/*! \file gd32f4xx_adc.c \brief ADC driver */ /* Copyright (C) 2016 GigaDevice 2016-08-15, V1.0.0, firmware for GD32F4xx */ #include "gd32f4xx_adc.h" #define REGULAR_CHANNEL_LENGTH_OFFSET ((uint32_t)20U) #define INSERTED_CHANNEL_LENGTH_OFFSET ((uint32_t)20U) #define REGULAR_DISCONTINUOUS_NUMBER ((uint32_t)13U) #define REGULAR_TRIGGER_MODE ((uint32_t)28U) #define INSERTED_TRIGGER_MODE ((uint32_t)20U) /*! \brief ADC reset \param[in] none \param[out] none \retval none */ void adc_deinit(void) { rcu_periph_reset_enable(RCU_ADCRST); rcu_periph_reset_disable(RCU_ADCRST); } /*! \brief enable ADC interface \param[in] adc_periph: ADCx,x=0,1,2 \param[in] none \param[out] none \retval none */ void adc_enable(uint32_t adc_periph) { if(RESET == (ADC_CTL1(adc_periph) & ADC_CTL1_ADCON)){ ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_ADCON; } } /*! \brief disable ADC interface \param[in] adc_periph: ADCx,x=0,1,2 \param[in] none \param[out] none \retval none */ void adc_disable(uint32_t adc_periph) { ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ADCON); } /*! \brief ADC data alignment config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] inserted_channel : insert channel select \arg ADC_DATAALIGN_RIGHT: LSB alignment \arg ADC_DATAALIGN_LEFT: MSB alignment \param[out] none \retval none */ void adc_data_alignment_config(uint32_t adc_periph , uint8_t data_alignment) { if(data_alignment){ ADC_CTL1(adc_periph) |= ADC_CTL1_DAL; }else{ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DAL); } } /*! \brief ADC resolution config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] resolution: ADC resolution \arg ADC_RESOLUTION_12B: 12-bit ADC resolution \arg ADC_RESOLUTION_10B: 10-bit ADC resolution \arg ADC_RESOLUTION_8B: 8-bit ADC resolution \arg ADC_RESOLUTION_6B: 6-bit ADC resolution \param[out] none \retval none */ void adc_resolution_config(uint32_t adc_periph , uint32_t resolution) { ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DRES); ADC_CTL0(adc_periph) |= (uint32_t)resolution; } /*! \brief ADC calibration and reset calibration \param[in] adc_periph: ADCx,x=0,1,2 \param[in] none \param[out] none \retval none */ void adc_calibration_enable(uint32_t adc_periph) { /* reset the selected ADC1 calibration registers */ ADC_CTL1(adc_periph) |= (uint32_t) ADC_CTL1_RSTCLB; /* check the RSTCLB bit state */ while((ADC_CTL1(adc_periph) & ADC_CTL1_RSTCLB)){ } /* enable ADC calibration process */ ADC_CTL1(adc_periph) |= ADC_CTL1_CLB; /* check the CLB bit state */ while((ADC_CTL1(adc_periph) & ADC_CTL1_CLB)){ } } /*! \brief ADC discontinuous mode config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: select the channel group \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] length: number of conversions in discontinuous mode,the number can be 1..8 for regular channel ,the number is no effect for inserted channel \param[out] none \retval none */ void adc_discontinuous_mode_config(uint32_t adc_periph , uint8_t adc_channel_group , uint8_t length) { ADC_CTL0(adc_periph) &= ~((uint32_t)( ADC_CTL0_DISRC | ADC_CTL0_DISIC )); switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: /* config the number of conversions in discontinuous mode */ ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DISNUM); if((length <= 8U) && (length >= 1U)){ ADC_CTL0(adc_periph) |= ((uint32_t)length - 1U) << REGULAR_DISCONTINUOUS_NUMBER; } ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISRC; break; case ADC_INSERTED_CHANNEL: ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISIC; break; default: break; } } /*! \brief config end of conversion mode \param[in] adc_periph: ADCx,x=0,1,2 \param[in] end_selection: end of conversion mode \arg ADC_EOC_SET_SEQUENCE: only at the end of a sequence of regular conversions, the EOC bit is set \arg