/*! \file gd32vf103_adc.c \brief ADC driver \version 2019-6-5, V1.0.0, firmware for GD32VF103 */ /* Copyright (c) 2019, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32vf103_adc.h" /* discontinuous mode macro*/ #define ADC_CHANNEL_LENGTH_SUBTRACT_ONE ((uint8_t)1U) /* ADC regular channel macro */ #define ADC_REGULAR_CHANNEL_RANK_SIX ((uint8_t)6U) #define ADC_REGULAR_CHANNEL_RANK_TWELVE ((uint8_t)12U) #define ADC_REGULAR_CHANNEL_RANK_SIXTEEN ((uint8_t)16U) #define ADC_REGULAR_CHANNEL_RANK_LENGTH ((uint8_t)5U) /* ADC sampling time macro */ #define ADC_CHANNEL_SAMPLE_TEN ((uint8_t)10U) #define ADC_CHANNEL_SAMPLE_EIGHTEEN ((uint8_t)18U) #define ADC_CHANNEL_SAMPLE_LENGTH ((uint8_t)3U) /* ADC inserted channel macro */ #define ADC_INSERTED_CHANNEL_RANK_LENGTH ((uint8_t)5U) #define ADC_INSERTED_CHANNEL_SHIFT_LENGTH ((uint8_t)15U) /* ADC inserted channel offset macro */ #define ADC_OFFSET_LENGTH ((uint8_t)3U) #define ADC_OFFSET_SHIFT_LENGTH ((uint8_t)4U) /*! \brief reset ADC \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_deinit(uint32_t adc_periph) { switch(adc_periph){ case ADC0: /* reset ADC0 */ rcu_periph_reset_enable(RCU_ADC0RST); rcu_periph_reset_disable(RCU_ADC0RST); break; case ADC1: /* reset ADC1 */ rcu_periph_reset_enable(RCU_ADC1RST); rcu_periph_reset_disable(RCU_ADC1RST); break; default: break; } } /*! \brief configure the ADC sync mode \param[in] mode: ADC mode only one parameter can be selected which is shown as below: \arg ADC_MODE_FREE: all the ADCs work independently \arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL: ADC0 and ADC1 work in combined regular parallel + inserted parallel mode \arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION: ADC0 and ADC1 work in combined regular parallel + trigger rotation mode \arg ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_FAST: ADC0 and ADC1 work in combined inserted parallel + follow-up fast mode \arg ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_SLOW: ADC0 and ADC1 work in combined inserted parallel + follow-up slow mode \arg ADC_DAUL_INSERTED_PARALLEL: ADC0 and ADC1 work in inserted parallel mode only \arg ADC_DAUL_REGULAL_PARALLEL: ADC0 and ADC1 work in regular parallel mode only \arg ADC_DAUL_REGULAL_FOLLOWUP_FAST: ADC0 and ADC1 work in follow-up fast mode only \arg ADC_DAUL_REGULAL_FOLLOWUP_SLOW: ADC0 and ADC1 work in follow-up slow mode only \arg ADC_DAUL_INSERTED_TRIGGER_ROTATION: ADC0 and ADC1 work in trigger rotation mode only \param[out] none \retval none */ void adc_mode_config(uint32_t mode) { ADC_CTL0(ADC0) &= ~(ADC_CTL0_SYNCM); ADC_CTL0(ADC0) |= mode; } /*! \brief enable or disable ADC special function \param[in] adc_periph: ADCx, x=0,1 \param[in] function: the function to config only one parameter can be selected which is shown as below: \arg ADC_SCAN_MODE: scan mode select \arg ADC_INSERTED_CHANNEL_AUTO: inserted channel group convert automatically \arg ADC_CONTINUOUS_MODE: continuous mode select \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void adc_special_function_config(uint32_t adc_periph, uint32_t function, ControlStatus newvalue) { if(newvalue){ if(0U != (function & ADC_SCAN_MODE)){ /* enable scan mode */ ADC_CTL0(adc_periph) |= ADC_SCAN_MODE; } if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){ /* enable inserted channel group convert automatically */ ADC_CTL0(adc_periph) |= ADC_INSERTED_CHANNEL_AUTO; } if(0U != (function & ADC_CONTINUOUS_MODE)){ /* enable continuous mode */ ADC_CTL1(adc_periph) |= ADC_CONTINUOUS_MODE; } }else{ if(0U != (function & ADC_SCAN_MODE)){ /* disable scan mode */ ADC_CTL0(adc_periph) &= ~ADC_SCAN_MODE; } if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){ /* disable inserted channel group convert automatically */ ADC_CTL0(adc_periph) &= ~ADC_INSERTED_CHANNEL_AUTO; } if(0U != (function & ADC_CONTINUOUS_MODE)){ /* disable