brief Disable serial receive mode. * @param dev The pointer of device driver structure * @param rx_oflag The flag of that the serial port opens. * @return Return the status of the operation. */ static rt_err_t rt_serial_rx_disable(struct rt_device *dev, rt_uint16_t rx_oflag) { struct rt_serial_device *serial; struct rt_serial_rx_fifo *rx_fifo; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; #ifndef RT_USING_DEVICE_OPS dev->read = RT_NULL; #endif if (serial->serial_rx == RT_NULL) return RT_EOK; do { if (rx_oflag == RT_SERIAL_RX_NON_BLOCKING) { dev->open_flag &= ~ RT_SERIAL_RX_NON_BLOCKING; serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *)RT_SERIAL_RX_NON_BLOCKING); break; } dev->open_flag &= ~ RT_SERIAL_RX_BLOCKING; serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *)RT_SERIAL_RX_BLOCKING); } while (0); rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); rt_free(rx_fifo); serial->serial_rx = RT_NULL; return RT_EOK; } /** * @brief Disable serial tranmit mode. * @param dev The pointer of device driver structure * @param rx_oflag The flag of that the serial port opens. * @return Return the status of the operation. */ static rt_err_t rt_serial_tx_disable(struct rt_device *dev, rt_uint16_t tx_oflag) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; #ifndef RT_USING_DEVICE_OPS dev->write = RT_NULL; #endif if (serial->serial_tx == RT_NULL) return RT_EOK; tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); do { if (tx_oflag == RT_SERIAL_TX_NON_BLOCKING) { dev->open_flag &= ~ RT_SERIAL_TX_NON_BLOCKING; serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *)RT_SERIAL_TX_NON_BLOCKING); break; } rt_completion_done(&(tx_fifo->tx_cpt)); dev->open_flag &= ~ RT_SERIAL_TX_BLOCKING; serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *)RT_SERIAL_TX_BLOCKING); } while (0); rt_free(tx_fifo); serial->serial_tx = RT_NULL; return RT_EOK; } /** * @brief Initialize the serial device. * @param dev The pointer of device driver structure * @return Return the status of the operation. */ static rt_err_t rt_serial_init(struct rt_device *dev) { rt_err_t result = RT_EOK; struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; /* initialize rx/tx */ serial->serial_rx = RT_NULL; serial->serial_tx = RT_NULL; /* apply configuration */ if (serial->ops->configure) result = serial->ops->configure(serial, &serial->config); return result; } /** * @brief Open the serial device. * @param dev The pointer of device driver structure * @param oflag The flag of that the serial port opens. * @return Return the status of the operation. */ static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; /* Check that the device has been turned on */ if ((dev->open_flag) & (15 << 12)) { LOG_D("(%s) serial device has already been opened, it will run in its original configuration", dev->parent.name); return RT_EOK; } LOG_D("open serial device: 0x%08x with open flag: 0x%04x", dev, oflag); /* By default, the receive mode of a serial devide is RT_SERIAL_RX_NON_BLOCKING */ if ((oflag & RT_SERIAL_RX_BLOCKING) == RT_SERIAL_RX_BLOCKING) dev->open_flag |= RT_SERIAL_RX_BLOCKING; else dev->open_flag |= RT_SERIAL_RX_NON_BLOCKING; /* By default, the transmit mode of a serial devide is RT_SERIAL_TX_BLOCKING */ if ((oflag & RT_SERIAL_TX_NON_BLOCKING) == RT_SERIAL_TX_NON_BLOCKING) dev->open_flag |= RT_SERIAL_TX_NON_BLOCKING; else