ADC_EOC_SET_CONVERSION: at the end of each regular conversion, the EOC bit is set. \param[out] none \retval none */ void adc_end_of_conversion_config(uint32_t adc_periph , uint8_t end_selection) { switch(end_selection){ case ADC_EOC_SET_SEQUENCE: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_EOCM); break; case ADC_EOC_SET_CONVERSION: ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_EOCM); break; default: break; } } /*! \brief ADC special function enable or disable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] function: select the function to config \arg ADC_SCAN_MODE: scan mode select \arg ADC_INSERTED_CHANNEL_AUTO: inserted channel group convert automatically \arg ADC_CONTINUOUS_MODE: continuous mode select \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void adc_special_function_config(uint32_t adc_periph , uint8_t function , ControlStatus newvalue) { if(newvalue){ switch(function){ case ADC_SCAN_MODE: ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_SM; break; case ADC_INSERTED_CHANNEL_AUTO: ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_ICA; break; case ADC_CONTINUOUS_MODE: ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_CTN; break; default: break; } }else{ switch(function){ case ADC_SCAN_MODE: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_SM); break; case ADC_INSERTED_CHANNEL_AUTO: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_ICA); break; case ADC_CONTINUOUS_MODE: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_CTN); break; default: break; } } } /*! \brief configure the ADC clock for all the ADCs \param[in] prescaler: configure ADCs prescaler ratio \arg ADC_ADCCK_PCLK2_DIV2: PCLK2 div2 \arg ADC_ADCCK_PCLK2_DIV4: PCLK2 div4 \arg ADC_ADCCK_PCLK2_DIV6: PCLK2 div6 \arg ADC_ADCCK_PCLK2_DIV8: PCLK2 div8 \arg ADC_ADCCK_HCLK_DIV5: HCLK div5 \arg ADC_ADCCK_HCLK_DIV6: HCLK div6 \arg ADC_ADCCK_HCLK_DIV10: HCLK div10 \arg ADC_ADCCK_HCLK_DIV20: HCLK div20 \param[out] none \retval none */ void adc_clock_config(uint32_t prescaler) { ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_ADCCK); ADC_SYNCCTL |= (uint32_t) prescaler; } /*! \brief configure the ADC clock for all the ADCs \param[in] function: temperature sensor and internal reference voltage channel or VBAT channel \arg ADC_VBAT_CHANNEL_SWITCH: channel 18 (1/4 voltate of external battery) switch of ADC0 \arg ADC_TEMP_VREF_CHANNEL_SWITCH: channel 16 (temperature sensor) and 17 (internal reference voltage) switch of ADC0 \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void adc_channel_16_to_18(uint8_t function,ControlStatus newvalue) { if(newvalue){ switch(function){ case ADC_VBAT_CHANNEL_SWITCH: ADC_SYNCCTL |= (uint32_t)ADC_SYNCCTL_VBATEN; break; case ADC_TEMP_VREF_CHANNEL_SWITCH: ADC_SYNCCTL |= (uint32_t)ADC_SYNCCTL_TSVREN; break; default: break; } }else{ switch(function){ case ADC_VBAT_CHANNEL_SWITCH: ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_VBATEN); break; case ADC_TEMP_VREF_CHANNEL_SWITCH: ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_TSVREN); break; default: break; } } } /*! \brief config the length of regular channel group or inserted channel group \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: select the channel group \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] length: the length of the channel regular channel 1-16 inserted channel 1-4 \param[out] none \retval none */ void adc_channel_length_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t length) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: if((length >= 1U) && (length <= 16U)){ ADC_RSQ0(adc_periph) &= ~((uint32_t)ADC_RSQ0_RL); ADC_RSQ0(adc_periph) |= (uint32_t)((length-1U) << REGULAR_CHANNEL_LENGTH_OFFSET); } break; case ADC_INSERTED_CHANNEL: if((length >= 1U) && (length <= 4U)){ ADC_ISQ(adc_periph) &= ~((uint32_t)ADC_ISQ_IL); ADC_ISQ(adc_periph) |= (uint32_t)((length-1U) << INSERTED_CHANNEL_LENGTH_OFFSET); } break; default: break; } } /*! \brief ADC external trigger enable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: select the channel group \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] trigger_mode: external trigger mode \arg EXTERNAL_TRIGGER_DISABLE: external trigger disable \arg EXTERNAL_TRIGGER_RISING: rising edge of external trigger \arg EXTERNAL_TRIGGER_FALLING: falling edge of external trigger \arg EXTERNAL_TRIGGER_RISING_FALLING: rising and falling edge of external trigger \param[out] none \retval none */ void adc_external_trigger_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t trigger_mode) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMRC); ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << REGULAR_TRIGGER_MODE); break; case ADC_INSERTED_CHANNEL: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMIC); ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << INSERTED_TRIGGER_MODE); break; default: break; } } /*! \brief ADC external trigger source config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: select the channel group \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] external_trigger_source: regular or inserted group trigger source for regular channel: \arg ADC_EXTTRIG_REGULAR_T0_CH0: external trigger timer 0 CC0 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T0_CH1: external trigger timer 0 CC1 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T0_CH2: external trigger timer 0 CC2 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T1_CH1: external trigger timer 1 CC1 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T1_CH2: external trigger timer 1 CC2 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T1_CH3: external trigger timer 1 CC3 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T1_TRGO: external trigger timer 1 TRGO event select for regular channel \arg ADC_EXTTRIG_REGULAR_T2_CH0 : external trigger timer 2 CC0 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T2_TRGO : external trigger timer 2 TRGO event select for regular channel \arg ADC_EXTTRIG_REGULAR_T3_CH3: external trigger timer 3 CC3 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T4_CH0: external trigger timer 4 CC0 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T4_CH1: external trigger timer 4 CC1 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T4_CH2: external trigger timer 4 CC2 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T7_CH0: external trigger timer 7 CC0 event select for regular channel \arg ADC_EXTTRIG_REGULAR_T7_TRGO: external trigger timer 7 TRGO event select for regular channel \arg ADC_EXTTRIG_REGULAR_EXTI_11: external trigger extiline 11 select for regular channel for inserted channel: \arg ADC_EXTTRIG_INSERTED_T0_CH3: timer0 capture compare 3 \arg ADC_EXTTRIG_INSERTED_T0_TRGO: timer0 TRGO event \arg ADC_EXTTRIG_INSERTED_T1_CH0: timer1 capture compare 0 \arg ADC_EXTTRIG_INSERTED_T1_TRGO: timer1 TRGO event \arg ADC_EXTTRIG_INSERTED_T2_CH1: timer2 capture compare 1 \arg ADC_EXTTRIG_INSERTED_T2_CH3: timer2 capture compare 3 \arg ADC_EXTTRIG_INSERTED_T3_CH0: timer3 capture compare 0 \arg ADC_EXTTRIG_INSERTED_T3_CH1: timer3 capture compare 1 \arg ADC_EXTTRIG_INSERTED_T3_CH2: timer3 capture compare 2 \arg ADC_EXTTRIG_INSERTED_T3_TRGO: timer3 capture compare TRGO \arg ADC_EXTTRIG_INSERTED_T4_CH3: timer4 capture compare 3 \arg ADC_EXTTRIG_INSERTED_T4_TRGO: timer4 capture compare TRGO \arg ADC_EXTTRIG_INSERTED_T7_CH1: timer7 capture compare 1 \arg ADC_EXTTRIG_INSERTED_T7_CH2: timer7 capture compare 2 \arg ADC_EXTTRIG_INSERTED_T7_CH3: timer7 capture compare 3 \arg ADC_EXTTRIG_INSERTED_EXTI_15: external interrupt line 15 \param[out] none \retval none */ void adc_external_trigger_source_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t external_trigger_source) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSRC); ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source; break; case ADC_INSERTED_CHANNEL: ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSIC); ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source; break; default: break; } } /*! \brief ADC software trigger enable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: select the channel group \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[out] none \retval none */ void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWRCST; break; case ADC_INSERTED_CHANNEL: ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWICST; break; default: break; } } /*! \brief get the ADC flag bits \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_flag: the adc flag bits \arg ADC_FLAG_WDE: analog watchdog event flag \arg ADC_FLAG_EOC: end of group conversion flag \arg ADC_FLAG_EOIC: end of inserted group conversion flag \arg ADC_FLAG_STIC: start flag of inserted channel group \arg ADC_FLAG_STRC: start flag of regular channel group \arg ADC_FLAG_ROVF: regular data register overflow flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag) { if(ADC_STAT(adc_periph) & adc_flag){ return SET; } return RESET; } /*! \brief clear the ADC flag bits \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_flag: the adc flag bits \arg ADC_FLAG_WDE: analog watchdog event flag \arg ADC_FLAG_EOC: end of group conversion flag \arg ADC_FLAG_EOIC: end of inserted group conversion flag \arg ADC_FLAG_STIC: start flag of inserted channel group \arg ADC_FLAG_STRC: start flag of regular channel group \arg ADC_FLAG_ROVF: regular data register overflow flag \param[out] none \retval none */ void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag) { ADC_STAT(adc_periph) &= ~((uint32_t)adc_flag); } /*! \brief get the ADC interrupt bits \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_interrupt: the adc interrupt bits \arg ADC_INT_WDE: analog watchdog interrupt \arg ADC_INT_EOC: end of group conversion interrupt \arg ADC_INT_EOIC: end of inserted group conversion interrupt \arg ADC_INT_ROVF: regular data register overflow interrupt \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt) { FlagStatus interrupt_flag = RESET; uint32_t state; /* check the interrupt bits */ switch(adc_interrupt){ case ADC_INT_WDE: state = ADC_STAT(adc_periph) & ADC_STAT_WDE; if((ADC_CTL0(adc_periph) & ADC_CTL0_WDEIE) && state){ interrupt_flag = SET; } break; case ADC_INT_EOC: state = ADC_STAT(adc_periph) & ADC_STAT_EOC; if((ADC_CTL0(adc_periph) & ADC_CTL0_EOCIE) && state){ interrupt_flag = SET; } break; case ADC_INT_EOIC: state = ADC_STAT(adc_periph) & ADC_STAT_EOIC; if((ADC_CTL0(adc_periph) & ADC_CTL0_EOICIE) && state){ interrupt_flag = SET; } break; case ADC_INT_ROVF: state = ADC_STAT(adc_periph) & ADC_STAT_ROVF; if((ADC_CTL0(adc_periph) & ADC_CTL0_ROVFIE) && state){ interrupt_flag = SET; } break; default: break; } return interrupt_flag; } /*! \brief clear the ADC flag \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_flag: the adc status flag \arg ADC_INT_WDE: analog watchdog interrupt \arg ADC_INT_EOC: end of group conversion interrupt \arg ADC_INT_EOIC: end of inserted group conversion interrupt \arg ADC_INT_ROVF: regular data register overflow interrupt \param[out] none \retval none */ void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt) { ADC_STAT(adc_periph) &= ~((uint32_t)adc_interrupt); } /*! \brief ADC interrupt enable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_flag: the adc interrupt flag \arg ADC_INT_WDE: analog watchdog interrupt flag \arg ADC_INT_EOC: end of group conversion interrupt flag \arg ADC_INT_EOIC: end of inserted group conversion interrupt flag \arg ADC_INT_ROVF: regular data register overflow interrupt flag \param[out] none \retval none */ void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt) { switch(adc_interrupt){ case ADC_INT_WDE: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDEIE; break; case ADC_INT_EOC: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOCIE; break; case ADC_INT_EOIC: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOICIE; break; case ADC_INT_ROVF: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_ROVFIE; break; default: break; } } /*! \brief ADC interrupt disable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_flag: the adc interrupt flag \arg ADC_INT_WDE: analog watchdog interrupt flag \arg ADC_INT_EOC: end of group conversion interrupt flag \arg ADC_INT_EOIC: end of inserted group conversion interrupt flag \arg ADC_INT_ROVF: regular data register overflow interrupt flag \param[out] none \retval none */ void adc_interrupt_disable(uint32_t adc_periph , uint32_t adc_interrupt) { switch(adc_interrupt){ /* select the interrupt source */ case ADC_INT_WDE: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDEIE); break; case ADC_INT_EOC: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOCIE); break; case ADC_INT_EOIC: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOICIE); break; case ADC_INT_ROVF: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_ROVFIE); break; default: break; } } /*! \brief ADC analog watchdog single channel disable \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_watchdog_single_channel_disable(uint32_t adc_periph ) { ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDSC); } /*! \brief ADC analog watchdog single channel enable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel: the selected ADC channel \arg ADC_CHANNEL_x: ADC Channelx(x=0..18) \param[out] none \retval none */ void adc_watchdog_single_channel_enable(uint32_t adc_periph , uint8_t adc_channel) { ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDCHSEL); ADC_CTL0(adc_periph) |= (uint32_t)adc_channel; ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDSC; } /*! \brief adc analog watchdog group channel config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: the channel group use analog watchdog \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group \param[out] none \retval none */ void adc_watchdog_enable(uint32_t adc_periph , uint8_t adc_channel_group) { ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC)); /* select the group */ switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_RWDEN; break; case ADC_INSERTED_CHANNEL: ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_IWDEN; break; case ADC_REGULAR_INSERTED_CHANNEL: ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN); break; default: break; } } /*! \brief ADC analog watchdog disable \param[in] adc_periph: ADCx,x=0,1,2 \param[in] adc_channel_group: the channel group use analog watchdog \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group \param[out] none \retval none */ void adc_watchdog_disable(uint32_t adc_periph , uint8_t adc_channel_group) { /* select the group */ switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_RWDEN); break; case ADC_INSERTED_CHANNEL: ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_IWDEN); break; case ADC_REGULAR_INSERTED_CHANNEL: ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN)); break; default: break; } } /*! \brief ADC analog watchdog threshold config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] low_threshold: analog watchdog low threshold,0..4095 \param[in] high_threshold: analog watchdog high threshold,0..4095 \param[out] none \retval none */ void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold) { ADC_WDLT(adc_periph) = (uint32_t)low_threshold; ADC_WDHT(adc_periph) = (uint32_t)high_threshold; } /*! \brief