/* * File : spi_flash_sfud.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Change Logs: * Date Author Notes * 2016-09-28 armink first version. */ #include #include #include "spi_flash.h" #include "spi_flash_sfud.h" #ifdef RT_USING_SFUD #if RT_DEBUG_SFUD #define SFUD_TRACE rt_kprintf #else #define SFUD_TRACE(...) #endif /* RT_DEBUG_SFUD */ #ifndef RT_SFUD_DEFAULT_SPI_CFG /* read the JEDEC SFDP command must run at 50 MHz or less */ #define RT_SFUD_DEFAULT_SPI_CFG \ { \ .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \ .data_width = 8, \ .max_hz = 50 * 1000 * 1000, \ } #endif static char log_buf[RT_CONSOLEBUF_SIZE]; void sfud_log_debug(const char *file, const long line, const char *format, ...); static rt_err_t rt_sfud_control(rt_device_t dev, rt_uint8_t cmd, void *args) { RT_ASSERT(dev != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_BLK_GETGEOME: { struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args; struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); if (rtt_dev == RT_NULL || geometry == RT_NULL) { return -RT_ERROR; } geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector; geometry->sector_count = rtt_dev->geometry.sector_count; geometry->block_size = rtt_dev->geometry.block_size; break; } case RT_DEVICE_CTRL_BLK_ERASE: { rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr; struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); rt_size_t phy_size; if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) { return -RT_ERROR; } phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector; phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector; if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) { return -RT_ERROR; } break; } } return RT_EOK; } static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); /* change the block device¡¯s logic address to physical address */ rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector; rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector; if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) { return 0; } else { return size; } } static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); /* change the block device¡¯s logic address to physical address */ rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector; rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector; if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) { return 0; } else { return size; } } /** * SPI write data then read data */ static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf, size_t read_size) { sfud_err result = SFUD_SUCCESS; sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); if (write_size) { RT_ASSERT(write_buf); } if (read_size) { RT_ASSERT(read_buf); } if (write_size && read_size) { if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) { result = SFUD_ERR_TIMEOUT; } } else if (write_size) { if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) { result = SFUD_ERR_TIMEOUT; } } else { if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) { result = SFUD_ERR_TIMEOUT; } } return result; } static void spi_lock(const sfud_spi *spi) { sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER); } static void spi_unlock(const sfud_spi *spi) { sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); rt_mutex_release(&(rtt_dev->lock)); } static void retry_delay_ms(void) { /* millisecond delay */ rt_tick_from_millisecond(1); } static void retry_delay_100us(void) { /* 100 microsecond delay */ rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000); } /** * This function is print debug info. * * @param file the file which has call this function * @param line the line number which has call this function * @param format output format * @param ... args */ void sfud_log_debug(const char *file, const long line, const char *format, ...) { va_list args; /* args point to the first variable parameter */ va_start(args, format); rt_kprintf("[SFUD](%s:%ld) ", file, line); /* must use vprintf to print */ vsnprintf(log_buf, sizeof(log_buf), format, args); rt_kprintf("%s\n", log_buf); va_end(args); } /** * This function is print routine info. * * @param format output format * @param ... args */ void sfud_log_info(const char *format, ...) { va_list args; /* args point to the first variable parameter */ va_start(args, format); rt_kprintf("[SFUD]"); /* must use vprintf to print */ vsnprintf(log_buf, sizeof(log_buf), format, args); rt_kprintf("%s\n", log_buf); va_end(args); } sfud_err sfud_spi_port_init(sfud_flash *flash) { sfud_err result = SFUD_SUCCESS; /* port SPI device interface */ flash->spi.wr = spi_write_read; flash->spi.lock = spi_lock; flash->spi.unlock = spi_unlock; flash->spi.user_data = flash; /* 100 microsecond delay */ flash->retry.delay = retry_delay_100us; /* 60 seconds timeout */ flash->retry.times = 60 * 10000; return result; } /** * SPI Flash device initialize by SFUD(Serial Flash Universal Driver) library * * @param rtt_dev the static RT-Thread's flash device object * @param sfud_dev the static SFUD's flash device object * * @return result */ rt_err_t rt_sfud_init(struct spi_flash_device *rtt_dev, sfud_flash *sfud_dev) { extern sfud_err sfud_device_init(sfud_flash *flash); RT_ASSERT(rtt_dev); RT_ASSERT(sfud_dev); rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device)); /* SPI configure */ { /* RT-Thread SPI device initialize */ rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(sfud_dev->spi.name); if (rtt_dev->rt_spi_device == RT_NULL) { SFUD_TRACE("spi device %s not found!\r\n", sfud_dev->spi.name); return -RT_ENOSYS; } /* using default flash SPI configuration for initialize SPI Flash * @note you also can change the SPI to other configuration after initialized finish */ struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG; rt_spi_configure(rtt_dev->rt_spi_device, &cfg); /* initialize lock */ rt_mutex_init(&(rtt_dev->lock), sfud_dev->name, RT_IPC_FLAG_FIFO); } /* SFUD flash device initialize */ { /* accessed each other */ rtt_dev->user_data = sfud_dev; rtt_dev->flash_device.user_data = rtt_dev; sfud_dev->user_data = rtt_dev; /* initialize SFUD device */ if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) { return -RT_EIO; } /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */ rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran; rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran; rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran; } /* register device */ rtt_dev->flash_device.type = RT_Device_Class_Block; rtt_dev->flash_device.init = RT_NULL; rtt_dev->flash_device.open = RT_NULL; rtt_dev->flash_device.close = RT_NULL; rtt_dev->flash_device.read = rt_sfud_read; rtt_dev->flash_device.write = rt_sfud_write; rtt_dev->flash_device.control = rt_sfud_control; rt_device_register(&(rtt_dev->flash_device), sfud_dev->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE); return RT_EOK; } #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) #include static void sf(uint8_t argc, char **argv) { #define CMD_SETECT_INDEX 0 #define CMD_READ_INDEX 1 #define CMD_WRITE_INDEX 2 #define CMD_ERASE_INDEX 3 #define CMD_RW_STATUS_INDEX 4 #define CMD_BENCH_INDEX 5 sfud_err result = SFUD_SUCCESS; const static sfud_flash *flash = NULL; size_t i = 0; const char* sf_help_info[] = { [CMD_SETECT_INDEX] = "sf select [index] - select a flash chip with device's index", [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'", [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'", [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'", [CMD_RW_STATUS_INDEX] = "sf status [ ] - read or write '1:volatile|0:non-volatile' 'status'", [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: it will erase full chip!", }; if (argc < 2) { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", sf_help_info[i]); } rt_kprintf("\n"); } else { const char *operator = argv[1]; uint32_t addr, size; if (!strcmp(operator, "select")) { if (argc < 3) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_SETECT_INDEX]); if (sfud_get_device_num() > 0) { for (i = 0; i < sfud_get_device_num(); i++) { if (sfud_get_device(i)->init_ok) { rt_kprintf("The index %d flash device name is %s, ", i, sfud_get_device(i)->name); if (sfud_get_device(i)->chip.capacity < 1024 * 1024) { rt_kprintf("total is %d KB", sfud_get_device(i)->chip.capacity / 1024); } else { rt_kprintf("total is %d MB", sfud_get_device(i)->chip.capacity / 1024 / 1024); } if (sfud_get_device(i)->chip.name != NULL) { rt_kprintf(", type is %s", sfud_get_device(i)->chip.name); } rt_kprintf(".\n"); } } } else { rt_kprintf("There is no flash device in device table.\n"); } } else { size_t device_index = atol(argv[2]); if (device_index >= sfud_get_device_num()) { rt_kprintf("Flash device index out bound[0:%d].\n", sfud_get_device_num() - 1); return; } if (!sfud_get_device(device_index)->init_ok) { rt_kprintf("Flash %s isn't initialize OK.\n", sfud_get_device(device_index)->name); return; } flash = sfud_get_device(device_index); if (flash->chip.capacity < 1024 * 1024) { rt_kprintf("%d KB %s is current selected device.