/* * @brief LPC8XX SPI common functions and definitions * * @note * Copyright(C) NXP Semiconductors, 2014 * All rights reserved. * * @par * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * LPC products. This software is supplied "AS IS" without any warranties of * any kind, and NXP Semiconductors and its licensor disclaim any and * all warranties, express or implied, including all implied warranties of * merchantability, fitness for a particular purpose and non-infringement of * intellectual property rights. NXP Semiconductors assumes no responsibility * or liability for the use of the software, conveys no license or rights under any * patent, copyright, mask work right, or any other intellectual property rights in * or to any products. NXP Semiconductors reserves the right to make changes * in the software without notification. NXP Semiconductors also makes no * representation or warranty that such application will be suitable for the * specified use without further testing or modification. * * @par * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, under NXP Semiconductors' and its * licensor's relevant copyrights in the software, without fee, provided that it * is used in conjunction with NXP Semiconductors microcontrollers. This * copyright, permission, and disclaimer notice must appear in all copies of * this code. */ #ifndef __SPI_8XX_H__ #define __SPI_8XX_H__ #ifdef __cplusplus extern "C" { #endif /** @defgroup SPI_COMMON_8XX CHIP: LPC8XX SPI common functions and definitions * @ingroup CHIP_8XX_Drivers * @{ */ /** * @brief SPI register block structure */ typedef struct { /*!< SPI Structure */ __IO uint32_t CFG; /*!< SPI Configuration register */ __IO uint32_t DLY; /*!< SPI Delay register */ __IO uint32_t STAT; /*!< SPI Status register */ __IO uint32_t INTENSET; /*!< SPI Interrupt Enable Set register */ __O uint32_t INTENCLR; /*!< SPI Interrupt Enable Clear register */ __I uint32_t RXDAT; /*!< SPI Receive Data register */ __IO uint32_t TXDATCTL; /*!< SPI Transmit Data with Control register */ __IO uint32_t TXDAT; /*!< SPI Transmit Data register */ __IO uint32_t TXCTRL; /*!< SPI Transmit Control register */ __IO uint32_t DIV; /*!< SPI clock Divider register */ __I uint32_t INTSTAT; /*!< SPI Interrupt Status register */ } LPC_SPI_T; /* Reserved bits masks for registers */ #define SPI_CFG_RESERVED ((1<<1)|(1<<6)|0xfffffe00) #define SPI_DLY_RESERVED 0xffff0000 #define SPI_STAT_RESERVED (~0x1ff) #define SPI_INTENSET_RESERVED (~0x3f) #define SPI_INTENCLR_RESERVED (~0x3f) #define SPI_RXDAT_RESERVED ((7<<17)|(0x7ffu<<21)) #define SPI_TXDATCTL_RESERVED ((7<<17)|(1<<23)|(0xfu<<28)) #define SPI_TXDAT_RESERVED 0xffff0000 #define SPI_TXCTRL_RESERVED (0xffff|(7<<17)|(1<<23)|(0xfu<<28)) #define SPI_DIV_RESERVED 0xffff0000 #define SPI_INTSTAT_RESERVED (~0x3f) /** * Macro defines for SPI Configuration register */ #define SPI_CFG_BITMASK (0x1BD) /** SPI register bit mask */ #define SPI_CFG_SPI_EN (1 << 0) /** SPI Slave Mode Select */ #define SPI_CFG_SLAVE_EN (0 << 0) /** SPI Master Mode Select */ #define SPI_CFG_MASTER_EN (1 << 2) /** SPI MSB First mode enable */ #define SPI_CFG_MSB_FIRST_EN (0 << 3) /** SPI LSB First mode enable */ #define SPI_CFG_LSB_FIRST_EN (1 << 3) /** SPI Clock Phase Select */ #define SPI_CFG_CPHA_FIRST (0 << 4) /** Capture data on the first edge, Change data on the following edge */ #define SPI_CFG_CPHA_SECOND (1 << 4) /** SPI Clock Polarity Select */ #define SPI_CFG_CPOL_LO (0 << 5) /** The rest state of the clock (between frames) is low. */ #define SPI_CFG_CPOL_HI (1 << 5) /** The rest state of the clock (between frames) is high. */ #define SPI_CFG_LBM_EN (1 << 7) /** SPI control 1 loopback mode enable */ #define SPI_CFG_SPOL_LO (0 << 8) /** SPI SSEL0 Polarity Select */ #define SPI_CFG_SPOL_HI (1 << 8) /** SSEL0 is active High */ #define SPI_CFG_SPOLNUM_HI(n) (1 << ((n) + 8)) /** SSELN is active High, selects 0 - 3 */ /** * Macro defines for SPI Delay register */ #define SPI_DLY_BITMASK (0xFFFF) /** SPI DLY Register Mask */ #define SPI_DLY_PRE_DELAY(n) (((n) & 0x0F) << 0) /** Time in SPI clocks between SSEL assertion and the beginning of a data frame */ #define SPI_DLY_POST_DELAY(n) (((n) & 0x0F) << 4) /** Time in SPI clocks between the end of a data frame and SSEL deassertion. */ #define SPI_DLY_FRAME_DELAY(n) (((n) & 0x0F) << 8) /** Minimum time in SPI clocks between adjacent data frames. */ #define SPI_DLY_TRANSFER_DELAY(n) (((n) & 0x0F) << 12) /** Minimum time in SPI clocks that the SSEL is deasserted between transfers. */ /** * Macro defines for SPI Status register */ #define SPI_STAT_BITMASK (0x1FF) /** SPI STAT Register BitMask */ #define SPI_STAT_RXRDY (1 << 0) /** Receiver Ready Flag */ #define SPI_STAT_TXRDY (1 << 1) /** Transmitter Ready Flag */ #define SPI_STAT_RXOV (1 << 2) /** Receiver Overrun interrupt flag */ #define SPI_STAT_TXUR (1 << 3) /** Transmitter Underrun interrupt flag (In Slave Mode only) */ #define SPI_STAT_SSA (1 << 4) /** Slave Select Assert */ #define SPI_STAT_SSD (1 << 5) /** Slave Select Deassert */ #define SPI_STAT_STALLED (1 << 6) /** Stalled status flag */ #define SPI_STAT_EOT (1 << 7) /** End Transfer flag */ #define SPI_STAT_MSTIDLE (1 << 8) /** Idle status flag */ /** * Macro defines for SPI Interrupt Enable read and Set register */ #define SPI_INTENSET_BITMASK (0x3F) /** SPI INTENSET Register BitMask */ #define SPI_INTENSET_RXDYEN (1 << 0) /** Enable Interrupt when receiver data is available */ #define SPI_INTENSET_TXDYEN (1 << 1) /** Enable Interrupt when the transmitter holding register is available. */ #define SPI_INTENSET_RXOVEN (1 << 2) /** Enable Interrupt when a receiver overrun occurs */ #define SPI_INTENSET_TXUREN (1 << 3) /** Enable Interrupt when a transmitter underrun occurs (In Slave Mode Only)*/ #define SPI_INTENSET_SSAEN (1 << 4) /** Enable Interrupt when the Slave Select is asserted.