dev->open_flag |= RT_SERIAL_TX_BLOCKING; /* set steam flag */ if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM)) dev->open_flag |= RT_DEVICE_FLAG_STREAM; /* initialize the Rx structure according to open flag */ if (serial->serial_rx == RT_NULL) rt_serial_rx_enable(dev, dev->open_flag & (RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING)); /* initialize the Tx structure according to open flag */ if (serial->serial_tx == RT_NULL) rt_serial_tx_enable(dev, dev->open_flag & (RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING)); return RT_EOK; } /** * @brief Close the serial device. * @param dev The pointer of device driver structure * @return Return the status of the operation. */ static rt_err_t rt_serial_close(struct rt_device *dev) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; /* this device has more reference count */ if (dev->ref_count > 1) return -RT_ERROR; /* Disable serial receive mode. */ rt_serial_rx_disable(dev, dev->open_flag & (RT_SERIAL_RX_BLOCKING | RT_SERIAL_RX_NON_BLOCKING)); /* Disable serial tranmit mode. */ rt_serial_tx_disable(dev, dev->open_flag & (RT_SERIAL_TX_BLOCKING | RT_SERIAL_TX_NON_BLOCKING)); /* Clear the callback function */ serial->parent.rx_indicate = RT_NULL; serial->parent.tx_complete = RT_NULL; /* Call the control() API to close the serial device */ serial->ops->control(serial, RT_DEVICE_CTRL_CLOSE, RT_NULL); dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED; return RT_EOK; } #ifdef RT_USING_POSIX_TERMIOS struct speed_baudrate_item { speed_t speed; int baudrate; }; const static struct speed_baudrate_item _tbl[] = { {B2400, BAUD_RATE_2400}, {B4800, BAUD_RATE_4800}, {B9600, BAUD_RATE_9600}, {B19200, BAUD_RATE_19200}, {B38400, BAUD_RATE_38400}, {B57600, BAUD_RATE_57600}, {B115200, BAUD_RATE_115200}, {B230400, BAUD_RATE_230400}, {B460800, BAUD_RATE_460800}, {B921600, BAUD_RATE_921600}, {B2000000, BAUD_RATE_2000000}, {B3000000, BAUD_RATE_3000000}, }; static speed_t _get_speed(int baudrate) { int index; for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++) { if (_tbl[index].baudrate == baudrate) return _tbl[index].speed; } return B0; } static int _get_baudrate(speed_t speed) { int index; for (index = 0; index < sizeof(_tbl)/sizeof(_tbl[0]); index ++) { if (_tbl[index].speed == speed) return _tbl[index].baudrate; } return 0; } static void _tc_flush(struct rt_serial_device *serial, int queue) { rt_base_t level; int ch = -1; struct rt_serial_rx_fifo *rx_fifo = RT_NULL; struct rt_device *device = RT_NULL; RT_ASSERT(serial != RT_NULL); device = &(serial->parent); rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx; switch(queue) { case TCIFLUSH: case TCIOFLUSH: RT_ASSERT(rx_fifo != RT_NULL); if((device->open_flag & RT_DEVICE_FLAG_INT_RX) || (device->open_flag & RT_DEVICE_FLAG_DMA_RX)) { RT_ASSERT(RT_NULL != rx_fifo); level = rt_hw_interrupt_disable(); rx_fifo->rx_cpt_index = 0; rt_hw_interrupt_enable(level); } else { while (1) { ch = serial->ops->getc(serial); if (ch == -1) break; } } break; case TCOFLUSH: break; } } #endif /* RT_USING_POSIX_TERMIOS */ /** * @brief Control the serial device. * @param dev The pointer of device driver structure * @param cmd The command value that controls the serial device * @param args The parameter value that controls the serial device * @return Return the status of the operation. */ static rt_err_t