/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Email: opensource_embedded@phytium.com.cn * * Change Logs: * Date Author Notes * 2023-03-20 zhangyan first version * */ #include "rtconfig.h" #ifdef BSP_USING_CAN #include "drv_can.h" #define LOG_TAG "can_drv" #include "drv_log.h" #include "fcan.h" #include "fio_mux.h" #include "interrupt.h" struct phytium_can { const char *name; FCanCtrl can_handle; FCanIdMaskConfig filter; struct rt_can_device device; /* inherit from can device */ }; static struct phytium_can drv_can[FCAN_NUM] = { { .name = "CAN0", .can_handle.config.instance_id = 0, }, { .name = "CAN1", .can_handle.config.instance_id = 1, }, }; static void CanRxIrqCallback(void *args) { FCanCtrl *instance_p = (FCanCtrl *)args; rt_hw_can_isr(&drv_can[instance_p->config.instance_id].device, RT_CAN_EVENT_RX_IND); LOG_D("CAN%d irq recv frame callback.", instance_p->config.instance_id); } static void CanErrorCallback(void *args) { FCanCtrl *instance_p = (FCanCtrl *)args; uintptr base_addr = instance_p->config.base_address; LOG_D("CAN %d is under error.", instance_p->config.instance_id); LOG_D("error_status is %x.", FCAN_READ_REG32(base_addr, FCAN_INTR_OFFSET)); LOG_D("rxerr_cnt is %x.", FCAN_ERR_CNT_RFN_GET(FCAN_READ_REG32(base_addr, FCAN_ERR_CNT_OFFSET))); LOG_D("txerr_cnt is %x.", FCAN_ERR_CNT_TFN_GET(FCAN_READ_REG32(base_addr, FCAN_ERR_CNT_OFFSET))); } static void CanTxIrqCallback(void *args) { FCanCtrl *instance_p = (FCanCtrl *)args; rt_hw_can_isr(&drv_can[instance_p->config.instance_id].device, RT_CAN_EVENT_TX_DONE); LOG_D("CAN%d irq send frame callback.", instance_p->config.instance_id); } static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg) { RT_ASSERT(can); RT_ASSERT(cfg); struct phytium_can *drv_can; drv_can = (struct phytium_can *)can->parent.user_data; RT_ASSERT(drv_can); FError status = FT_SUCCESS; rt_kprintf("CAN%d begin to config.\n", drv_can->can_handle.config.instance_id); FIOPadSetCanMux(drv_can->can_handle.config.instance_id); /*CAN config init*/ status = FCanCfgInitialize(&(drv_can->can_handle), FCanLookupConfig(drv_can->can_handle.config.instance_id)); if (status != FT_SUCCESS) { LOG_D("CAN %d initialize error, status = %#x.", drv_can->can_handle.config.instance_id, status); return RT_ERROR; } /*Set the baudrate*/ FCanBaudrateConfig arb_segment_config; FCanBaudrateConfig data_segment_config; memset(&arb_segment_config, 0, sizeof(arb_segment_config)); memset(&data_segment_config, 0, sizeof(data_segment_config)); #if defined(RT_CAN_USING_CANFD) FCanFdEnable(&(drv_can->can_handle), TRUE); arb_segment_config.auto_calc = TRUE; arb_segment_config.baudrate = CAN1MBaud; /*CANFD arb baud defaults to 1M ,allowed to be modified*/ arb_segment_config.segment = FCAN_ARB_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config); if (status != RT_EOK) { LOG_D("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } data_segment_config.auto_calc = TRUE; data_segment_config.baudrate = cfg->baud_rate_fd; data_segment_config.segment = FCAN_DATA_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config); if (status != RT_EOK) { LOG_D("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } #else arb_segment_config.auto_calc = TRUE; arb_segment_config.baudrate = cfg->baud_rate; arb_segment_config.segment = FCAN_ARB_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } data_segment_config.auto_calc = TRUE; data_segment_config.baudrate = cfg->baud_rate; data_segment_config.segment = FCAN_DATA_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } #endif /*CAN filter function init*/ for (int i = 0; i < FCAN_ACC_ID_REG_NUM; i++) { drv_can->filter.filter_index = i; drv_can->filter.id = 0; drv_can->filter.mask = FCAN_ACC_IDN_MASK; status |= FCanIdMaskFilterSet(&(drv_can->can_handle), &(drv_can->filter)); } if (status != FT_SUCCESS) { LOG_E("CAN%d set mask filter failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } /* Identifier mask enable */ FCanIdMaskFilterEnable(&(drv_can->can_handle)); /* Transmit mode init , the default setting is normal mode */ FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_NORMAL_MODE); /* enable can transfer */ FCanEnable(&(drv_can->can_handle), RT_TRUE); return RT_EOK; } static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg) { RT_ASSERT(can); rt_uint32_t argval; struct phytium_can *drv_can; drv_can = (struct phytium_can *)can->parent.user_data; RT_ASSERT(drv_can != RT_NULL); rt_uint32_t cpu_id; FCanIntrEventConfig intr_event; FError status = FT_SUCCESS; #ifdef RT_CAN_USING_HDR struct rt_can_filter_config *filter_cfg; #endif switch (cmd) { case RT_DEVICE_CTRL_SET_INT: GetCpuId(&cpu_id); rt_hw_interrupt_set_target_cpus(drv_can->can_handle.config.irq_num, cpu_id); argval = (rt_uint32_t) arg; /*Open different interrupts*/ if (argval == RT_DEVICE_CAN_INT_ERR) { intr_event.type = FCAN_INTR_EVENT_ERROR; intr_event.handler = CanErrorCallback; intr_event.param = (void *)(&(drv_can->can_handle)); FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event); FCanInterruptEnable(&(drv_can->can_handle), intr_event.type); } if (argval == RT_DEVICE_FLAG_INT_TX) { intr_event.type = FCAN_INTR_EVENT_SEND; intr_event.handler = CanTxIrqCallback; intr_event.param = (void *)(&(drv_can->can_handle)); FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event); FCanInterruptEnable(&(drv_can->can_handle), intr_event.type); } if (argval == RT_DEVICE_FLAG_INT_RX) { intr_event.type = FCAN_INTR_EVENT_RECV; intr_event.handler = CanRxIrqCallback; intr_event.param = (void *)(&(drv_can->can_handle)); FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event); FCanInterruptEnable(&(drv_can->can_handle), intr_event.type); } rt_hw_interrupt_set_priority(drv_can->can_handle.config.irq_num, 16); rt_hw_interrupt_install(drv_can->can_handle.config.irq_num, FCanIntrHandler, &(drv_can->can_handle), drv_can->name); rt_hw_interrupt_umask(drv_can->can_handle.config.irq_num); break; case RT_CAN_CMD_SET_MODE: argval = (rt_uint32_t) arg; FCanEnable(&(drv_can->can_handle), RT_FALSE); if (argval == RT_CAN_MODE_LISTEN) { FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_MONITOR_MODE); drv_can->device.config.mode = RT_CAN_MODE_LISTEN; } else if (argval == RT_CAN_MODE_NORMAL) { FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_NORMAL_MODE); drv_can->device.config.mode = RT_CAN_MODE_NORMAL; } FCanEnable(&(drv_can->can_handle), RT_TRUE); break; case RT_CAN_CMD_SET_BAUD: argval = (rt_uint32_t) arg; if (argval != CAN1MBaud && argval != CAN800kBaud && argval != CAN500kBaud && argval != CAN250kBaud && argval != CAN125kBaud && argval != CAN100kBaud && argval != CAN50kBaud && argval != CAN20kBaud && argval != CAN10kBaud) { return RT_ERROR; } if (argval != drv_can->device.config.baud_rate) { FCanBaudrateConfig arb_segment_config; FCanBaudrateConfig data_segment_config; memset(&arb_segment_config, 0, sizeof(arb_segment_config)); memset(&data_segment_config, 0, sizeof(data_segment_config)); drv_can->device.config.baud_rate = argval; FCanEnable(&(drv_can->can_handle), RT_FALSE); arb_segment_config.auto_calc = TRUE; arb_segment_config.baudrate = drv_can->device.config.baud_rate; arb_segment_config.segment = FCAN_ARB_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } data_segment_config.auto_calc = TRUE; data_segment_config.baudrate = drv_can->device.config.baud_rate; data_segment_config.segment = FCAN_DATA_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } FCanEnable(&(drv_can->can_handle), RT_TRUE); } break; case