continuous mode */ ADC_CTL1(adc_periph) &= ~ADC_CONTINUOUS_MODE; } } } /*! \brief configure ADC data alignment \param[in] adc_periph: ADCx, x=0,1 \param[in] data_alignment: data alignment select only one parameter can be selected which is shown as below: \arg ADC_DATAALIGN_RIGHT: LSB alignment \arg ADC_DATAALIGN_LEFT: MSB alignment \param[out] none \retval none */ void adc_data_alignment_config(uint32_t adc_periph, uint32_t data_alignment) { if(ADC_DATAALIGN_RIGHT != data_alignment){ /* MSB alignment */ ADC_CTL1(adc_periph) |= ADC_CTL1_DAL; }else{ /* LSB alignment */ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DAL); } } /*! \brief enable ADC interface \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_enable(uint32_t adc_periph) { if(RESET == (ADC_CTL1(adc_periph) & ADC_CTL1_ADCON)){ /* enable ADC */ ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_ADCON; } } /*! \brief disable ADC interface \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_disable(uint32_t adc_periph) { /* disable ADC */ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ADCON); } /*! \brief ADC calibration and reset calibration \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_calibration_enable(uint32_t adc_periph) { /* reset the selected ADC1 calibration registers */ ADC_CTL1(adc_periph) |= (uint32_t) ADC_CTL1_RSTCLB; /* check the RSTCLB bit state */ while(RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_RSTCLB)){ } /* enable ADC calibration process */ ADC_CTL1(adc_periph) |= ADC_CTL1_CLB; /* check the CLB bit state */ while(RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_CLB)){ } } /*! \brief enable the temperature sensor and Vrefint channel \param[in] none \param[out] none \retval none */ void adc_tempsensor_vrefint_enable(void) { /* enable the temperature sensor and Vrefint channel */ ADC_CTL1(ADC0) |= ADC_CTL1_TSVREN; } /*! \brief disable the temperature sensor and Vrefint channel \param[in] none \param[out] none \retval none */ void adc_tempsensor_vrefint_disable(void) { /* disable the temperature sensor and Vrefint channel */ ADC_CTL1(ADC0) &= ~ADC_CTL1_TSVREN; } /*! \brief enable DMA request \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_dma_mode_enable(uint32_t adc_periph) { /* enable DMA request */ ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DMA); } /*! \brief disable DMA request \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_dma_mode_disable(uint32_t adc_periph) { /* disable DMA request */ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DMA); } /*! \brief configure ADC discontinuous mode \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: select the channel group only one parameter can be selected which is shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \arg ADC_CHANNEL_DISCON_DISABLE: disable discontinuous mode of regular & inserted channel \param[in] length: number of conversions in discontinuous mode,the number can be 1..8 for regular channel, the number has no effect for inserted channel \param[out] none \retval none */ void adc_discontinuous_mode_config(uint32_t adc_periph, uint8_t adc_channel_group, uint8_t length) { /* disable discontinuous mode of regular & inserted channel */ ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_DISRC | ADC_CTL0_DISIC)); switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: /* config the number of conversions in discontinuous mode */ ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DISNUM); ADC_CTL0(adc_periph) |= CTL0_DISNUM(((uint32_t)length - ADC_CHANNEL_LENGTH_SUBTRACT_ONE)); /* enable regular channel group discontinuous mode */ ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISRC; break; case ADC_INSERTED_CHANNEL: /* enable inserted channel group discontinuous mode */ ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISIC; break; case ADC_CHANNEL_DISCON_DISABLE: /* disable discontinuous mode of regular & inserted channel */ default: break; } } /*! \brief configure the length of regular channel group or inserted channel group \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: select the channel group only one parameter can be selected which is shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] length: the length of the channel regular channel 1-16 inserted channel 1-4 \param[out] none \retval none */ void adc_channel_length_config(uint32_t adc_periph, uint8_t adc_channel_group, uint32_t length) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: /* configure the length of regular channel group */ ADC_RSQ0(adc_periph) &= ~((uint32_t)ADC_RSQ0_RL); ADC_RSQ0(adc_periph) |= RSQ0_RL((uint32_t)(length-ADC_CHANNEL_LENGTH_SUBTRACT_ONE)); break; case ADC_INSERTED_CHANNEL: /* configure the length of inserted channel group */ ADC_ISQ(adc_periph) &= ~((uint32_t)ADC_ISQ_IL); ADC_ISQ(adc_periph) |= ISQ_IL((uint32_t)(length-ADC_CHANNEL_LENGTH_SUBTRACT_ONE)); break; default: break; } } /*! \brief configure ADC regular channel \param[in] adc_periph: ADCx, x=0,1 \param[in] rank: the regular group sequence rank,this parameter must be between 0 to 15 \param[in] adc_channel: the selected ADC channel only one parameter can be selected which is shown as below: \arg ADC_CHANNEL_x(x=0..17)(x=16 and x=17 are only for ADC0): ADC Channelx \param[in] sample_time: the sample time value only one parameter can be selected which is shown as below: \arg ADC_SAMPLETIME_1POINT5: 1.5 cycles \arg ADC_SAMPLETIME_7POINT5: 7.5 cycles \arg ADC_SAMPLETIME_13POINT5: 13.5 cycles \arg ADC_SAMPLETIME_28POINT5: 28.5 cycles \arg ADC_SAMPLETIME_41POINT5: 41.5 cycles \arg ADC_SAMPLETIME_55POINT5: 55.5 cycles \arg ADC_SAMPLETIME_71POINT5: 71.5 cycles \arg ADC_SAMPLETIME_239POINT5: 239.5 cycles \param[out] none \retval none */ void adc_regular_channel_config(uint32_t adc_periph, uint8_t rank, uint8_t adc_channel, uint32_t sample_time) { uint32_t rsq,sampt; /* ADC regular sequence config */ if(rank < ADC_REGULAR_CHANNEL_RANK_SIX){ /* the regular group sequence rank is smaller than six */ rsq = ADC_RSQ2(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*rank))); /* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */ rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*rank)); ADC_RSQ2(adc_periph) = rsq; }else if(rank < ADC_REGULAR_CHANNEL_RANK_TWELVE){ /* the regular group sequence rank is smaller than twelve */ rsq = ADC_RSQ1(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_SIX)))); /* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */ rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_SIX))); ADC_RSQ1(adc_periph) = rsq; }else if(rank < ADC_REGULAR_CHANNEL_RANK_SIXTEEN){ /* the regular group sequence rank is smaller than sixteen */ rsq = ADC_RSQ0(adc_periph); rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_TWELVE)))); /* the channel number is written to these bits to select a channel as the nth conversion in the regular channel group */ rsq |= ((uint32_t)adc_channel << (ADC_REGULAR_CHANNEL_RANK_LENGTH*(rank-ADC_REGULAR_CHANNEL_RANK_TWELVE))); ADC_RSQ0(adc_periph) = rsq; }else{ } /* ADC sampling time config */ if(adc_channel < ADC_CHANNEL_SAMPLE_TEN){ /* the regular group sequence rank is smaller than ten */ sampt = ADC_SAMPT1(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel))); /* channel sample time set*/ sampt |= (uint32_t)(sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel)); ADC_SAMPT1(adc_periph) = sampt; }else if(adc_channel < ADC_CHANNEL_SAMPLE_EIGHTEEN){ /* the regular group sequence rank is smaller than eighteen */ sampt = ADC_SAMPT0(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN)))); /* channel sample time set*/ sampt |= (uint32_t)(sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN))); ADC_SAMPT0(adc_periph) = sampt; }else{ } } /*! \brief configure ADC inserted channel \param[in] adc_periph: ADCx, x=0,1 \param[in] rank: the inserted group sequencer rank,this parameter must be between 0 to 3 \param[in] adc_channel: the selected ADC channel only one parameter can be selected which is shown as below: \arg ADC_CHANNEL_x(x=0..17)(x=16 and x=17 are only for ADC0): ADC Channelx \param[in] sample_time: The sample time value only one parameter can be selected which is shown as below: \arg ADC_SAMPLETIME_1POINT5: 1.5 cycles \arg ADC_SAMPLETIME_7POINT5: 7.5 cycles \arg ADC_SAMPLETIME_13POINT5: 13.5 cycles \arg ADC_SAMPLETIME_28POINT5: 28.5 cycles \arg ADC_SAMPLETIME_41POINT5: 41.5 cycles \arg ADC_SAMPLETIME_55POINT5: 55.5 cycles \arg ADC_SAMPLETIME_71POINT5: 71.5 cycles \arg ADC_SAMPLETIME_239POINT5: 239.5 cycles \param[out] none \retval none */ void adc_inserted_channel_config(uint32_t adc_periph, uint8_t rank, uint8_t adc_channel, uint32_t sample_time) { uint8_t inserted_length; uint32_t isq,sampt; /* get inserted channel group length */ inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U); /* the channel number is written to these bits to select a channel as the nth conversion in the inserted channel group */ isq = ADC_ISQ(adc_periph); isq &= ~((uint32_t)(ADC_ISQ_ISQN << (ADC_INSERTED_CHANNEL_SHIFT_LENGTH-(inserted_length-rank)*ADC_INSERTED_CHANNEL_RANK_LENGTH))); isq |= ((uint32_t)adc_channel << (ADC_INSERTED_CHANNEL_SHIFT_LENGTH-(inserted_length-rank)*ADC_INSERTED_CHANNEL_RANK_LENGTH)); ADC_ISQ(adc_periph) = isq; /* ADC sampling time config */ if(adc_channel < ADC_CHANNEL_SAMPLE_TEN){ /* the inserted group sequence rank is smaller than ten */ sampt = ADC_SAMPT1(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel))); /* channel sample time set*/ sampt |= (uint32_t) sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*adc_channel); ADC_SAMPT1(adc_periph) = sampt; }else if(adc_channel < ADC_CHANNEL_SAMPLE_EIGHTEEN){ /* the inserted group sequence rank is smaller than eighteen */ sampt = ADC_SAMPT0(adc_periph); sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN)))); /* channel sample time set*/ sampt |= ((uint32_t)sample_time << (ADC_CHANNEL_SAMPLE_LENGTH*(adc_channel-ADC_CHANNEL_SAMPLE_TEN))); ADC_SAMPT0(adc_periph) = sampt; }else{ } } /*! \brief configure ADC inserted channel offset \param[in] adc_periph: ADCx, x=0,1 \param[in] inserted_channel: insert channel select only one parameter can be selected \arg ADC_INSERTED_CHANNEL_0: inserted channel0 \arg ADC_INSERTED_CHANNEL_1: inserted channel1 \arg ADC_INSERTED_CHANNEL_2: inserted channel2 \arg ADC_INSERTED_CHANNEL_3: inserted channel3 \param[in] offset: the offset data \param[out] none \retval none */ void adc_inserted_channel_offset_config(uint32_t adc_periph, uint8_t inserted_channel, uint16_t offset) { uint8_t inserted_length; uint32_t num = 0U; inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U); num = ((uint32_t)ADC_OFFSET_LENGTH - ((uint32_t)inserted_length - (uint32_t)inserted_channel)); if(num <= ADC_OFFSET_LENGTH){ /* calculate the offset of the register */ num = num * ADC_OFFSET_SHIFT_LENGTH; /* config the offset of the selected channels */ REG32((adc_periph) + 0x14U + num) = IOFFX_IOFF((uint32_t)offset); } } /*! \brief configure ADC external trigger source \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: select the channel group only one parameter can be selected which is shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] external_trigger_source: regular or inserted group trigger source only one parameter can be selected for regular channel: \arg ADC0_1_EXTTRIG_REGULAR_T0_CH0: TIMER0 CH0 event select \arg ADC0_1_EXTTRIG_REGULAR_T0_CH1: TIMER0 CH1 event select \arg ADC0_1_EXTTRIG_REGULAR_T0_CH2: TIMER0 CH2 event select \arg ADC0_1_EXTTRIG_REGULAR_T1_CH1: TIMER1 CH1 event select \arg