rt_serial_control(struct rt_device *dev, int cmd, void *args) { rt_err_t ret = RT_EOK; struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; switch (cmd) { case RT_DEVICE_CTRL_SUSPEND: /* suspend device */ dev->flag |= RT_DEVICE_FLAG_SUSPENDED; break; case RT_DEVICE_CTRL_RESUME: /* resume device */ dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED; break; case RT_DEVICE_CTRL_CONFIG: if (args != RT_NULL) { struct serial_configure *pconfig = (struct serial_configure *) args; if (serial->parent.ref_count) { /*can not change buffer size*/ return -RT_EBUSY; } /* set serial configure */ serial->config = *pconfig; serial->ops->configure(serial, (struct serial_configure *) args); } break; #ifdef RT_USING_POSIX_STDIO #ifdef RT_USING_POSIX_TERMIOS case TCGETA: { struct termios *tio = (struct termios*)args; if (tio == RT_NULL) return -RT_EINVAL; tio->c_iflag = 0; tio->c_oflag = 0; tio->c_lflag = 0; /* update oflag for console device */ if (rt_console_get_device() == dev) tio->c_oflag = OPOST | ONLCR; /* set cflag */ tio->c_cflag = 0; if (serial->config.data_bits == DATA_BITS_5) tio->c_cflag = CS5; else if (serial->config.data_bits == DATA_BITS_6) tio->c_cflag = CS6; else if (serial->config.data_bits == DATA_BITS_7) tio->c_cflag = CS7; else if (serial->config.data_bits == DATA_BITS_8) tio->c_cflag = CS8; if (serial->config.stop_bits == STOP_BITS_2) tio->c_cflag |= CSTOPB; if (serial->config.parity == PARITY_EVEN) tio->c_cflag |= PARENB; else if (serial->config.parity == PARITY_ODD) tio->c_cflag |= (PARODD | PARENB); if (serial->config.flowcontrol == RT_SERIAL_FLOWCONTROL_CTSRTS) tio->c_cflag |= CRTSCTS; cfsetospeed(tio, _get_speed(serial->config.baud_rate)); } break; case TCSETAW: case TCSETAF: case TCSETA: { int baudrate; struct serial_configure config; struct termios *tio = (struct termios*)args; if (tio == RT_NULL) return -RT_EINVAL; config = serial->config; baudrate = _get_baudrate(cfgetospeed(tio)); config.baud_rate = baudrate; switch (tio->c_cflag & CSIZE) { case CS5: config.data_bits = DATA_BITS_5; break; case CS6: config.data_bits = DATA_BITS_6; break; case CS7: config.data_bits = DATA_BITS_7; break; default: config.data_bits = DATA_BITS_8; break; } if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2; else config.stop_bits = STOP_BITS_1; if (tio->c_cflag & PARENB) { if (tio->c_cflag & PARODD) config.parity = PARITY_ODD; else config.parity = PARITY_EVEN; } else config.parity = PARITY_NONE; if (tio->c_cflag & CRTSCTS) config.flowcontrol = RT_SERIAL_FLOWCONTROL_CTSRTS; else config.flowcontrol = RT_SERIAL_FLOWCONTROL_NONE; /* set serial configure */ serial->config = config; serial->ops->configure(serial, &config); } break; case TCFLSH: { int queue = (int)args; _tc_flush(serial, queue); } break; case TCXONC: break; #endif /*RT_USING_POSIX_TERMIOS*/ case TIOCSWINSZ: { struct winsize* p_winsize; p_winsize = (struct winsize*)args; rt_kprintf("\x1b[8;%d;%dt", p_winsize->ws_col, p_winsize->ws_row); } break; case TIOCGWINSZ: { struct winsize* p_winsize; p_winsize = (struct winsize*)args; if(rt_thread_self() != rt_thread_find("tshell")) { /* only can be used in tshell thread; otherwise, return default size */ p_winsize->ws_col = 80; p_winsize->ws_row = 24; } else { #include #define _TIO_BUFLEN 20 char _tio_buf[_TIO_BUFLEN]; unsigned char cnt1, cnt2, cnt3, i; char row_s[4], col_s[4]; char *p; rt_memset(_tio_buf, 