ADC regular channel config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] rank: the regular group sequencer rank,this parameter must be between 0 to 15 \param[in] adc_channel: the selected ADC channel \arg ADC_CHANNEL_x(x=0..18): ADC Channelx \param[in] sample_time: the sample time value \arg ADC_SAMPLETIME_3: 3 cycles \arg ADC_SAMPLETIME_15: 15 cycles \arg ADC_SAMPLETIME_28: 28 cycles \arg ADC_SAMPLETIME_56: 56 cycles \arg ADC_SAMPLETIME_84: 84 cycles \arg ADC_SAMPLETIME_112: 112 cycles \arg ADC_SAMPLETIME_144: 144 cycles \arg ADC_SAMPLETIME_480: 480 cycles \param[out] none \retval none */ void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time) { uint32_t rsq,sampt; /* ADC regular sequence config */ if(rank < 6U){ rsq = ADC_RSQ2(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*rank))); rsq |= ((uint32_t)adc_channel << (5U*rank)); ADC_RSQ2(adc_periph) = rsq; }else if(rank < 12U){ rsq = ADC_RSQ1(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-6U)))); rsq |= ((uint32_t)adc_channel << (5U*(rank-6U))); ADC_RSQ1(adc_periph) = rsq; }else if(rank < 16U){ rsq = ADC_RSQ0(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-12U)))); rsq |= ((uint32_t)adc_channel << (5U*(rank-12U))); ADC_RSQ0(adc_periph) = rsq; }else{ } /* ADC sampling time config */ if(adc_channel < 10U){ sampt = ADC_SAMPT1(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel))); sampt |= (uint32_t)(sample_time << (3U*adc_channel)); ADC_SAMPT1(adc_periph) = sampt; }else if(adc_channel < 19U){ sampt = ADC_SAMPT0(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U)))); sampt |= (uint32_t)(sample_time << (3U*(adc_channel-10U))); ADC_SAMPT0(adc_periph) = sampt; }else{ } } /*! \brief ADC regular group data register read \param[in] adc_periph: ADCx,x=0,1,2 \param[in] none \param[out] none \retval the conversion value */ uint16_t adc_regular_data_read(uint32_t adc_periph) { return (uint16_t)(ADC_RDATA(adc_periph)); } /*! \brief ADC inserted channel config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] rank: the inserted group sequencer rank,this parameter must be between 0 to 3 \param[in] adc_channel: the selected ADC channel \arg ADC_CHANNEL_x(x=0..18): ADC Channelx \param[in] sample_time: The sample time value \arg ADC_SAMPLETIME_3: 3 cycles \arg ADC_SAMPLETIME_15: 15 cycles \arg ADC_SAMPLETIME_28: 28 cycles \arg ADC_SAMPLETIME_56: 56 cycles \arg ADC_SAMPLETIME_84: 84 cycles \arg ADC_SAMPLETIME_112: 112 cycles \arg ADC_SAMPLETIME_144: 144 cycles \arg ADC_SAMPLETIME_480: 480 cycles \param[out] none \retval none */ void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint8_t sample_time) { uint8_t inserted_length; uint32_t isq,sampt; inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U); if(rank < 4U){ isq = ADC_ISQ(adc_periph); isq &= ~((uint32_t)(ADC_ISQ_ISQN << (15U-(inserted_length-rank)*5U))); isq |= ((uint32_t)adc_channel << (15U-(inserted_length-rank)*5U)); ADC_ISQ(adc_periph) = isq; } if(adc_channel < 10U){ sampt = ADC_SAMPT1(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel))); sampt |= (uint32_t) sample_time << (3U*adc_channel); ADC_SAMPT1(adc_periph) = sampt; }else if(adc_channel < 19U){ sampt = ADC_SAMPT0(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U)))); sampt |= ((uint32_t)sample_time << (3U*(adc_channel-10U))); ADC_SAMPT0(adc_periph) = sampt; }else{ } } /*! \brief ADC inserted channel offset config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] inserted_channel : insert channel select \arg ADC_INSERTED_CHANNEL_0: inserted channel0 \arg ADC_INSERTED_CHANNEL_1: inserted channel1 \arg ADC_INSERTED_CHANNEL_2: inserted channel2 \arg ADC_INSERTED_CHANNEL_3: inserted channel3 \param[in] offset : the offset data \param[out] none \retval the conversion value */ void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset) { /* config the offset of the selected channels */ if(ADC_INSERTED_CHANNEL_0 == inserted_channel){ ADC_IOFF0(adc_periph) = (uint32_t)offset; }else if(ADC_INSERTED_CHANNEL_1 == inserted_channel){ ADC_IOFF1(adc_periph) = (uint32_t)offset; }else if(ADC_INSERTED_CHANNEL_2 == inserted_channel){ ADC_IOFF2(adc_periph) = (uint32_t)offset; }else if(ADC_INSERTED_CHANNEL_3 == inserted_channel){ ADC_IOFF3(adc_periph) = (uint32_t)offset; }else{ } } /*! \brief ADC inserted group data register read \param[in] adc_periph: ADCx,x=0,1,2 \param[in] inserted_channel : insert channel select \arg ADC_INSERTED_CHANNEL_0: inserted Channel0 \arg ADC_INSERTED_CHANNEL_1: inserted channel1 \arg ADC_INSERTED_CHANNEL_2: inserted Channel2 \arg ADC_INSERTED_CHANNEL_3: inserted Channel3 \param[out] none \retval the conversion value */ uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel) { uint32_t idata; /* read the data of the selected channel */ switch(inserted_channel){ case ADC_INSERTED_CHANNEL_0: idata = ADC_IDATA0(adc_periph); break; case ADC_INSERTED_CHANNEL_1: idata = ADC_IDATA1(adc_periph); break; case ADC_INSERTED_CHANNEL_2: idata = ADC_IDATA2(adc_periph); break; case ADC_INSERTED_CHANNEL_3: idata = ADC_IDATA3(adc_periph); break; default: idata = 0U; break; } return (uint16_t)idata; } /*! \brief DMA request enable \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_dma_mode_enable(uint32_t adc_periph) { ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DMA); } /*! \brief DMA request disable \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_dma_mode_disable(uint32_t adc_periph) { ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DMA); } /*! \brief when DMA=1, the DMA engine issues a request at end of each regular conversion \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_dma_request_after_last_enable(uint32_t adc_periph) { ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DDM); } /*! \brief the DMA engine is disabled after the end of transfer signal from DMA controller is detected \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_dma_request_after_last_disable(uint32_t adc_periph) { ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DDM); } /*! \brief ADC oversample mode config \param[in] adc_periph: ADCx,x=0,1,2 \param[in] mode: ADC oversampling mode \arg ADC_OVERSAMPLING_ALL_CONVERT: all oversampled conversions for a channel are done consecutively after a trigger \arg ADC_OVERSAMPLING_ONE_CONVERT: each oversampled conversion for a channel needs a trigger \param[in] shift: ADC oversampling shift \arg ADC_OVERSAMPLING_SHIFT_NONE: no oversampling shift \arg ADC_OVERSAMPLING_SHIFT_1B: 1-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_2B: 2-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_3B: 3-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_4B: 3-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_5B: 5-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_6B: 6-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_7B: 7-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_8B: 8-bit oversampling shift \param[in] ratio: ADC oversampling ratio \arg ADC_OVERSAMPLING_RATIO_MUL2: oversampling ratio multiple 2 \arg ADC_OVERSAMPLING_RATIO_MUL4: oversampling ratio multiple 4 \arg ADC_OVERSAMPLING_RATIO_MUL8: oversampling ratio multiple 8 \arg ADC_OVERSAMPLING_RATIO_MUL16: oversampling ratio multiple 16 \arg ADC_OVERSAMPLING_RATIO_MUL32: oversampling ratio multiple 32 \arg ADC_OVERSAMPLING_RATIO_MUL64: oversampling ratio multiple 64 \arg ADC_OVERSAMPLING_RATIO_MUL128: oversampling ratio multiple 128 \arg ADC_OVERSAMPLING_RATIO_MUL256: oversampling ratio multiple 256 \param[out] none \retval none */ void