\n", flash->chip.capacity / 1024, flash->name); } else { rt_kprintf("%d MB %s is current selected device.\n", flash->chip.capacity / 1024 / 1024, flash->name); } } } else { if (!flash) { rt_kprintf("No flash device selected. Please run 'sf select'.\n"); return; } if (!rt_strcmp(operator, "read")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]); return; } else { addr = atol(argv[2]); size = atol(argv[3]); uint8_t *data = rt_malloc(size); if (data) { result = sfud_read(flash, addr, size, data); if (result == SFUD_SUCCESS) { rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n", flash->name, addr, size); rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n"); for (i = 0; i < size; i++) { if (i % 16 == 0) { rt_kprintf("[%08X] ", addr + i); } rt_kprintf("%02X ", data[i]); if (((i + 1) % 16 == 0) || i == size - 1) { rt_kprintf("\n"); } } rt_kprintf("\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!rt_strcmp(operator, "write")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]); return; } else { addr = atol(argv[2]); size = argc - 3; uint8_t *data = rt_malloc(size); if (data) { for (i = 0; i < size; i++) { data[i] = atoi(argv[3 + i]); } result = sfud_write(flash, addr, size, data); if (result == SFUD_SUCCESS) { rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n", flash->name, addr, size); rt_kprintf("Write data: "); for (i = 0; i < size; i++) { rt_kprintf("%d ", data[i]); } rt_kprintf(".\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!rt_strcmp(operator, "erase")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]); return; } else { addr = atol(argv[2]); size = atol(argv[3]); result = sfud_erase(flash, addr, size); if (result == SFUD_SUCCESS) { rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", flash->name, addr, size); } } } else if (!rt_strcmp(operator, "status")) { if (argc < 3) { uint8_t status; result = sfud_read_status(flash, &status); if (result == SFUD_SUCCESS) { rt_kprintf("The %s flash status register current value is 0x%02X.\n", flash->name, status); } } else if (argc == 4) { bool is_volatile = atoi(argv[2]); uint8_t status = atoi(argv[3]); result = sfud_write_status(flash, is_volatile, status); if (result == SFUD_SUCCESS) { rt_kprintf("Write the %s flash status register to 0x%02X success.\n", flash->name, status); } } else { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]); return; } } else if (!rt_strcmp(operator, "bench")) { /* full chip benchmark test */ addr = 0; size = flash->chip.capacity; uint32_t start_time, time_cast; rt_uint32_t total_mem, used_mem, max_uesd_mem; rt_memory_info(&total_mem, &used_mem, &max_uesd_mem); size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size; if ((total_mem - used_mem) / 2 < size) { read_size = (total_mem - used_mem) / 2; } else { read_size = size; } uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size); if (write_data && read_data) { rt_memset(write_data, 0x55, write_size); /* benchmark testing */ rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", flash->name, size); start_time = rt_tick_get(); result = sfud_erase(flash, addr, size); if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result); } /* write test */ rt_kprintf("Writing the %s %ld bytes data, waiting...\n", flash->name, size); start_time = rt_tick_get(); for (i = 0; i < size; i += write_size) { result = sfud_write(flash, addr + i, write_size, write_data); if (result != SFUD_SUCCESS) { break; } } if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Write benchmark has an error. Error code: %d.\n", result); } /* read test */ rt_kprintf("Reading the %s %ld bytes data, waiting...\n", flash->name, size); start_time = rt_tick_get(); for (i = 0; i < size; i += read_size) { if (i + read_size <= size) { result = sfud_read(flash, addr + i, read_size, read_data); } else { result = sfud_read(flash, addr + i, size - i, read_data); } if (result != SFUD_SUCCESS) { break; } } if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Read benchmark has an error. Error code: %d.\n", result); } } else { rt_kprintf("Low memory!\n"); } rt_free(write_data); rt_free(read_data); } else { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", sf_help_info[i]); } rt_kprintf("\n"); return; } if (result != SFUD_SUCCESS) { rt_kprintf("This flash operate has an error. Error code: %d.\n", result); } } } } MSH_CMD_EXPORT(sf, SPI Flash operate.); #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */ #endif /* RT_USING_SFUD */