0, _TIO_BUFLEN); /* send the command to terminal for getting the window size of the terminal */ rt_kprintf("\033[18t"); /* waiting for the response from the terminal */ i = 0; while(i < _TIO_BUFLEN) { _tio_buf[i] = finsh_getchar(); if(_tio_buf[i] != 't') { i ++; } else { break; } } if(i == _TIO_BUFLEN) { /* buffer overloaded, and return default size */ p_winsize->ws_col = 80; p_winsize->ws_row = 24; break; } /* interpreting data eg: "\033[8;1;15t" which means row is 1 and col is 15 (unit: size of ONE character) */ rt_memset(row_s,0,4); rt_memset(col_s,0,4); cnt1 = 0; while(_tio_buf[cnt1] != ';' && cnt1 < _TIO_BUFLEN) { cnt1++; } cnt2 = ++cnt1; while(_tio_buf[cnt2] != ';' && cnt2 < _TIO_BUFLEN) { cnt2++; } p = row_s; while(cnt1 < cnt2) { *p++ = _tio_buf[cnt1++]; } p = col_s; cnt2++; cnt3 = rt_strlen(_tio_buf) - 1; while(cnt2 < cnt3) { *p++ = _tio_buf[cnt2++]; } /* load the window size date */ p_winsize->ws_col = atoi(col_s); p_winsize->ws_row = atoi(row_s); #undef _TIO_BUFLEN } p_winsize->ws_xpixel = 0;/* unused */ p_winsize->ws_ypixel = 0;/* unused */ } break; case FIONREAD: { rt_size_t recved = 0; rt_base_t level; struct rt_serial_rx_fifo * rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx; level = rt_hw_interrupt_disable(); recved = rt_ringbuffer_data_len(&(rx_fifo->rb)); rt_hw_interrupt_enable(level); *(rt_size_t *)args = recved; } break; #endif /* RT_USING_POSIX_STDIO */ default : /* control device */ ret = serial->ops->control(serial, cmd, args); break; } return ret; } #ifdef RT_USING_DEVICE_OPS static rt_size_t rt_serial_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; if (serial->config.rx_bufsz) { return _serial_fifo_rx(dev, pos, buffer, size); } return _serial_poll_rx(dev, pos, buffer, size); } static rt_size_t rt_serial_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; struct rt_serial_tx_fifo *tx_fifo; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; RT_ASSERT((serial != RT_NULL) && (buffer != RT_NULL)); tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx; if (serial->config.tx_bufsz == 0) { return _serial_poll_tx(dev, pos, buffer, size); } if (dev->open_flag | RT_SERIAL_TX_BLOCKING) { if ((tx_fifo->rb.buffer_ptr) == RT_NULL) { return _serial_fifo_tx_blocking_nbuf(dev, pos, buffer, size); } return _serial_fifo_tx_blocking_buf(dev, pos, buffer, size); } return _serial_fifo_tx_nonblocking(dev, pos, buffer, size); } const static struct rt_device_ops serial_ops = { rt_serial_init, rt_serial_open, rt_serial_close, rt_serial_read, rt_serial_write, rt_serial_control }; #endif /** * @brief Register the serial device. * @param serial RT-thread serial device. * @param name The device driver's name * @param flag The capabilities flag of device. * @param data The device driver's data. * @return Return the status of the operation. */ rt_err_t rt_hw_serial_register(struct rt_serial_device *serial, const char *name, rt_uint32_t flag, void *data) { rt_err_t ret; struct rt_device *device; RT_ASSERT(serial != RT_NULL); device = &(serial->parent); device->type = RT_Device_Class_Char; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; #ifdef RT_USING_DEVICE_OPS device->ops = &serial_ops; #else device->init = rt_serial_init; device->open = rt_serial_open; device->close = rt_serial_close; device->read = RT_NULL; device->write = RT_NULL; device->control = rt_serial_control; #endif