*/ #define SPI_INTENSET_SSDEN (1 << 5) /** Enable Interrupt when the Slave Select is deasserted..*/ /** * Macro defines for SPI Interrupt Enable Clear register */ #define SPI_INTENCLR_BITMASK (0x3F) /** SPI INTENCLR Register BitMask */ #define SPI_INTENCLR_RXDYEN (1 << 0) /** Disable Interrupt when receiver data is available */ #define SPI_INTENCLR_TXDYEN (1 << 1) /** Disable Interrupt when the transmitter holding register is available. */ #define SPI_INTENCLR_RXOVEN (1 << 2) /** Disable Interrupt when a receiver overrun occurs */ #define SPI_INTENCLR_TXUREN (1 << 3) /** Disable Interrupt when a transmitter underrun occurs (In Slave Mode Only) */ #define SPI_INTENCLR_SSAEN (1 << 4) /** Disable Interrupt when the Slave Select is asserted. */ #define SPI_INTENCLR_SSDEN (1 << 5) /** Disable Interrupt when the Slave Select is deasserted.. */ /** * Macro defines for SPI Receiver Data register */ #define SPI_RXDAT_BITMASK (0x1FFFFF) /** SPI RXDAT Register BitMask */ #define SPI_RXDAT_DATA(n) ((n) & 0xFFFF) /** Receiver Data */ #define SPI_RXDAT_RXSSELN_ACTIVE (0 << 16) /** The state of SSEL pin is active */ #define SPI_RXDAT_RXSSELN_INACTIVE ((1 << 16) /** The state of SSEL pin is inactive */ #define SPI_RXDAT_RXSSELNUM_INACTIVE(n) (1 << ((n) + 16)) /** The state of SSELN pin is inactive */ #define SPI_RXDAT_SOT (1 << 20) /** Start of Transfer flag */ /** * Macro defines for SPI Transmitter Data and Control register */ #define SPI_TXDATCTL_BITMASK (0xF71FFFF) /** SPI TXDATCTL Register BitMask */ #define SPI_TXDATCTL_DATA(n) ((n) & 0xFFFF) /** SPI Transmit Data */ #define SPI_TXDATCTL_CTRLMASK (0xF710000) /** SPI TXDATCTL Register BitMask for control bits only */ #define SPI_TXDATCTL_ASSERT_SSEL (0 << 16) /** Assert SSEL0 pin */ #define SPI_TXDATCTL_DEASSERT_SSEL (1 << 16) /** Deassert SSEL0 pin */ #define SPI_TXDATCTL_DEASSERTNUM_SSEL(n) (1 << ((n) + 16)) /** Deassert SSELN pin */ #define SPI_TXDATCTL_DEASSERT_ALL (0xF << 16) /** Deassert all SSEL pins */ #define SPI_TXDATCTL_EOT (1 << 20) /** End of Transfer flag (TRANSFER_DELAY is applied after sending the current frame) */ #define SPI_TXDATCTL_EOF (1 << 21) /** End of Frame flag (FRAME_DELAY is applied after sending the current part) */ #define SPI_TXDATCTL_RXIGNORE (1 << 22) /** Receive Ignore Flag */ #define SPI_TXDATCTL_FLEN(n) (((n) & 0x0F) << 24) /** Frame length - 1 */ /** * Macro defines for SPI Transmitter Data Register */ #define SPI_TXDAT_DATA(n) ((n) & 0xFFFF) /** SPI Transmit Data */ /** * Macro defines for SPI Transmitter Control register */ #define SPI_TXCTL_BITMASK (0xF7F0000) /** SPI TXDATCTL Register BitMask */ #define SPI_TXCTL_ASSERT_SSEL (0 << 16) /** Assert SSEL0 pin */ #define SPI_TXCTL_DEASSERT_SSEL (1 << 16) /** Deassert SSEL0 pin */ #define SPI_TXCTL_DEASSERTNUM_SSEL(n) (1 << ((n) + 16)) /** Deassert SSELN pin */ #define SPI_TXDATCTL_DEASSERT_ALL (0xF << 16) /** Deassert all SSEL pins */ #define SPI_TXCTL_EOT (1 << 20) /** End of Transfer flag (TRANSFER_DELAY is applied after sending the current frame) */ #define SPI_TXCTL_EOF (1 << 21) /** End of Frame flag (FRAME_DELAY is applied after sending the current part) */ #define SPI_TXCTL_RXIGNORE (1 << 22) /** Receive Ignore Flag */ #define SPI_TXCTL_FLEN(n) ((((n) - 1) & 0x0F) << 24) /** Frame length, 0 - 16 */ #define SPI_TXCTL_FLENMASK (0xF << 24) /** Frame length mask */ /** * Macro defines for SPI Divider register */ #define SPI_DIV_VAL(n) ((n) & 0xFFFF) /** Rate divider value mask (In Master Mode only)*/ /** * Macro defines for SPI Interrupt Status register */ #define SPI_INTSTAT_BITMASK (0x3F) /** SPI INTSTAT Register Bitmask */ #define SPI_INTSTAT_RXRDY (1 << 0) /** Receiver Ready Flag */ #define SPI_INTSTAT_TXRDY (1 << 1) /** Transmitter Ready Flag */ #define SPI_INTSTAT_RXOV (1 << 2) /** Receiver Overrun interrupt flag */ #define SPI_INTSTAT_TXUR (1 << 3) /** Transmitter Underrun interrupt flag (In Slave Mode only) */ #define SPI_INTSTAT_SSA (1 << 4) /** Slave Select Assert */ #define SPI_INTSTAT_SSD (1 << 5) /** Slave Select Deassert */ /** @brief SPI Clock Mode*/ #define SPI_CLOCK_CPHA0_CPOL0 (SPI_CFG_CPOL_LO | SPI_CFG_CPHA_FIRST) /**< CPHA = 0, CPOL = 0 */ #define SPI_CLOCK_MODE0 SPI_CLOCK_CPHA0_CPOL0 /**< Alias for CPHA = 0, CPOL = 0 */ #define SPI_CLOCK_CPHA1_CPOL0 SPI_CFG_CPOL_LO | SPI_CFG_CPHA_SECOND /**< CPHA = 0, CPOL = 1 */ #define SPI_CLOCK_MODE1 SPI_CLOCK_CPHA1_CPOL0 /**< Alias for CPHA = 0, CPOL = 1 */ #define SPI_CLOCK_CPHA0_CPOL1 SPI_CFG_CPOL_HI | SPI_CFG_CPHA_FIRST /**< CPHA = 1, CPOL = 0 */ #define SPI_CLOCK_MODE2 SPI_CLOCK_CPHA0_CPOL1 /**< Alias for CPHA = 1, CPOL = 0 */ #define SPI_CLOCK_CPHA1_CPOL1 SPI_CFG_CPOL_HI | SPI_CFG_CPHA_SECOND /**< CPHA = 1, CPOL = 1 */ #define SPI_CLOCK_MODE3 SPI_CLOCK_CPHA1_CPOL1 /**< Alias for CPHA = 1, CPOL = 1 */ /** * @brief Set SPI CFG register values * @param pSPI : The base of SPI peripheral on the chip * @param bits : CFG