ADC0_1_EXTTRIG_REGULAR_T2_TRGO: TIMER2 TRGO event select \arg ADC0_1_EXTTRIG_REGULAR_T3_CH3: TIMER3 CH3 event select \arg ADC0_1_EXTTRIG_REGULAR_EXTI_11: external interrupt line 11 \arg ADC0_1_EXTTRIG_REGULAR_NONE: software trigger for inserted channel: \arg ADC0_1_EXTTRIG_INSERTED_T0_TRGO: TIMER0 TRGO event select \arg ADC0_1_EXTTRIG_INSERTED_T0_CH3: TIMER0 CH3 event select \arg ADC0_1_EXTTRIG_INSERTED_T1_TRGO: TIMER1 TRGO event select \arg ADC0_1_EXTTRIG_INSERTED_T1_CH0: TIMER1 CH0 event select \arg ADC0_1_EXTTRIG_INSERTED_T2_CH3: TIMER2 CH3 event select \arg ADC0_1_EXTTRIG_INSERTED_T3_TRGO: TIMER3 TRGO event select \arg ADC0_1_EXTTRIG_INSERTED_EXTI_15: external interrupt line 15 \arg ADC0_1_EXTTRIG_INSERTED_NONE: software trigger \param[out] none \retval none */ void adc_external_trigger_source_config(uint32_t adc_periph, uint8_t adc_channel_group, uint32_t external_trigger_source) { switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: /* configure ADC regular group external trigger source */ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSRC); ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source; break; case ADC_INSERTED_CHANNEL: /* configure ADC inserted group external trigger source */ ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSIC); ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source; break; default: break; } } /*! \brief configure ADC external trigger \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: select the channel group one or more parameters can be selected which are shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void adc_external_trigger_config(uint32_t adc_periph, uint8_t adc_channel_group, ControlStatus newvalue) { if(newvalue){ if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){ /* enable ADC regular channel group external trigger */ ADC_CTL1(adc_periph) |= ADC_CTL1_ETERC; } if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){ /* enable ADC inserted channel group external trigger */ ADC_CTL1(adc_periph) |= ADC_CTL1_ETEIC; } }else{ if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){ /* disable ADC regular channel group external trigger */ ADC_CTL1(adc_periph) &= ~ADC_CTL1_ETERC; } if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){ /* disable ADC regular channel group external trigger */ ADC_CTL1(adc_periph) &= ~ADC_CTL1_ETEIC; } } } /*! \brief enable ADC software trigger \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: select the channel group one or more parameters can be selected which are shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \param[out] none \retval none */ void adc_software_trigger_enable(uint32_t adc_periph, uint8_t adc_channel_group) { if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){ /* enable ADC regular channel group software trigger */ ADC_CTL1(adc_periph) |= ADC_CTL1_SWRCST; } if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){ /* enable ADC inserted channel group software trigger */ ADC_CTL1(adc_periph) |= ADC_CTL1_SWICST; } } /*! \brief read ADC regular group data register \param[in] adc_periph: ADCx, x=0,1 \param[in] none \param[out] none \retval the conversion value */ uint16_t adc_regular_data_read(uint32_t adc_periph) { return (uint16_t)(ADC_RDATA(adc_periph)); } /*! \brief read ADC inserted group data register \param[in] adc_periph: ADCx, x=0,1 \param[in] inserted_channel: insert channel select only one parameter can be selected \arg ADC_INSERTED_CHANNEL_0: inserted Channel0 \arg ADC_INSERTED_CHANNEL_1: inserted channel1 \arg ADC_INSERTED_CHANNEL_2: inserted Channel2 \arg ADC_INSERTED_CHANNEL_3: inserted Channel3 \param[out] none \retval the conversion value */ uint16_t adc_inserted_data_read(uint32_t adc_periph, uint8_t inserted_channel) { uint32_t idata; /* read the data of the selected channel */ switch(inserted_channel){ case