adc_oversample_mode_config(uint32_t adc_periph , uint8_t mode , uint16_t shift , uint8_t ratio) { if(ADC_OVERSAMPLING_ONE_CONVERT == mode){ ADC_OVSAMPCTL(adc_periph) |= (uint32_t)ADC_OVSAMPCTL_TOVS; }else{ ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_TOVS); } /* config the shift and ratio */ ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)(ADC_OVSAMPCTL_OVSR | ADC_OVSAMPCTL_OVSS)); ADC_OVSAMPCTL(adc_periph) |= ((uint32_t)shift | (uint32_t)ratio); } /*! \brief ADC oversample mode enable \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_oversample_mode_enable(uint32_t adc_periph) { ADC_OVSAMPCTL(adc_periph) |= ADC_OVSAMPCTL_OVSEN; } /*! \brief ADC oversample mode disable \param[in] adc_periph: ADCx,x=0,1,2 \param[out] none \retval none */ void adc_oversample_mode_disable(uint32_t adc_periph) { ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_OVSEN); } /*! \brief configure the ADC sync mode \param[in] sync_mode: ADC sync mode \arg ADC_SYNC_MODE_INDEPENDENT: all the ADCs work independently \arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL: ADC0 and ADC1 work in combined regular parallel & inserted parallel mode \arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION: ADC0 and ADC1 work in combined regular parallel & trigger rotation mode \arg ADC_DAUL_INSERTED_PARALLEL: ADC0 and ADC1 work in inserted parallel mode \arg ADC_DAUL_REGULAL_PARALLEL: ADC0 and ADC1 work in regular parallel mode \arg ADC_DAUL_REGULAL_FOLLOW_UP: ADC0 and ADC1 work in follow-up mode \arg ADC_DAUL_INSERTED_TRRIGGER_ROTATION: ADC0 and ADC1 work in trigger rotation mode \arg ADC_ALL_REGULAL_PARALLEL_INSERTED_PARALLEL: all ADCs work in combined regular parallel & inserted parallel mode \arg ADC_ALL_REGULAL_PARALLEL_INSERTED_ROTATION: all ADCs work in combined regular parallel & trigger rotation mode \arg ADC_ALL_INSERTED_PARALLEL: all ADCs work in inserted parallel mode \arg ADC_ALL_REGULAL_PARALLEL: all ADCs work in regular parallel mode \arg ADC_ALL_REGULAL_FOLLOW_UP: all ADCs work in follow-up mode \arg ADC_ALL_INSERTED_TRRIGGER_ROTATION: all ADCs work in trigger rotation mode \param[out] none \retval none */ void adc_sync_mode_config(uint32_t sync_mode) { ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCM); ADC_SYNCCTL |= sync_mode; } /*! \brief configure the delay between 2 sampling phases in ADC sync modes \param[in] sample_delay: the delay between 2 sampling phases in ADC sync modes \arg ADC_SYNC_DELAY_xCYCLE: x=5..20,the delay between 2 sampling phases in ADC sync modes is x ADC clock cycles \param[out] none \retval none */ void adc_sync_delay_config(uint32_t sample_delay) { ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDLY); ADC_SYNCCTL |= sample_delay; } /*! \brief configure ADC sync DMA mode selection \param[in] dma_mode: ADC sync DMA mode \arg ADC_SYNC_DMA_DISABLE: ADC sync DMA disabled \arg ADC_SYNC_DMA_MODE0: ADC sync DMA disabled \arg ADC_SYNC_DMA_MODE1: ADC sync DMA disabled \param[out] none \retval none */ void adc_sync_dma_config(uint32_t dma_mode ) { ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDMA); ADC_SYNCCTL |= dma_mode; } /*! \brief configure ADC sync DMA engine is disabled after the end of transfer signal from DMA controller is detected \param[in] none \param[out] none \retval none */ void adc_sync_dma_request_after_last_enable(void) { ADC_SYNCCTL |= ADC_SYNCCTL_SYNCDDM; } /*! \brief configure ADC sync DMA engine issues requests according to the SYNCDMA bits \param[in] none \param[out] none \retval none */ void adc_sync_dma_request_after_last_disable(void) { ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDDM); } /*! \brief ADC sync regular data register read \param[in] none \param[out] none \retval sync regular data */ uint32_t adc_sync_regular_data_read(void) { return (uint32_t)ADC_SYNCDATA; }