register bits to set, amd OR'ed value of SPI_CFG_* definitions * @return Nothing * @note This function safely sets only the selected bits in the SPI CFG register. * It can be used to enable multiple bits at once. */ STATIC INLINE void Chip_SPI_SetCFGRegBits(LPC_SPI_T *pSPI, uint32_t bits) { /* Update CFG register with only selected bits disabled */ pSPI->CFG = bits | (pSPI->CFG & SPI_CFG_BITMASK); } /** * @brief Clear SPI CFG register values * @param pSPI : The base of SPI peripheral on the chip * @param bits : CFG register bits to clear, amd OR'ed value of SPI_CFG_* definitions * @return Nothing * @note This function safely clears only the selected bits in the SPI CFG register. * It can be used to disable multiple bits at once. */ STATIC INLINE void Chip_SPI_ClearCFGRegBits(LPC_SPI_T *pSPI, uint32_t bits) { /* Update CFG register with only selected bits disabled */ pSPI->CFG = ~bits & (pSPI->CFG & SPI_CFG_BITMASK); } /** * @brief Initialize the SPI * @param pSPI : The base SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_Init(LPC_SPI_T *pSPI) { /* Enable SPI clock and reset IP */ if (pSPI == LPC_SPI1) { Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SPI1); Chip_SYSCTL_PeriphReset(RESET_SPI1); } else { Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SPI0); Chip_SYSCTL_PeriphReset(RESET_SPI0); } } /** * @brief Disable SPI peripheral * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_Disable(LPC_SPI_T *pSPI) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_SPI_EN); } /** * @brief Disable SPI operation * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note The SPI controller is disabled. */ STATIC INLINE void Chip_SPI_DeInit(LPC_SPI_T *pSPI) { Chip_SPI_Disable(pSPI); if (pSPI == LPC_SPI1) { Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_SPI1); } else { Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_SPI0); } } /** * @brief Enable SPI peripheral * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_Enable(LPC_SPI_T *pSPI) { Chip_SPI_SetCFGRegBits(pSPI, SPI_CFG_SPI_EN); } /** * @brief Enable SPI master mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note SPI slave mode will be disabled with this call. All SPI SSEL * lines will also be deasserted. */ STATIC INLINE void Chip_SPI_EnableMasterMode(LPC_SPI_T *pSPI) { Chip_SPI_SetCFGRegBits(pSPI, SPI_CFG_MASTER_EN); /* Deassert all chip selects, only in master mode */ pSPI->TXCTRL = SPI_TXDATCTL_DEASSERT_ALL; } /** * @brief Enable SPI slave mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note SPI master mode will be disabled with this call. */ STATIC INLINE void Chip_SPI_EnableSlaveMode(LPC_SPI_T *pSPI) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_MASTER_EN); } /** * @brief Enable LSB First transfers * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_EnableLSBFirst(LPC_SPI_T *pSPI) { Chip_SPI_SetCFGRegBits(pSPI, SPI_CFG_LSB_FIRST_EN); } /** * @brief Enable MSB First transfers * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_EnableMSBFirst(LPC_SPI_T *pSPI) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_LSB_FIRST_EN); } /** * @brief Set SPI mode * @param pSPI : The base of SPI peripheral on the chip * @param mode : SPI mode to set the SPI interface to * @return Nothing */ STATIC INLINE void Chip_SPI_SetSPIMode(LPC_SPI_T *pSPI, uint32_t mode) { Chip_SPI_ClearCFGRegBits(pSPI, (SPI_CFG_CPOL_HI | SPI_CFG_CPHA_SECOND)); Chip_SPI_SetCFGRegBits(pSPI, (uint32_t) mode); } /** * @brief Set polarity on the SPI chip select high * @param pSPI : The base of SPI peripheral on the chip * @param csNum : Chip select number, 0 - 3 * @return Nothing * @note SPI chip select polarity is active high. */ STATIC INLINE void Chip_SPI_SetCSPolHigh(LPC_SPI_T *pSPI, uint8_t csNum) { Chip_SPI_SetCFGRegBits(pSPI, SPI_CFG_SPOLNUM_HI(csNum)); } /** * @brief Set polarity on the SPI chip select low * @param pSPI : The base of SPI peripheral on the chip * @param csNum : Chip select number, 0 - 3 * @return Nothing * @note SPI chip select polarity is active low. */ STATIC INLINE void Chip_SPI_SetCSPolLow(LPC_SPI_T *pSPI, uint8_t csNum) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_SPOLNUM_HI(csNum)); } /** * @brief Setup SPI configuration * @param pSPI : The base of SPI peripheral on the chip * @param config : ORed spi configuration flags * @return Nothing * @note Possible values that can be ORed in @a config are * SPI_CLOCK_* (example: #SPI_CLOCK_CPHA0_CPOL0) along with * SPI_CFG_* (example: #SPI_CFG_SPI_EN). */ STATIC INLINE void Chip_SPI_ConfigureSPI(LPC_SPI_T *pSPI, uint32_t config) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_MASTER_EN | SPI_CFG_LSB_FIRST_EN | SPI_CFG_CPHA_SECOND | SPI_CFG_CPOL_HI); Chip_SPI_SetCFGRegBits(pSPI, config); /* Deassert all chip selects, only in master mode */ pSPI->TXCTRL = SPI_TXDATCTL_DEASSERT_ALL; } /** * @brief Get the current status of SPI controller * @param pSPI : The base of SPI peripheral on the chip * @return SPI Status (Or-ed bit value of SPI_STAT_*) * @note Mask the return value with a value of type SPI_STAT_* to determine * if that status is active. */ STATIC INLINE uint32_t Chip_SPI_GetStatus(LPC_SPI_T *pSPI) { return pSPI->STAT & ~SPI_STAT_RESERVED; } /** * @brief Clear SPI status * @param pSPI : The base of SPI peripheral on the chip * @param Flag : Clear Flag (Or-ed bit value of SPI_STAT_*) * @return Nothing * @note Only