ADC_INSERTED_CHANNEL_0: /* read the data of channel 0 */ idata = ADC_IDATA0(adc_periph); break; case ADC_INSERTED_CHANNEL_1: /* read the data of channel 1 */ idata = ADC_IDATA1(adc_periph); break; case ADC_INSERTED_CHANNEL_2: /* read the data of channel 2 */ idata = ADC_IDATA2(adc_periph); break; case ADC_INSERTED_CHANNEL_3: /* read the data of channel 3 */ idata = ADC_IDATA3(adc_periph); break; default: idata = 0U; break; } return (uint16_t)idata; } /*! \brief read the last ADC0 and ADC1 conversion result data in sync mode \param[in] none \param[out] none \retval the conversion value */ uint32_t adc_sync_mode_convert_value_read(void) { /* return conversion value */ return ADC_RDATA(ADC0); } /*! \brief configure ADC analog watchdog single channel \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel: the selected ADC channel only one parameter can be selected which is shown as below: \arg ADC_CHANNEL_x: ADC Channelx(x=0..17)(x=16 and x=17 are only for ADC0) \param[out] none \retval none */ void adc_watchdog_single_channel_enable(uint32_t adc_periph, uint8_t adc_channel) { ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC | ADC_CTL0_WDCHSEL); /* analog watchdog channel select */ ADC_CTL0(adc_periph) |= (uint32_t)adc_channel; ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC); } /*! \brief configure ADC analog watchdog group channel \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_channel_group: the channel group use analog watchdog only one parameter can be selected which is shown as below: \arg ADC_REGULAR_CHANNEL: regular channel group \arg ADC_INSERTED_CHANNEL: inserted channel group \arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group \param[out] none \retval none */ void adc_watchdog_group_channel_enable(uint32_t adc_periph, uint8_t adc_channel_group) { ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC); /* select the group */ switch(adc_channel_group){ case ADC_REGULAR_CHANNEL: /* regular channel analog watchdog enable */ ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_RWDEN; break; case ADC_INSERTED_CHANNEL: /* inserted channel analog watchdog enable */ ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_IWDEN; break; case ADC_REGULAR_INSERTED_CHANNEL: /* regular and inserted channel analog watchdog enable */ ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN); break; default: break; } } /*! \brief disable ADC analog watchdog \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_watchdog_disable(uint32_t adc_periph) { ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC | ADC_CTL0_WDCHSEL); } /*! \brief configure ADC analog watchdog threshold \param[in] adc_periph: ADCx, x=0,1 \param[in] low_threshold: analog watchdog low threshold, 0..4095 \param[in] high_threshold: analog watchdog high threshold, 0..4095 \param[out] none \retval none */ void adc_watchdog_threshold_config(uint32_t adc_periph, uint16_t low_threshold, uint16_t high_threshold) { ADC_WDLT(adc_periph) = (uint32_t)WDLT_WDLT(low_threshold); ADC_WDHT(adc_periph) = (uint32_t)WDHT_WDHT(high_threshold); } /*! \brief get the ADC flag bits \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_flag: the adc flag bits only one parameter can be selected which is shown as below: \arg ADC_FLAG_WDE: analog watchdog event flag \arg ADC_FLAG_EOC: end of group conversion flag \arg ADC_FLAG_EOIC: end of inserted group conversion flag \arg ADC_FLAG_STIC: start flag of inserted channel group \arg ADC_FLAG_STRC: start flag of regular channel group \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_flag_get(uint32_t adc_periph, uint32_t adc_flag) { FlagStatus reval = RESET; if(ADC_STAT(adc_periph) & adc_flag){ reval = SET; } return reval; } /*! \brief clear the ADC flag bits \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_flag: the adc flag bits one or more parameters can be selected