device->user_data = data; /* register a character device */ ret = rt_device_register(device, name, flag); #ifdef RT_USING_POSIX_STDIO /* set fops */ device->fops = &_serial_fops; #endif return ret; } /** * @brief ISR for serial interrupt * @param serial RT-thread serial device. * @param event ISR event type. */ void rt_hw_serial_isr(struct rt_serial_device *serial, int event) { RT_ASSERT(serial != RT_NULL); switch (event & 0xff) { /* Interrupt receive event */ case RT_SERIAL_EVENT_RX_IND: case RT_SERIAL_EVENT_RX_DMADONE: { struct rt_serial_rx_fifo *rx_fifo; rt_size_t rx_length = 0; rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); /* If the event is RT_SERIAL_EVENT_RX_IND, rx_length is equal to 0 */ rx_length = (event & (~0xff)) >> 8; if (rx_length) rt_serial_update_write_index(&(rx_fifo->rb), rx_length); /* Get the length of the data from the ringbuffer */ rx_length = rt_ringbuffer_data_len(&rx_fifo->rb); if (rx_length == 0) break; if (serial->parent.open_flag & RT_SERIAL_RX_BLOCKING) { if (rx_fifo->rx_cpt_index && rx_length >= rx_fifo->rx_cpt_index ) { rx_fifo->rx_cpt_index = 0; rt_completion_done(&(rx_fifo->rx_cpt)); } } /* Trigger the receiving completion callback */ if (serial->parent.rx_indicate != RT_NULL) serial->parent.rx_indicate(&(serial->parent), rx_length); break; } /* Interrupt transmit event */ case RT_SERIAL_EVENT_TX_DONE: { struct rt_serial_tx_fifo *tx_fifo; rt_size_t tx_length = 0; tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); /* Get the length of the data from the ringbuffer */ tx_length = rt_ringbuffer_data_len(&tx_fifo->rb); /* If there is no data in tx_ringbuffer, * then the transmit completion callback is triggered*/ if (tx_length == 0) { tx_fifo->activated = RT_FALSE; /* Trigger the transmit completion callback */ if (serial->parent.tx_complete != RT_NULL) serial->parent.tx_complete(&serial->parent, RT_NULL); if (serial->parent.open_flag & RT_SERIAL_TX_BLOCKING) rt_completion_done(&(tx_fifo->tx_cpt)); break; } /* Call the transmit interface for transmission again */ /* Note that in interrupt mode, tx_fifo->buffer and tx_length * are inactive parameters */ serial->ops->transmit(serial, tx_fifo->buffer, tx_length, serial->parent.open_flag & ( \ RT_SERIAL_TX_BLOCKING | \ RT_SERIAL_TX_NON_BLOCKING)); break; } case RT_SERIAL_EVENT_TX_DMADONE: { struct rt_serial_tx_fifo *tx_fifo; tx_fifo = (struct rt_serial_tx_fifo *)serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); tx_fifo->activated = RT_FALSE; /* Trigger the transmit completion callback */ if (serial->parent.tx_complete != RT_NULL) serial->parent.tx_complete(&serial->parent, RT_NULL); if (serial->parent.open_flag & RT_SERIAL_TX_BLOCKING) { rt_completion_done(&(tx_fifo->tx_cpt)); break; } rt_serial_update_read_index(&tx_fifo->rb, tx_fifo->put_size); /* Get the length of the data from the ringbuffer. * If there is some data in tx_ringbuffer, * then call the transmit interface for transmission again */ if (rt_ringbuffer_data_len(&tx_fifo->rb)) { tx_fifo->activated = RT_TRUE; rt_uint8_t *put_ptr = RT_NULL; /* Get the linear length buffer from rinbuffer */ tx_fifo->put_size = rt_serial_get_linear_buffer(&(tx_fifo->rb), &put_ptr); /* Call the transmit interface for transmission again */ serial->ops->transmit(serial, put_ptr, tx_fifo->put_size, RT_SERIAL_TX_NON_BLOCKING); } break; } default: break; } }