SPI_STAT_RXOV, SPI_STAT_TXUR, SPI_STAT_SSA, and * SPI_STAT_SSD statuses can be cleared. */ STATIC INLINE void Chip_SPI_ClearStatus(LPC_SPI_T *pSPI, uint32_t Flag) { pSPI->STAT = Flag; } /** * @brief Enable a SPI interrupt * @param pSPI : The base of SPI peripheral on the chip * @param Flag : Or'ed value of SPI_INTENSET_* values to enable * @return Nothing */ STATIC INLINE void Chip_SPI_EnableInts(LPC_SPI_T *pSPI, uint32_t Flag) { pSPI->INTENSET = Flag; } /** * @brief Disable a SPI interrupt * @param pSPI : The base of SPI peripheral on the chip * @param Flag : Or'ed value of SPI_INTENCLR_* values to disable * @return Nothing */ STATIC INLINE void Chip_SPI_DisableInts(LPC_SPI_T *pSPI, uint32_t Flag) { pSPI->INTENCLR = Flag; } /** * @brief Return enabled SPI interrupts * @param pSPI : The base of SPI peripheral on the chip * @return An Or'ed value of SPI_INTENSET_* values * @note Mask the return value with a SPI_INTENSET_* value to determine * if the interrupt is enabled. */ STATIC INLINE uint32_t Chip_SPI_GetEnabledInts(LPC_SPI_T *pSPI) { return pSPI->INTENSET & ~SPI_INTENSET_RESERVED; } /** * @brief Return pending SPI interrupts * @param pSPI : The base of SPI peripheral on the chip * @return An Or'ed value of SPI_INTSTAT_* values * @note Mask the return value with a SPI_INTSTAT_* value to determine * if the interrupt is pending. */ STATIC INLINE uint32_t Chip_SPI_GetPendingInts(LPC_SPI_T *pSPI) { return pSPI->INTSTAT & ~SPI_INTSTAT_RESERVED; } /** * @brief Flush FIFOs * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPI_FlushFifos(LPC_SPI_T *pSPI) { Chip_SPI_Disable(pSPI); Chip_SPI_Enable(pSPI); } /** * @brief Read raw data from receive FIFO with status bits * @param pSPI : The base of SPI peripheral on the chip * @return Current value in receive data FIFO plus status bits */ STATIC INLINE uint32_t Chip_SPI_ReadRawRXFifo(LPC_SPI_T *pSPI) { return pSPI->RXDAT & ~SPI_RXDAT_RESERVED; } /** * @brief Read data from receive FIFO masking off status bits * @param pSPI : The base of SPI peripheral on the chip * @return Current value in receive data FIFO * @note The return value is masked with 0xFFFF to not exceed 16-bits. All * other status bits are thrown away. This register should only be read if it * has data in it. This function is useful for systems that don't need SPI * select (SSEL) monitoring. */ STATIC INLINE uint32_t Chip_SPI_ReadRXData(LPC_SPI_T *pSPI) { return pSPI->RXDAT & 0xFFFF; } /** * @brief Write data to transmit FIFO * @param pSPI : The base of SPI peripheral on the chip * @param data : Data to write * @return Nothing */ STATIC INLINE void Chip_SPI_WriteTXData(LPC_SPI_T *pSPI, uint16_t data) { pSPI->TXDAT = (uint32_t) data; } /** * @brief Set SPI TXCTRL register control options * @param pSPI : The base of SPI peripheral on the chip * @param bits : TXCTRL register bits to set, amd OR'ed value of SPI_TXDATCTL_* definitions * @return Nothing * @note This function safely sets only the selected bits in the SPI TXCTRL register. * It can be used to enable multiple bits at once. */ STATIC INLINE void Chip_SPI_SetTXCTRLRegBits(LPC_SPI_T *pSPI, uint32_t bits) { pSPI->TXCTRL = bits | (pSPI->TXCTRL & SPI_TXDATCTL_CTRLMASK); } /** * @brief Clear SPI TXCTRL register control options * @param pSPI : The base of SPI peripheral on the chip * @param bits : TXCTRL register bits to clear, amd OR'ed value of SPI_TXDATCTL_* definitions * @return Nothing * @note This function safely clears only the selected bits in the SPI TXCTRL register. * It can be used to disable multiple bits at once. */ STATIC INLINE void Chip_SPI_ClearTXCTRLRegBits(LPC_SPI_T *pSPI, uint32_t bits) { pSPI->TXCTRL = ~bits & (pSPI->TXCTRL & SPI_TXDATCTL_CTRLMASK); } /** * @brief Set TX control options (safe) * @param pSPI : The base of SPI peripheral on the chip * @param ctrlBits : Or'ed control bits to set * @return Nothing * @note Selectable control states include SPI_TXCTL_DEASSERTNUM_SSEL(0/1/2/3), * SPI_TXCTL_EOT, SPI_TXCTL_EOF, SPI_TXCTL_RXIGNORE, and SPI_TXCTL_FLEN(bits). */ STATIC INLINE void Chip_SPI_SetTXCtl(LPC_SPI_T *pSPI, uint32_t ctrlBits) { Chip_SPI_SetTXCTRLRegBits(pSPI, ctrlBits); } /** * @brief Clear TX control options (safe) * @param pSPI : The base of SPI peripheral on the chip * @param ctrlBits : Or'ed control bits to clear * @return Nothing * @note Selectable control states include SPI_TXCTL_DEASSERTNUM_SSEL(0/1/2/3), * SPI_TXCTL_EOT, SPI_TXCTL_EOF, SPI_TXCTL_RXIGNORE, and SPI_TXCTL_FLEN(bits). */ STATIC INLINE void Chip_SPI_ClearTXCtl(LPC_SPI_T *pSPI, uint32_t ctrlBits) { Chip_SPI_ClearTXCTRLRegBits(pSPI, ctrlBits); } /** * @brief Set TX data transfer size in bits * @param pSPI : The base of SPI peripheral on the chip * @param ctrlBits : Number of bits to transmit and receive, must be 1 to 16 * @return Nothing */ STATIC INLINE void Chip_SPI_SetXferSize(LPC_SPI_T *pSPI, uint32_t ctrlBits) { Chip_SPI_ClearTXCTRLRegBits(pSPI, SPI_TXCTL_FLENMASK); Chip_SPI_SetTXCTRLRegBits(pSPI, SPI_TXCTL_FLEN(ctrlBits)); } /** * @} */ /** @defgroup SPI_8XX CHIP: LPC8xx SPI driver * @ingroup CHIP_8XX_Drivers * @{ */ /** @brief SPI Mode*/ typedef enum { SPI_MODE_MASTER = SPI_CFG_MASTER_EN, /* Master Mode */ SPI_MODE_SLAVE = SPI_CFG_SLAVE_EN, /* Slave Mode */ } SPI_MODE_T; /** @brief SPI Data Order Mode*/ typedef enum IP_SPI_DATA_ORDER { SPI_DATA_MSB_FIRST = SPI_CFG_MSB_FIRST_EN, /* Standard Order */ SPI_DATA_LSB_FIRST = SPI_CFG_LSB_FIRST_EN, /* Reverse