/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-01-31 flybreak first version */ #include "sensor.h" #define DBG_TAG "sensor" #define DBG_LVL DBG_INFO #include #include static char *const sensor_name_str[] = { "none", "acce_", /* Accelerometer */ "gyro_", /* Gyroscope */ "mag_", /* Magnetometer */ "temp_", /* Temperature */ "humi_", /* Relative Humidity */ "baro_", /* Barometer */ "li_", /* Ambient light */ "pr_", /* Proximity */ "hr_", /* Heart Rate */ "tvoc_", /* TVOC Level */ "noi_", /* Noise Loudness */ "step_", /* Step sensor */ "forc_" /* Force sensor */ }; /* Sensor interrupt correlation function */ /* * Sensor interrupt handler function */ void rt_sensor_cb(rt_sensor_t sen) { if (sen->parent.rx_indicate == RT_NULL) { return; } if (sen->irq_handle != RT_NULL) { sen->irq_handle(sen); } /* The buffer is not empty. Read the data in the buffer first */ if (sen->data_len > 0) { sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data)); } else if (sen->config.mode == RT_SENSOR_MODE_INT) { /* The interrupt mode only produces one data at a time */ sen->parent.rx_indicate(&sen->parent, 1); } else if (sen->config.mode == RT_SENSOR_MODE_FIFO) { sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max); } } /* ISR for sensor interrupt */ static void irq_callback(void *args) { rt_sensor_t sensor = args; rt_uint8_t i; if (sensor->module) { /* Invoke a callback for all sensors in the module */ for (i = 0; i < sensor->module->sen_num; i++) { rt_sensor_cb(sensor->module->sen[i]); } } else { rt_sensor_cb(sensor); } } /* Sensor interrupt initialization function */ static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor) { if (sensor->config.irq_pin.pin == RT_PIN_NONE) { return -RT_EINVAL; } rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode); if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor); } else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor); } else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT) { rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor); } rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE); LOG_I("interrupt init success"); return 0; } /* Sensor interrupt enable */ static void rt_sensor_irq_enable(rt_sensor_t sensor) { if (sensor->config.irq_pin.pin != RT_PIN_NONE) { rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE); } } /* Sensor interrupt disable */ static void rt_sensor_irq_disable(rt_sensor_t sensor) { if (sensor->config.irq_pin.pin != RT_PIN_NONE) { rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE); } } /* RT-Thread Device Interface */ static rt_err_t rt_sensor_init(rt_device_t dev) { rt_sensor_t sensor = (rt_sensor_t)dev; RT_ASSERT(dev != RT_NULL); if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL) { /* Allocate memory for the sensor buffer */ sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max); if (sensor->data_buf == RT_NULL) { return -RT_ENOMEM; } } return RT_EOK; } static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag) { rt_sensor_t sensor = (rt_sensor_t)dev; RT_ASSERT(dev != RT_NULL); if (sensor->module) { /* take the module mutex */ rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY) { /* If polling mode is supported, configure it to polling mode */ if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK) { sensor->config.mode = RT_SENSOR_MODE_POLLING; } } else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX) { /* If interrupt mode is supported, configure it to interrupt mode */ if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK) { sensor->config.mode = RT_SENSOR_MODE_INT; /* Initialization sensor interrupt */ rt_sensor_irq_init(sensor); } } else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX) { /* If fifo mode is supported, configure it to fifo mode */ if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK) { sensor->config.mode = RT_SENSOR_MODE_FIFO; /* Initialization sensor interrupt */ rt_sensor_irq_init(sensor); } } else { if (sensor->module) { /* release the module mutex */ rt_mutex_release(sensor->module->lock); } return -RT_EINVAL; } /* Configure power mode to normal mode */ if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK) { sensor->config.power = RT_SENSOR_POWER_NORMAL; } if (sensor->module) { /* release the module mutex */ rt_mutex_release(sensor->module->lock); } return RT_EOK; } static rt_err_t rt_sensor_close(rt_device_t dev) { rt_sensor_t sensor = (rt_sensor_t)dev; RT_ASSERT(dev != RT_NULL); if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } /* Configure power mode to power down mode */ if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK) { sensor->config.power = RT_SENSOR_POWER_DOWN; } /* Sensor disable interrupt */ rt_sensor_irq_disable(sensor); if (sensor->module) { rt_mutex_release(sensor->module->lock); } return RT_EOK; } static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len) { rt_sensor_t sensor = (rt_sensor_t)dev; rt_size_t result = 0; RT_ASSERT(dev != RT_NULL); if (buf == NULL || len == 0) { return 0; } if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } /* The buffer is not empty. Read the data in the buffer first */ if (sensor->data_len > 0) { if (len > sensor->data_len / sizeof(struct rt_sensor_data)) { len = sensor->data_len / sizeof(struct rt_sensor_data); } rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data)); /* Clear the buffer */ sensor->data_len = 0; result = len; } else { /* If the buffer is empty read the data */ result = sensor->ops->fetch_data(sensor, buf, len); } if (sensor->module) { rt_mutex_release(sensor->module->lock); } return result; } static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args) { rt_sensor_t sensor = (rt_sensor_t)dev; rt_err_t result = RT_EOK; RT_ASSERT(dev != RT_NULL); if (sensor->module) { rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER); } switch (cmd) { case RT_SENSOR_CTRL_GET_ID: if (args) { sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args); } break; case RT_SENSOR_CTRL_GET_INFO: if (args) { rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info)); } break; case RT_SENSOR_CTRL_SET_RANGE: /* Configuration measurement range */ result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args); if (result == RT_EOK) { sensor->config.range = (rt_int32_t)args; LOG_D("set range %d", sensor->config.range); } break; case RT_SENSOR_CTRL_SET_ODR: /* Configuration data output rate */ result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args); if (result == RT_EOK) { sensor->config.odr = (rt_uint32_t)args & 0xFFFF; LOG_D("set odr %d", sensor->config.odr); } break; case RT_SENSOR_CTRL_SET_MODE: /* Configuration sensor work mode */ result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args); if (result == RT_EOK) { sensor->config.mode = (rt_uint32_t)args & 0xFF; LOG_D("set work mode code:", sensor->config.mode); if (sensor->config.mode == RT_SENSOR_MODE_POLLING) { rt_sensor_irq_disable(sensor); } else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO) { rt_sensor_irq_enable(sensor); } } break; case RT_SENSOR_CTRL_SET_POWER: /* Configuration sensor power mode */ result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args); if (result == RT_EOK) { sensor->config.power = (rt_uint32_t)args & 0xFF; LOG_D("set power mode code:", sensor->config.power); } break; case RT_SENSOR_CTRL_SELF_TEST: /* Device self-test */ result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args); break; default: return -RT_ERROR; } if (sensor->module) { rt_mutex_release(sensor->module->lock); } return result; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops rt_sensor_ops = { rt_sensor_init, rt_sensor_open, rt_sensor_close, rt_sensor_read, RT_NULL, rt_sensor_control }; #endif /* * sensor register */ int rt_hw_sensor_register(rt_sensor_t sensor, const char *name, rt_uint32_t flag, void *data) { rt_int8_t result; rt_device_t device; RT_ASSERT(sensor != RT_NULL); char *sensor_name = RT_NULL, *device_name = RT_NULL; /* Add a type name for the sensor device */ sensor_name = sensor_name_str[sensor->info.type]; device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name)); if (device_name == RT_NULL) { LOG_E("device_name calloc failed!"); return -RT_ERROR; } rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1); strcat(device_name, name); if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL) { /* Create a mutex lock for the module */ sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO); if (sensor->module->lock == RT_NULL) { rt_free(device_name); return -RT_ERROR; } } device = &sensor->parent; #ifdef RT_USING_DEVICE_OPS device->ops = &rt_sensor_ops; #else device->init = rt_sensor_init; device->open = rt_sensor_open; device->close = rt_sensor_close; device->read = rt_sensor_read; device->write = RT_NULL; device->control = rt_sensor_control; #endif device->type = RT_Device_Class_Sensor; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; device->user_data = data; result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE); if (result != RT_EOK) { LOG_E("rt_sensor register err code: %d", result); return result; } LOG_I("rt_sensor init success"); return RT_EOK; }