RT_CAN_CMD_SET_BAUD_FD: #if defined RT_CAN_USING_CANFD argval = (rt_uint32_t) arg; if (argval != drv_can->device.config.baud_rate_fd) { FCanBaudrateConfig arb_segment_config; FCanBaudrateConfig data_segment_config; memset(&arb_segment_config, 0, sizeof(arb_segment_config)); memset(&data_segment_config, 0, sizeof(data_segment_config)); drv_can->device.config.baud_rate = argval; FCanEnable(&(drv_can->can_handle), RT_FALSE); arb_segment_config.auto_calc = TRUE; arb_segment_config.baudrate = CAN1MBaud; arb_segment_config.segment = FCAN_ARB_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } data_segment_config.auto_calc = TRUE; data_segment_config.baudrate = drv_can->device.config.baud_rate_fd; data_segment_config.segment = FCAN_DATA_SEGMENT; status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config); if (status != FT_SUCCESS) { LOG_D("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } FCanEnable(&(drv_can->can_handle), RT_TRUE); } #endif break; case RT_CAN_CMD_SET_FILTER: #ifdef RT_CAN_USING_HDR filter_cfg = (struct rt_can_filter_config *)arg; FCanEnable(&(drv_can->can_handle), RT_FALSE); for (int i = 0; i < filter_cfg->count; i++) { drv_can->filter.filter_index = i; drv_can->filter.mask = filter_cfg->items[i].mask; drv_can->filter.id = filter_cfg->items[i].id; drv_can->filter.type = FCAN_STANDARD_FRAME; status = FCanIdMaskFilterSet(&(drv_can->can_handle), &(drv_can->filter)); if (status != FT_SUCCESS) { LOG_E("CAN%d set mask filter failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } } FCanEnable(&(drv_can->can_handle), RT_TRUE); #endif break; } return RT_EOK; } static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num) { RT_ASSERT(can); RT_ASSERT(buf); struct phytium_can *drv_can; drv_can = (struct phytium_can *)can->parent.user_data; RT_ASSERT(drv_can); struct rt_can_msg *pmsg = (struct rt_can_msg *)buf; FCanFrame can_frame = {0}; /* Check the parameters */ RT_ASSERT(pmsg->len <= 8U); if (RT_CAN_STDID == pmsg->ide) { can_frame.canid = pmsg->id; } else { can_frame.canid = pmsg->id; can_frame.canid |= CAN_EFF_FLAG; } if (RT_CAN_DTR == pmsg->rtr) { } else { can_frame.canid |= CAN_RTR_FLAG; } can_frame.candlc = pmsg->len ; memcpy(can_frame.data, pmsg->data, 8); return (FCanSend(&drv_can->can_handle, &can_frame) == RT_EOK) ? RT_EOK : -RT_ERROR; } static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo) { RT_ASSERT(can); RT_ASSERT(buf); struct phytium_can *drv_can; drv_can = (struct phytium_can *)can->parent.user_data; RT_ASSERT(drv_can); struct rt_can_msg *pmsg = (struct rt_can_msg *)buf; FCanFrame recv_frame; FError status = FT_SUCCESS; status = FCanRecv(&(drv_can->can_handle), &recv_frame); if (status != FT_SUCCESS) { LOG_D("CAN%d recv data failed.", drv_can->can_handle.config.instance_id); return RT_ERROR; } if (CAN_EFF_FLAG & recv_frame.canid) { pmsg->ide = RT_CAN_EXTID; pmsg->id = (recv_frame.canid & ~(RT_CAN_EXTID)); } else { pmsg->ide = RT_CAN_STDID; pmsg->id = recv_frame.canid; } if (CAN_RTR_FLAG & recv_frame.canid) { pmsg->id &= ~CAN_RTR_FLAG; pmsg->rtr = RT_CAN_RTR; } else { pmsg->rtr = RT_CAN_DTR; } /* get len */ pmsg->len = recv_frame.candlc; for (int i = 0; i < pmsg->len; i++) { pmsg->data[i] = recv_frame.data[i]; } /* get hdr */ pmsg->hdr_index = 0; return RT_EOK; } static const struct rt_can_ops _can_ops = { _can_config, _can_control, _can_sendmsg, _can_recvmsg, }; static int can_init(u32 can_id) { rt_err_t ret = RT_EOK; drv_can[can_id].device.config.ticks = 20000; drv_can[can_id].device.config.baud_rate = 800000; #ifdef RT_CAN_USING_CANFD drv_can[can_id].device.config.baud_rate_fd = 800000; #endif drv_can[can_id].device.config.mode = RT_CAN_MODE_NORMAL; drv_can[can_id].device.config.sndboxnumber = 1; drv_can[can_id].device.config.msgboxsz = 1; #ifdef RT_CAN_USING_HDR drv_can[can_id].device.config.maxhdr = 1; #endif ret = rt_hw_can_register(&drv_can[can_id].device, drv_can[can_id].name, &_can_ops, &drv_can[can_id]); RT_ASSERT(ret == RT_EOK); return ret; } int rt_hw_can_init(void) { #if defined(RT_USING_CAN0) can_init(FCAN0_ID); #endif #if defined(RT_USING_CAN1) can_init(FCAN1_ID); #endif #if defined(RT_USING_CAN2) can_init(FCAN2_ID); #endif return 0; } INIT_BOARD_EXPORT(rt_hw_can_init); /*can test example*/ static rt_device_t can_dev; /* CAN device handle */ static struct rt_semaphore rx_sem; static rt_err_t can_rx_call(rt_device_t dev, rt_size_t size) { /* The CAN generates an interrupt after receiving data, calls this callback function, and then sends the received semaphore */ rt_sem_release(&rx_sem); return RT_EOK; } static void can_rx_thread(void *parameter) { int i; rt_err_t res = RT_EOK; struct rt_can_msg rxmsg = {0}; rt_device_set_rx_indicate(can_dev, can_rx_call); while (1) { /* The hdr value is - 1, which means reading data directly from the uselist */ rxmsg.hdr_index = -1; /* Blocking waiting to receive semaphore */ res = rt_sem_take(&rx_sem, RT_WAITING_FOREVER); RT_ASSERT(res == RT_EOK); /* Read a frame of data from CAN */ rt_device_read(can_dev, 0, &rxmsg, sizeof(rxmsg)); /* Print data ID and conten */ rt_kprintf("ID:%x\n", rxmsg.id); rt_kprintf("DATA: "); for (i = 0; i < 8; i++) { rt_kprintf("%2x ", rxmsg.data[i]); } rt_kprintf("\n"); } } int can_sample(int argc, char *argv[]) { struct rt_can_msg msg = {0}; rt_err_t res = RT_EOK;; rt_thread_t thread; char can_name[RT_NAME_MAX]; if (argc == 2) { rt_strncpy(can_name, argv[1], RT_NAME_MAX); } else { rt_strncpy(can_name, "CAN0", RT_NAME_MAX); } /* Find CAN device */ can_dev = rt_device_find(can_name); if (!can_dev) { rt_kprintf("Find %s failed.\n", can_name); return RT_ERROR; } /* Initialize CAN receive signal quantity */ res = rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO); RT_ASSERT(res == RT_EOK); /* Open the CAN device in the way of interrupt reception and transmission */ res = rt_device_open(can_dev, RT_DEVICE_FLAG_INT_TX | RT_DEVICE_FLAG_INT_RX); rt_device_control(can_dev, RT_CAN_CMD_SET_BAUD, CAN1MBaud); RT_ASSERT(res == RT_EOK); #ifdef RT_CAN_USING_HDR struct rt_can_filter_item items[4] = { RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL), RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL), RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL), RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL) }; struct rt_can_filter_config cfg = {4, 1, items}; /* There are 4 filter tables in total */ /* Set the hardware filter table. After setting, only frames with id=0x03 can be received*/ res = rt_device_control(can_dev, RT_CAN_CMD_SET_FILTER, &cfg); RT_ASSERT(res == RT_EOK); #endif /* Create data receiving thread */ thread = rt_thread_create("can_rx", can_rx_thread, RT_NULL, 4096, 25, 10); if (thread != RT_NULL) { res = rt_thread_startup(thread); RT_ASSERT(res == RT_EOK); } else { rt_kprintf("Create can_rx thread failed.\n"); } msg.id = 0x78; /* ID = 0x78 */ msg.ide = RT_CAN_STDID; /* Standard format */ msg.rtr = RT_CAN_DTR; /* Data frame */ msg.len = 8; /* Data length is 8 */ /* Send CAN data */ for (int i = 0; i < 1; i++) { /* 8-byte data to be sent */ msg.data[0] = 0x00 + i; msg.data[1] = 0x11 + i; msg.data[2] = 0x22 + i; msg.data[3] = 0x33 + i; msg.data[4] = 0x44 + i; msg.data[5] = 0x55 + i; msg.data[6] = 0x66 + i; msg.data[7] = 0x77 + i; rt_device_write(can_dev, 0, &msg, sizeof(msg)); } return res; } /* Enter can_sample command for testing */ MSH_CMD_EXPORT(can_sample, can device sample); #endif