Order */ } SPI_DATA_ORDER_T; /** @brief SPI SSEL Polarity definition*/ typedef enum IP_SPI_SSEL_POL { SPI_SSEL_ACTIVE_LO = SPI_CFG_SPOL_LO, /* SSEL is active Low*/ SPI_SSEL_ACTIVE_HI = SPI_CFG_SPOL_HI, /* SSEL is active High */ } SPI_SSEL_POL_T; /** * @brief SPI Configure Struct */ typedef struct { SPI_MODE_T Mode; /* Mode Select */ uint32_t ClockMode; /* CPHA CPOL Select */ SPI_DATA_ORDER_T DataOrder; /* MSB/LSB First */ SPI_SSEL_POL_T SSELPol; /* SSEL Polarity Select */ uint16_t ClkDiv; /* SPI Clock Divider Value */ } SPI_CONFIG_T; /** * @brief SPI Delay Configure Struct */ typedef struct { uint8_t PreDelay; /* Pre-delay value in SPI clock time */ uint8_t PostDelay; /* Post-delay value in SPI clock time */ uint8_t FrameDelay; /* Delay value between frames of a transfer in SPI clock time */ uint8_t TransferDelay; /* Delay value between transfers in SPI clock time */ } SPI_DELAY_CONFIG_T; /** * @brief SPI data setup structure */ typedef struct { uint16_t *pTx; /**< Pointer to data buffer*/ uint32_t TxCnt;/* Transmit Counter */ uint16_t *pRx; /**< Pointer to data buffer*/ uint32_t RxCnt;/* Transmit Counter */ uint32_t Length; /**< Data Length*/ uint16_t DataSize; /** < The size of a frame (1-16)*/ } SPI_DATA_SETUP_T; /** * @brief Calculate the divider for SPI clock * @param pSPI : The base of SPI peripheral on the chip * @param bitRate : Expected clock rate * @return Divider value */ uint32_t Chip_SPI_CalClkRateDivider(LPC_SPI_T *pSPI, uint32_t bitRate); /** * @brief Config SPI Delay parameters * @param pSPI : The base of SPI peripheral on the chip * @param pConfig : SPI Delay Configure Struct * @return Nothing * @note The SPI controller is disabled */ void Chip_SPI_DelayConfig(LPC_SPI_T *pSPI, SPI_DELAY_CONFIG_T *pConfig); /** * @brief Enable/Disable SPI interrupt * @param pSPI : The base SPI peripheral on the chip * @param IntMask : Interrupt mask * @param NewState : ENABLE or DISABLE interrupt * @return Nothing */ void Chip_SPI_Int_Cmd(LPC_SPI_T *pSPI, uint32_t IntMask, FunctionalState NewState); /** * @brief Enable SPI peripheral * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ /** * @brief Enable loopback mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin */ STATIC INLINE void Chip_SPI_EnableLoopBack(LPC_SPI_T *pSPI) { pSPI->CFG = SPI_CFG_LBM_EN | (pSPI->CFG & ~SPI_CFG_RESERVED); } /** * @brief Disable loopback mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin */ STATIC INLINE void Chip_SPI_DisableLoopBack(LPC_SPI_T *pSPI) { pSPI->CFG &= (~SPI_CFG_LBM_EN) & SPI_CFG_BITMASK; } /** * @brief Set control information including SSEL, EOT, EOF RXIGNORE and FLEN * @param pSPI : The base of SPI peripheral on the chip * @param Flen : Data size (1-16) * @param Flag : Flag control (Or-ed values of SPI_TXCTL_*) * @note The control information has no effect unless data is later written to TXDAT * @return Nothing */ STATIC INLINE void Chip_SPI_SetControlInfo(LPC_SPI_T *pSPI, uint8_t Flen, uint32_t Flag) { pSPI->TXCTRL = Flag | SPI_TXDATCTL_FLEN(Flen - 1); } /** * @brief Send the first Frame of a transfer (Rx Ignore) * @param pSPI : The base of SPI peripheral on the chip * @param Data : Transmit data * @param DataSize : Data Size (1-16) * @return Nothing */ STATIC INLINE void Chip_SPI_SendFirstFrame_RxIgnore(LPC_SPI_T *pSPI, uint16_t Data, uint8_t DataSize) { pSPI->TXDATCTL = SPI_TXDATCTL_ASSERT_SSEL | SPI_TXDATCTL_EOF | SPI_TXDATCTL_RXIGNORE | SPI_TXDATCTL_FLEN( DataSize - 1) | SPI_TXDATCTL_DATA(Data); } /** * @brief Send the first Frame of a transfer * @param pSPI : The base of SPI peripheral on the chip * @param Data : Transmit data * @param DataSize : Data Size (1-16) * @return Nothing */ STATIC INLINE void Chip_SPI_SendFirstFrame(LPC_SPI_T *pSPI, uint16_t Data, uint8_t DataSize) { pSPI->TXDATCTL = SPI_TXDATCTL_ASSERT_SSEL | SPI_TXDATCTL_EOF | SPI_TXDATCTL_FLEN(DataSize - 1) | SPI_TXDATCTL_DATA( Data); } /** * @brief Send the middle Frame of a transfer * @param pSPI : The base of SPI peripheral on the chip * @param Data : Transmit data * @return Nothing */ STATIC INLINE void Chip_SPI_SendMidFrame(LPC_SPI_T *pSPI, uint16_t Data) { pSPI->TXDAT = SPI_TXDAT_DATA(Data); } /** * @brief Send the last Frame of a transfer (Rx Ignore) * @param pSPI : The base of SPI peripheral on the chip * @param Data : Transmit data * @param DataSize : Data Size (1-16) * @return Nothing */ STATIC INLINE void Chip_SPI_SendLastFrame_RxIgnore(LPC_SPI_T *pSPI, uint16_t Data, uint8_t DataSize) { pSPI->TXDATCTL = SPI_TXDATCTL_ASSERT_SSEL | SPI_TXDATCTL_EOF | SPI_TXDATCTL_EOT | SPI_TXDATCTL_RXIGNORE | SPI_TXDATCTL_FLEN(DataSize - 1) | SPI_TXDATCTL_DATA(Data); } /** * @brief Send the last Frame of a transfer * @param pSPI : The base of SPI peripheral on the chip * @param Data : Transmit data * @param DataSize : Data Size (1-16) * @return Nothing */ STATIC INLINE void Chip_SPI_SendLastFrame(LPC_SPI_T *pSPI, uint16_t Data, uint8_t DataSize) { pSPI->TXDATCTL = SPI_TXDATCTL_ASSERT_SSEL | SPI_TXDATCTL_EOF | SPI_TXDATCTL_EOT | SPI_TXDATCTL_FLEN(DataSize - 1) | SPI_TXDATCTL_DATA(Data); } /** * @brief Read data received * @param pSPI : The base of SPI peripheral on the chip * @return Receive data */ STATIC INLINE uint16_t Chip_SPI_ReceiveFrame(LPC_SPI_T *pSPI) { return SPI_RXDAT_DATA(pSPI->RXDAT); } /** * @brief SPI Interrupt Read/Write * @param pSPI : The base SPI peripheral on the chip * @param xf_setup : Pointer to a SPI_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return SUCCESS or ERROR */ Status Chip_SPI_Int_RWFrames(LPC_SPI_T *pSPI, SPI_DATA_SETUP_T *xf_setup); /** * @brief SPI Polling Read/Write in blocking mode * @param pSPI : The base SPI peripheral on the chip * @param pXfSetup : Pointer to a SPI_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return Actual data length has been transferred * @note * This function can be used in both master and slave mode. It starts with writing phase and after that, * a reading phase is generated to read any data available in RX_FIFO. All needed information is prepared * through xf_setup param. */ uint32_t Chip_SPI_RWFrames_Blocking(LPC_SPI_T *pSPI, SPI_DATA_SETUP_T *pXfSetup); /** * @brief SPI Polling Write in blocking mode * @param pSPI : The base SPI peripheral on the chip * @param pXfSetup :Pointer to a SPI_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return Actual data length has been transferred * @note * This function can be used in both master and slave mode. First, a writing operation will send * the needed data. After that, a dummy reading operation is generated to clear data buffer */ uint32_t Chip_SPI_WriteFrames_Blocking(LPC_SPI_T *pSPI, SPI_DATA_SETUP_T *pXfSetup); /** * @brief SPI Polling Read in blocking mode * @param pSPI : The base SPI peripheral on the chip * @param pXfSetup :Pointer to a SPI_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return Actual data length has been read * @note * This function can be used in both master and slave mode. First, a writing operation will send * the needed data. After that, a dummy reading operation is generated to clear data buffer */ uint32_t Chip_SPI_ReadFrames_Blocking(LPC_SPI_T *pSPI, SPI_DATA_SETUP_T *pXfSetup); /** * @} */ /** @defgroup SPI_MASTER_8XX CHIP: LPC8XX SPI master driver * @ingroup SPI_COMMON_8XX * @{ */ /** * @brief Get SPI master bit rate * @param pSPI : The base of SPI peripheral on the chip * @return The actual SPI clock bit rate */ uint32_t Chip_SPIM_GetClockRate(LPC_SPI_T *pSPI); /** * @brief Set SPI master bit rate * @param pSPI : The base of SPI peripheral on the chip * @param rate : Desired clock bit rate for the SPI interface * @return The actual SPI clock bit rate * @note This function will set the SPI clock divider to get closest * to the desired rate as possible. */ uint32_t Chip_SPIM_SetClockRate(LPC_SPI_T *pSPI, uint32_t rate); /** * @brief SPI Delay Configure Struct */ typedef struct { uint8_t PreDelay; /** Pre-delay value in SPI clocks, 0 - 15 */ uint8_t PostDelay; /** Post-delay value in SPI clocks, 0 - 15 */ uint8_t FrameDelay; /** Delay value between frames of a transfer in SPI clocks, 0 - 15 */ uint8_t TransferDelay; /** Delay value between transfers in SPI clocks, 1 - 16 */ } SPIM_DELAY_CONFIG_T; /** * @brief Config SPI Delay parameters * @param pSPI : The base of SPI peripheral on the chip * @param pConfig : SPI Delay Configure Struct * @return Nothing */ void Chip_SPIM_DelayConfig(LPC_SPI_T *pSPI, SPIM_DELAY_CONFIG_T *pConfig); /** * @brief Forces an end of transfer for the current master transfer * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note Use this function to perform an immediate end of trasnfer for the * current master operation. If the master is currently transferring data started * with the Chip_SPIM_Xfer function, this terminates the transfer after the * current byte completes and completes the transfer. */ STATIC INLINE void Chip_SPIM_ForceEndOfTransfer(LPC_SPI_T *pSPI) { pSPI->STAT = SPI_STAT_EOT; } /** * @brief Assert a SPI select * @param pSPI : The base of SPI peripheral on the chip * @param sselNum : SPI select to assert, 0 - 3 * @return Nothing */ void Chip_SPIM_AssertSSEL(LPC_SPI_T *pSPI, uint8_t sselNum); /** * @brief Deassert a SPI select * @param pSPI : The base of SPI peripheral on the chip * @param sselNum : SPI select to deassert, 0 - 3 * @return Nothing */ void Chip_SPIM_DeAssertSSEL(LPC_SPI_T *pSPI, uint8_t sselNum); /** * @brief Enable loopback mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing * @note Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin. */ STATIC INLINE void Chip_SPIM_EnableLoopBack(LPC_SPI_T *pSPI) { Chip_SPI_SetCFGRegBits(pSPI, SPI_CFG_LBM_EN); } /** * @brief Disable loopback mode * @param pSPI : The base of SPI peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SPIM_DisableLoopBack(LPC_SPI_T *pSPI) { Chip_SPI_ClearCFGRegBits(pSPI, SPI_CFG_LBM_EN); } struct SPIM_XFER; /** @brief SPI master select assert callback * This callback is called from the SPI master handler when the SPI master * selects the slave (asserts SSEL). */ typedef void (*SPIMasterXferCSAssert)(struct SPIM_XFER *pMasterXfer); /** @brief SPI master send data callback * This callback is called from the SPI master handler when the SPI master * needs a data buffer to send. */ typedef void (*SPIMasterXferSend)(struct SPIM_XFER *pMasterXfer); /** @brief SPI master receive data callback * This callback is called from the SPI master handler when the SPI master * needs a buffer to place data into. */ typedef void (*SPIMasterXferRecv)(struct SPIM_XFER *pMasterXfer); /** @brief SPI master transfer select deassert data callback * This callback is called from the SPI master handler when the SPI master * deasserts the slave select. */ typedef void (*SPIMMasterXferCSDeAssert)(struct SPIM_XFER *pMasterXfer); /** @brief SPI master transfer done data callback * This callback is called from the SPI master handler when the SPI master * has completed the transfer and becomes idle. */ typedef void (*SPIMMasterXferDone)(struct SPIM_XFER *pMasterXfer); /** SPI slave callback functions */ typedef struct { SPIMasterXferCSAssert masterXferCSAssert; /** SPI transfer CS assert, called when a slave select is asserted */ SPIMasterXferSend masterXferSend; /** SPI transfer data receive buffer callback, called when a send buffer is needed */ SPIMasterXferRecv masterXferRecv; /** SPI transfer send buffer callback, called when send buffer is needed (and SPI_TXCTL_RXIGNORE option is not set) */ SPIMMasterXferCSDeAssert mMasterXferCSDeAssert; /** SPI transfer CS deassert, called when a slave select is deasserted */ SPIMMasterXferDone mMasterXferDone; /** SPI transfer done callback, called when transfer is complete */ } SPIM_CALLBACKS_T; /** Slave transfer data context */ typedef struct SPIM_XFER { const SPIM_CALLBACKS_T *pCB; /** Pointer to SPI master data callback functions */ union { /** Pointer to receive buffer, set to NULL to toss receeive data */ uint8_t *pRXData8; /** Receive buffer used with data transfer size <= 8-bits, modified by driver */ uint16_t *pRXData16; /** Receive buffer used with data transfer size > 8-bits, modified by driver */ }; union { /** Pointer to transmit buffer, set to NULL to transmit 0x0 */ uint8_t *pTXData8; /** Send buffer used with data transfer size <= 8-bits, modified by driver */ uint16_t *pTXData16; /** Send buffer used with data transfer size > 8-bits, modified by driver */ }; uint32_t options; /** Master transfer options, an OR'ed value of SPI_TXCTL_EOT, SPI_TXCTL_EOF, SPI_TXCTL_RXIGNORE, and SPI_TXCTL_FLEN(bits) */ uint16_t rxCount; /** Size of the pRXData buffer in items (not bytes), modified by driver */ uint16_t txCount; /** Number of items (not bytes) to send in pTXData buffer, modified by driver */ uint16_t dataRXferred; /** Total items (not bytes) received, modified by driver */ uint16_t dataTXferred; /** Total items (not bytes) transmitted, modified by driver */ uint8_t sselNum; /** Slave number assigned to this transfer, 0 - 3, used by driver to select slave */ bool terminate; /** Transfer will terminate when txCount goes to 0 and master goes idle, must be set before last byte is sent */ } SPIM_XFER_T; /** * @brief SPI master transfer state change handler * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIM_XFER_T structure see notes below * @return Nothing * @note See @ref SPIM_XFER_T for more information on this function. When using * this function, the SPI master interrupts should be enabled and setup in the SPI * interrupt handler to call this function when they fire. This function is meant * to be called from the interrupt handler. */ void Chip_SPIM_XferHandler(LPC_SPI_T *pSPI, SPIM_XFER_T *xfer); /** * @brief Start non-blocking SPI master transfer * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIM_XFER_T structure see notes below * @return Nothing * @note This function starts a non-blocking SPI master transfer with the * parameters setup in the passed @ref SPIM_XFER_T structure. Once the transfer is * started, the interrupt handler must call Chip_SPIM_XferHandler to keep the * transfer going and fed with data. This function should only be called when * the master is idle.
* * This function must be called with the options and sselNum fields correctly * setup. Initial data buffers and the callback pointer must also be setup. No * sanity checks are performed on the passed data.
* * Example call:
* SPIM_XFER_T mxfer; * mxfer.pCB = &masterCallbacks; * mxfer.sselNum = 2; // Use chip select 2 * mxfer.options = SPI_TXCTL_FLEN(8); // 8 data bits, supports 1 - 16 bits * mxfer.options |= SPI_TXCTL_EOT | SPI_TXCTL_EOF; // Apply frame and transfer delays to master transfer * mxfer.options |= SPI_TXCTL_RXIGNORE; // Ignore RX data, will toss receive data regardless of pRXData8 or pRXData16 buffer * mxfer.pTXData8 = SendBuffer; * mxfer.txCount = 16; // Number of bytes to send before SPIMasterXferSend callback is called * mxfer.pRXData8 = RecvBuffer; // Will not receive data if pRXData8/pRXData16 is NULL or SPI_TXCTL_RXIGNORE option is set * mxfer.rxCount = 16; // Number of bytes to receive before SPIMasterXferRecv callback is called * Chip_SPIM_Xfer(LPC_SPI0, &mxfer); // Start transfer * * Note that the transfer, once started, needs to be constantly fed by the callbacks. * The txCount and rxCount field only indicate the buffer size before the callbacks are called. * To terminate the transfer, the SPIMasterXferSend callback must set the terminate field. */ void Chip_SPIM_Xfer(LPC_SPI_T *pSPI, SPIM_XFER_T *xfer); /** * @brief Perform blocking SPI master transfer * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIM_XFER_T structure see notes below * @return Nothing * @note This function starts a blocking SPI master transfer with the * parameters setup in the passed @ref SPIM_XFER_T structure. Once the transfer is * started, the callbacks in Chip_SPIM_XferHandler may be called to keep the * transfer going and fed with data. SPI interrupts must be disabled prior to * calling this function. It is not recommended to use this function.