which are shown as below: \arg ADC_FLAG_WDE: analog watchdog event flag \arg ADC_FLAG_EOC: end of group conversion flag \arg ADC_FLAG_EOIC: end of inserted group conversion flag \arg ADC_FLAG_STIC: start flag of inserted channel group \arg ADC_FLAG_STRC: start flag of regular channel group \param[out] none \retval none */ void adc_flag_clear(uint32_t adc_periph, uint32_t adc_flag) { ADC_STAT(adc_periph) &= ~((uint32_t)adc_flag); } /*! \brief get the bit state of ADCx software start conversion \param[in] adc_periph: ADCx, x=0,1 \param[in] none \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_regular_software_startconv_flag_get(uint32_t adc_periph) { FlagStatus reval = RESET; if((uint32_t)RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_SWRCST)){ reval = SET; } return reval; } /*! \brief get the bit state of ADCx software inserted channel start conversion \param[in] adc_periph: ADCx, x=0,1 \param[in] none \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_inserted_software_startconv_flag_get(uint32_t adc_periph) { FlagStatus reval = RESET; if((uint32_t)RESET != (ADC_CTL1(adc_periph) & ADC_CTL1_SWICST)){ reval = SET; } return reval; } /*! \brief get the ADC interrupt bits \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_interrupt: the adc interrupt bits only one parameter can be selected which is shown as below: \arg ADC_INT_FLAG_WDE: analog watchdog interrupt \arg ADC_INT_FLAG_EOC: end of group conversion interrupt \arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus adc_interrupt_flag_get(uint32_t adc_periph, uint32_t adc_interrupt) { FlagStatus interrupt_flag = RESET; uint32_t state; /* check the interrupt bits */ switch(adc_interrupt){ case ADC_INT_FLAG_WDE: /* get the ADC analog watchdog interrupt bits */ state = ADC_STAT(adc_periph) & ADC_STAT_WDE; if((ADC_CTL0(adc_periph) & ADC_CTL0_WDEIE) && state){ interrupt_flag = SET; } break; case ADC_INT_FLAG_EOC: /* get the ADC end of group conversion interrupt bits */ state = ADC_STAT(adc_periph) & ADC_STAT_EOC; if((ADC_CTL0(adc_periph) & ADC_CTL0_EOCIE) && state){ interrupt_flag = SET; } break; case ADC_INT_FLAG_EOIC: /* get the ADC end of inserted group conversion interrupt bits */ state = ADC_STAT(adc_periph) & ADC_STAT_EOIC; if((ADC_CTL0(adc_periph) & ADC_CTL0_EOICIE) && state){ interrupt_flag = SET; } break; default: break; } return interrupt_flag; } /*! \brief clear the ADC flag \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_interrupt: the adc status flag one or more parameters can be selected which are shown as below: \arg ADC_INT_FLAG_WDE: analog watchdog interrupt \arg ADC_INT_FLAG_EOC: end of group conversion interrupt \arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt \param[out] none \retval none */ void adc_interrupt_flag_clear(uint32_t adc_periph, uint32_t adc_interrupt) { ADC_STAT(adc_periph) &= ~((uint32_t)adc_interrupt); } /*! \brief enable ADC interrupt \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_interrupt: the adc interrupt one or more parameters can be selected which are shown as below: \arg ADC_INT_WDE: analog watchdog interrupt flag \arg ADC_INT_EOC: end of group conversion interrupt flag \arg ADC_INT_EOIC: end of inserted group conversion interrupt flag \param[out] none \retval none */ void adc_interrupt_enable(uint32_t adc_periph, uint32_t adc_interrupt) { /* enable ADC analog watchdog interrupt */ if(0U != (adc_interrupt & ADC_INT_WDE)){ ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDEIE; } /* enable ADC end of group conversion interrupt */ if(0U != (adc_interrupt & ADC_INT_EOC)){ ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOCIE; } /* enable ADC end of inserted group conversion interrupt */ if(0U != (adc_interrupt & ADC_INT_EOIC)){ ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOICIE; } } /*! \brief disable ADC interrupt \param[in] adc_periph: ADCx, x=0,1 \param[in] adc_interrupt: the adc interrupt flag one or more parameters can be selected which are shown as below: \arg ADC_INT_WDE: analog watchdog interrupt flag \arg ADC_INT_EOC: end of group conversion interrupt flag \arg ADC_INT_EOIC: end of inserted group conversion interrupt flag \param[out] none \retval none */ void adc_interrupt_disable(uint32_t adc_periph, uint32_t adc_interrupt) { /* disable ADC analog watchdog interrupt */ if(0U != (adc_interrupt & ADC_INT_WDE)){ ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_WDEIE; } /* disable ADC end of group conversion interrupt */ if(0U != (adc_interrupt & ADC_INT_EOC)){ ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_EOCIE; } /* disable ADC end of inserted group conversion interrupt */ if(0U != (adc_interrupt & ADC_INT_EOIC)){ ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_EOICIE; } } /*! \brief adc resolution config \param[in] adc_periph: ADCx, x=0,1 \param[in] resolution: ADC resolution only one parameter can be selected which is shown as below: \arg ADC_RESOLUTION_12B: 12-bit ADC resolution \arg ADC_RESOLUTION_10B: 10-bit ADC resolution \arg ADC_RESOLUTION_8B: 8-bit ADC resolution \arg ADC_RESOLUTION_6B: 6-bit ADC resolution \param[out] none \retval none */ void adc_resolution_config(uint32_t adc_periph, uint32_t resolution) { ADC_OVSCR(adc_periph) &= ~((uint32_t)ADC_OVSCR_DRES); ADC_OVSCR(adc_periph) |= (uint32_t)resolution; } /*! \brief adc oversample mode config \param[in] adc_periph: ADCx, x=0,1 \param[in] mode: ADC oversampling mode only one parameter can be selected which is shown as below: \arg ADC_OVERSAMPLING_ALL_CONVERT: all oversampled conversions for a channel are done consecutively after a trigger \arg ADC_OVERSAMPLING_ONE_CONVERT: each oversampled conversion for a channel needs a trigger \param[in] shift: ADC oversampling shift only one parameter can be selected which is shown as below: \arg ADC_OVERSAMPLING_SHIFT_NONE: no oversampling shift \arg ADC_OVERSAMPLING_SHIFT_1B: 1-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_2B: 2-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_3B: 3-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_4B: 3-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_5B: 5-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_6B: 6-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_7B: 7-bit oversampling shift \arg ADC_OVERSAMPLING_SHIFT_8B: 8-bit oversampling shift \param[in] ratio: ADC oversampling ratio only one parameter can be selected which is shown as below: \arg ADC_OVERSAMPLING_RATIO_MUL2: oversampling ratio X2 \arg ADC_OVERSAMPLING_RATIO_MUL4: oversampling ratio X4 \arg ADC_OVERSAMPLING_RATIO_MUL8: oversampling ratio X8 \arg ADC_OVERSAMPLING_RATIO_MUL16: oversampling ratio X16 \arg ADC_OVERSAMPLING_RATIO_MUL32: oversampling ratio X32 \arg ADC_OVERSAMPLING_RATIO_MUL64: oversampling ratio X64 \arg ADC_OVERSAMPLING_RATIO_MUL128: oversampling ratio X128 \arg ADC_OVERSAMPLING_RATIO_MUL256: oversampling ratio X256 \param[out] none \retval none */ void adc_oversample_mode_config(uint32_t adc_periph, uint8_t mode, uint16_t shift,uint8_t ratio) { if(mode){ ADC_OVSCR(adc_periph) |= (uint32_t)ADC_OVSCR_TOVS; }else{ ADC_OVSCR(adc_periph) &= ~((uint32_t)ADC_OVSCR_TOVS); } /* config the shift and ratio */ ADC_OVSCR(adc_periph) &= ~((uint32_t)(ADC_OVSCR_OVSR | ADC_OVSCR_OVSS)); ADC_OVSCR(adc_periph) |= ((uint32_t)shift | (uint32_t)ratio); } /*! \brief enable ADC oversample mode \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_oversample_mode_enable(uint32_t adc_periph) { ADC_OVSCR(adc_periph) |= ADC_OVSCR_OVSEN; } /*! \brief disable ADC oversample mode \param[in] adc_periph: ADCx, x=0,1 \param[out] none \retval none */ void adc_oversample_mode_disable(uint32_t adc_periph) { ADC_OVSCR(adc_periph) &= ~((uint32_t)ADC_OVSCR_OVSEN); }