*/ void Chip_SPIM_XferBlocking(LPC_SPI_T *pSPI, SPIM_XFER_T *xfer); /** * @} */ /** @defgroup SPI_SLAVE_8XX CHIP: LPC8XX SPI slave driver * @ingroup SPI_COMMON_8XX * @{ */ /** * Macro defines for SPI Status register */ /* Clear RXOV Flag */ #define SPI_STAT_CLR_RXOV ((uint32_t) (1 << 2)) /* Clear TXUR Flag */ #define SPI_STAT_CLR_TXUR ((uint32_t) (1 << 3)) /* Clear SSA Flag */ #define SPI_STAT_CLR_SSA ((uint32_t) (1 << 4)) /* Clear SSD Flag */ #define SPI_STAT_CLR_SSD ((uint32_t) (1 << 5)) struct SPIS_XFER; /** @brief SPI slave select assertion callback * This callback is called from the SPI slave handler when an SPI slave select (SSEL) * is initially asserted. It is used to indicate the start of a slave transfer that * will happen on the bus. */ typedef void (*SPISlaveXferCSAssert)(struct SPIS_XFER *pSlaveXfer); /** @brief SPI slave send data callback * This callback is called from the SPI slave handler when an SPI slave select (SSEL) * needs a data buffer to send. */ typedef void (*SPISlaveXferSend)(struct SPIS_XFER *pSlaveXfer); /** @brief SPI slave receive data callback * This callback is called from the SPI slave handler when an SPI slave select (SSEL) * needs a buffer to place data. */ typedef void (*SPISlaveXferRecv)(struct SPIS_XFER *pSlaveXfer); /** @brief SPI slave select de-assertion callback * This callback is called from the SPI slave handler when an SPI slave select (SSEL) * is de-asserted. It can be used to indicate the end of a transfer. */ typedef void (*SPISlaveXferCSDeAssert)(struct SPIS_XFER *pSlaveXfer); /** SPI slave callback functions */ typedef struct { SPISlaveXferCSAssert slaveXferCSAssert; /** SPI transfer start callback, called on SPI CS assertion */ SPISlaveXferSend slaveXferSend; /** SPI transfer data receive buffer callback, called when a receive buffer is needed */ SPISlaveXferRecv slaveXferRecv; /** SPI transfer send buffer callback, called when data is needed */ SPISlaveXferCSDeAssert slaveXferCSDeAssert; /** SPI transfer completion callback, called on SPI CS deassertion */ } SPIS_CALLBACKS_T; /** Slave transfer data context */ typedef struct SPIS_XFER { const SPIS_CALLBACKS_T *pCB; /** Pointer to SPI slave callback functions */ union { /** Pointer to receive buffer, set to NULL to toss receeive data */ uint8_t *pRXData8; /** Receive buffer used with data transfer size <= 8-bits, modified by driver */ uint16_t *pRXData16; /** Receive buffer used with data transfer size > 8-bits, modified by driver */ }; union { /** Pointer to transmit buffer, set to NULL to transmit 0x0 */ uint8_t *pTXData8; /** Send buffer used with data transfer size <= 8-bits, modified by driver */ uint16_t *pTXData16; /** Send buffer used with data transfer size > 8-bits, modified by driver */ }; uint16_t rxCount; /** Size of the pRXData buffer in items (not bytes), modified by driver */ uint16_t txCount; /** Number of items (not bytes) to send in pTXData buffer, modified by driver */ uint16_t dataRXferred; /** Total items (not bytes) received, modified by driver */ uint16_t dataTXferred; /** Total items (not bytes) transmitted, modified by driver */ uint8_t sselNum; /** Slave number assigned to this transfer, 0 - 3, modified by driver */ } SPIS_XFER_T; /** * @brief SPI slave transfer state change handler * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIS_XFER_T structure see notes below * @return returns 0 on success, or SPI_STAT_RXOV and/or SPI_STAT_TXUR on an error * @note See @ref SPIS_XFER_T for more information on this function. When using * this function, the SPI slave interrupts should be enabled and setup in the SPI * interrupt handler to call this function when they fire. This function is meant * to be called from the interrupt handler. The @ref SPIS_XFER_T data does not need * to be setup prior to the call and should be setup by the callbacks instead.
* * The callbacks are handled in the interrupt handler. If you are getting overflow * or underflow errors, you might need to lower the speed of the master clock or * extend the master's select assetion time.
*/ uint32_t Chip_SPIS_XferHandler(LPC_SPI_T *pSPI, SPIS_XFER_T *xfer); /** * @brief Pre-buffers slave transmit data * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIS_XFER_T structure see notes below * @return Nothing * @note Pre-buffering allows the slave to prime the transmit FIFO with data prior to * the master starting a transfer. If data is not pre-buffered, the initial slave * transmit data will always be 0x0 with a slave transmit underflow status. * Pre-buffering is best used when only a single slave select is used by an * application. */ STATIC INLINE void Chip_SPIS_PreBuffSlave(LPC_SPI_T *pSPI, SPIS_XFER_T *xfer) { Chip_SPIS_XferHandler(pSPI, xfer); } /** * @brief SPI slave transfer blocking function * @param pSPI : The base of SPI peripheral on the chip * @param xfer : Pointer to a SPIS_XFER_T structure * @return returns 0 on success, or SPI_STAT_RXOV and/or SPI_STAT_TXUR on an error * @note This function performs a blocking transfer on the SPI slave interface. * It is not recommended to use this function. Once this function is called, it * will block forever until a slave transfer consisting of a slave SSEL assertion, * and de-assertion occur. The callbacks are still used for slave data buffer * management. SPI interrupts must be disabled prior to calling this function. */ uint32_t Chip_SPIS_XferBlocking(LPC_SPI_T *pSPI, SPIS_XFER_T *xfer); /** * @} */ #ifdef __cplusplus } #endif #endif /* __SPI_8XX_H__ */