/* * The Clear BSD License * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_flexspi.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.flexspi" #endif /******************************************************************************* * Definitations ******************************************************************************/ #define FREQ_1MHz (1000000UL) #define FLEXSPI_DLLCR_DEFAULT (0x100UL) #define FLEXSPI_LUT_KEY_VAL (0x5AF05AF0ul) enum { kFLEXSPI_DelayCellUnitMin = 75, /* 75ps. */ kFLEXSPI_DelayCellUnitMax = 225, /* 225ps. */ }; /*! @brief Common sets of flags used by the driver. */ enum _flexspi_flag_constants { /*! IRQ sources enabled by the non-blocking transactional API. */ kIrqFlags = kFLEXSPI_IpTxFifoWatermarkEmpltyFlag | kFLEXSPI_IpRxFifoWatermarkAvailableFlag | kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag | kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag, /*! Errors to check for. */ kErrorFlags = kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag | kFLEXSPI_IpCommandGrantTimeoutFlag, }; enum _flexspi_transfer_state { kFLEXSPI_Idle = 0x0U, /*!< Transfer is done. */ kFLEXSPI_BusyWrite = 0x1U, /*!< FLEXSPI is busy write transfer. */ kFLEXSPI_BusyRead = 0x2U, /*!< FLEXSPI is busy write transfer. */ }; /*! @brief Typedef for interrupt handler. */ typedef void (*flexspi_isr_t)(FLEXSPI_Type *base, void *flexspiHandle); /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get the instance number for FLEXSPI. * * @param base FLEXSPI base pointer. */ uint32_t FLEXSPI_GetInstance(FLEXSPI_Type *base); /*! * @brief Configure flash A/B sample clock DLL. * * @param base FLEXSPI base pointer. * @param config Flash configuration parameters. */ static uint32_t FLEXSPI_ConfigureDll(FLEXSPI_Type *base, flexspi_device_config_t *config); /*! * @brief Check and clear IP command execution errors. * * @param base FLEXSPI base pointer. * @param status interrupt status. */ status_t FLEXSPI_CheckAndClearError(FLEXSPI_Type *base, uint32_t status); /******************************************************************************* * Variables ******************************************************************************/ #if defined(FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ) && FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ /*! @brief Pointers to flexspi handles for each instance. */ static void *s_flexspiHandle[FSL_FEATURE_SOC_FLEXSPI_COUNT]; #endif /*! @brief Pointers to flexspi bases for each instance. */ static FLEXSPI_Type *const s_flexspiBases[] = FLEXSPI_BASE_PTRS; /*! @brief Pointers to flexspi IRQ number for each instance. */ static const IRQn_Type s_flexspiIrqs[] = FLEXSPI_IRQS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Clock name array */ static const clock_ip_name_t s_flexspiClock[] = FLEXSPI_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ uint32_t FLEXSPI_GetInstance(FLEXSPI_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < FSL_FEATURE_SOC_FLEXSPI_COUNT; instance++) { if (s_flexspiBases[instance] == base) { break; } } assert(instance < FSL_FEATURE_SOC_FLEXSPI_COUNT); return instance; } static uint32_t FLEXSPI_ConfigureDll(FLEXSPI_Type *base, flexspi_device_config_t *config) { bool isUnifiedConfig = true; uint32_t flexspiDllValue; uint32_t dllValue; uint32_t temp; uint8_t rxSampleClock = (base->MCR0 & FLEXSPI_MCR0_RXCLKSRC_MASK) >> FLEXSPI_MCR0_RXCLKSRC_SHIFT; switch (rxSampleClock) { case kFLEXSPI_ReadSampleClkLoopbackInternally: case kFLEXSPI_ReadSampleClkLoopbackFromDqsPad: case kFLEXSPI_ReadSampleClkLoopbackFromSckPad: isUnifiedConfig = true; break; case kFLEXSPI_ReadSampleClkExternalInputFromDqsPad: if (config->isSck2Enabled) { isUnifiedConfig = true; } else { isUnifiedConfig = false; } break; default: break; } if (isUnifiedConfig) { flexspiDllValue = FLEXSPI_DLLCR_DEFAULT; /* 1 fixed delay cells in DLL delay chain) */ } else { if (config->flexspiRootClk >= 100 * FREQ_1MHz) { /* DLLEN = 1, SLVDLYTARGET = 0xF, */ flexspiDllValue = FLEXSPI_DLLCR_DLLEN(1) | FLEXSPI_DLLCR_SLVDLYTARGET(0x0F); } else { temp = config->dataValidTime * 1000; /* Convert data valid time in ns to ps. */ dllValue = temp / kFLEXSPI_DelayCellUnitMin; if (dllValue * kFLEXSPI_DelayCellUnitMin < temp) { dllValue++; } flexspiDllValue = FLEXSPI_DLLCR_OVRDEN(1) | FLEXSPI_DLLCR_OVRDVAL(dllValue); } } return flexspiDllValue; } status_t FLEXSPI_CheckAndClearError(FLEXSPI_Type *base, uint32_t status) { status_t result = kStatus_Success; /* Check for error. */ status &= kErrorFlags; if (status) { /* Select the correct error code.. */ if (status & kFLEXSPI_SequenceExecutionTimeoutFlag) { result = kStatus_FLEXSPI_SequenceExecutionTimeout; } else if (status & kFLEXSPI_IpCommandSequenceErrorFlag) { result = kStatus_FLEXSPI_IpCommandSequenceError; } else if (status & kFLEXSPI_IpCommandGrantTimeoutFlag) { result = kStatus_FLEXSPI_IpCommandGrantTimeout; } else { assert(false); } /* Clear the flags. */ FLEXSPI_ClearInterruptStatusFlags(base, status); /* Reset fifos. These flags clear automatically. */ base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK; base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK; } return result; } void FLEXSPI_Init(FLEXSPI_Type *base, const flexspi_config_t *config) { uint32_t configValue = 0; uint8_t i = 0; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable the flexspi clock */ CLOCK_EnableClock(s_flexspiClock[FLEXSPI_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset peripheral before configuring it. */ base->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK; FLEXSPI_SoftwareReset(base); /* Configure MCR0 configuration items. */ configValue = FLEXSPI_MCR0_RXCLKSRC(config->rxSampleClock) | FLEXSPI_MCR0_DOZEEN(config->enableDoze) | FLEXSPI_MCR0_IPGRANTWAIT(config->ipGrantTimeoutCycle) | FLEXSPI_MCR0_AHBGRANTWAIT(config->ahbConfig.ahbGrantTimeoutCycle) | FLEXSPI_MCR0_SCKFREERUNEN(config->enableSckFreeRunning) | FLEXSPI_MCR0_HSEN(config->enableHalfSpeedAccess) | FLEXSPI_MCR0_COMBINATIONEN(config->enableCombination) | FLEXSPI_MCR0_ATDFEN(config->ahbConfig.enableAHBWriteIpTxFifo) | FLEXSPI_MCR0_ARDFEN(config->ahbConfig.enableAHBWriteIpRxFifo) | FLEXSPI_MCR0_MDIS_MASK; base->MCR0 = configValue; /* Configure MCR1 configurations. */ configValue = FLEXSPI_MCR1_SEQWAIT(config->seqTimeoutCycle) | FLEXSPI_MCR1_AHBBUSWAIT(config->ahbConfig.ahbBusTimeoutCycle); base->MCR1 = configValue; /* Configure MCR2 configurations. */ configValue = base->MCR2; configValue &= ~(FLEXSPI_MCR2_RESUMEWAIT_MASK | FLEXSPI_MCR2_SCKBDIFFOPT_MASK | FLEXSPI_MCR2_SAMEDEVICEEN_MASK | FLEXSPI_MCR2_CLRAHBBUFOPT_MASK); configValue |= FLEXSPI_MCR2_RESUMEWAIT(config->ahbConfig.resumeWaitCycle) | FLEXSPI_MCR2_SCKBDIFFOPT(config->enableSckBDiffOpt) | FLEXSPI_MCR2_SAMEDEVICEEN(config->enableSameConfigForAll) | FLEXSPI_MCR2_CLRAHBBUFOPT(config->ahbConfig.enableClearAHBBufferOpt); base->MCR2 = configValue; /* Configure AHB control items. */ configValue = base->AHBCR; configValue &= ~(FLEXSPI_AHBCR_READADDROPT_MASK | FLEXSPI_AHBCR_PREFETCHEN_MASK | FLEXSPI_AHBCR_BUFFERABLEEN_MASK | FLEXSPI_AHBCR_CACHABLEEN_MASK); configValue |= FLEXSPI_AHBCR_READADDROPT(config->ahbConfig.enableReadAddressOpt) | FLEXSPI_AHBCR_PREFETCHEN(config->ahbConfig.enableAHBPrefetch) | FLEXSPI_AHBCR_BUFFERABLEEN(config->ahbConfig.enableAHBBufferable) | FLEXSPI_AHBCR_CACHABLEEN(config->ahbConfig.enableAHBCachable); base->AHBCR = configValue; /* Configure AHB rx buffers. */ for (i = 0; i < FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNT; i++) { configValue = base->AHBRXBUFCR0[i]; configValue &= ~(FLEXSPI_AHBRXBUFCR0_PREFETCHEN_MASK | FLEXSPI_AHBRXBUFCR0_PRIORITY_MASK | FLEXSPI_AHBRXBUFCR0_MSTRID_MASK | FLEXSPI_AHBRXBUFCR0_BUFSZ_MASK); configValue |= FLEXSPI_AHBRXBUFCR0_PREFETCHEN(config->ahbConfig.buffer[i].enablePrefetch) | FLEXSPI_AHBRXBUFCR0_PRIORITY(config->ahbConfig.buffer[i].priority) | FLEXSPI_AHBRXBUFCR0_MSTRID(config->ahbConfig.buffer[i].masterIndex) | FLEXSPI_AHBRXBUFCR0_BUFSZ(config->ahbConfig.buffer[i].bufferSize * 8); base->AHBRXBUFCR0[i] = configValue; } /* Configure IP Fifo watermarks. */ base->IPRXFCR &= ~FLEXSPI_IPRXFCR_RXWMRK_MASK; base->IPRXFCR |= FLEXSPI_IPRXFCR_RXWMRK(config->rxWatermark / 8 - 1); base->IPTXFCR &= ~FLEXSPI_IPTXFCR_TXWMRK_MASK; base->IPTXFCR |= FLEXSPI_IPTXFCR_TXWMRK(config->txWatermark / 8 - 1); } void FLEXSPI_GetDefaultConfig(flexspi_config_t *config) { config->rxSampleClock = kFLEXSPI_ReadSampleClkLoopbackInternally; config->enableSckFreeRunning = false; config->enableCombination = false; config->enableDoze = true; config->enableHalfSpeedAccess = false; config->enableSckBDiffOpt = false; config->enableSameConfigForAll = false; config->seqTimeoutCycle = 0xFFFFU; config->ipGrantTimeoutCycle = 0xFFU; config->txWatermark = 8; config->rxWatermark = 8; config->ahbConfig.enableAHBWriteIpTxFifo = false; config->ahbConfig.enableAHBWriteIpRxFifo = false; config->ahbConfig.ahbGrantTimeoutCycle = 0xFFU; config->ahbConfig.ahbBusTimeoutCycle = 0xFFFFU; config->ahbConfig.resumeWaitCycle = 0x20U; memset(config->ahbConfig.buffer, 0, sizeof(config->ahbConfig.buffer)); for (uint8_t i = 0; i < FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNT; i++) { config->ahbConfig.buffer[i].bufferSize = 256; /* Default buffer size 256 bytes*/ } config->ahbConfig.enableClearAHBBufferOpt = false; config->ahbConfig.enableReadAddressOpt = false; config->ahbConfig.enableAHBPrefetch = false; config->ahbConfig.enableAHBBufferable = false; config->ahbConfig.enableAHBCachable = false; } void FLEXSPI_Deinit(FLEXSPI_Type *base) { /* Reset peripheral. */ FLEXSPI_SoftwareReset(base); } void FLEXSPI_SetFlashConfig(FLEXSPI_Type *base, flexspi_device_config_t *config, flexspi_port_t port) { uint32_t configValue = 0; uint8_t index = port >> 1; /* PortA with index 0, PortB with index 1. */ /* Wait for bus idle before change flash configuration. */ while (!FLEXSPI_GetBusIdleStatus(base)) { } /* Configure flash size. */ base->FLSHCR0[index] = 0; base->FLSHCR0[port] = config->flashSize; /* Configure flash parameters. */ base->FLSHCR1[port] = FLEXSPI_FLSHCR1_CSINTERVAL(config->CSInterval) | FLEXSPI_FLSHCR1_CSINTERVALUNIT(config->CSIntervalUnit) | FLEXSPI_FLSHCR1_TCSH(config->CSHoldTime) | FLEXSPI_FLSHCR1_TCSS(config->CSSetupTime) | FLEXSPI_FLSHCR1_CAS(config->columnspace) | FLEXSPI_FLSHCR1_WA(config->enableWordAddress); /* Configure AHB operation items. */ configValue = base->FLSHCR2[port]; configValue &= ~(FLEXSPI_FLSHCR2_AWRWAITUNIT_MASK | FLEXSPI_FLSHCR2_AWRWAIT_MASK | FLEXSPI_FLSHCR2_AWRSEQNUM_MASK | FLEXSPI_FLSHCR2_AWRSEQID_MASK | FLEXSPI_FLSHCR2_ARDSEQNUM_MASK | FLEXSPI_FLSHCR2_AWRSEQID_MASK); configValue |= FLEXSPI_FLSHCR2_AWRWAITUNIT(config->AHBWriteWaitUnit) | FLEXSPI_FLSHCR2_AWRWAIT(config->AHBWriteWaitInterval); if (config->AWRSeqNumber > 0U) { configValue |= FLEXSPI_FLSHCR2_AWRSEQID(config->AWRSeqIndex) | FLEXSPI_FLSHCR2_AWRSEQNUM(config->AWRSeqNumber - 1U); } if (config->ARDSeqNumber > 0U) { configValue |= FLEXSPI_FLSHCR2_ARDSEQID(config->ARDSeqIndex) | FLEXSPI_FLSHCR2_ARDSEQNUM(config->ARDSeqNumber - 1U); } base->FLSHCR2[port] = configValue; /* Configure DLL. */ base->DLLCR[index] = FLEXSPI_ConfigureDll(base, config); /* Configure write mask. */ if (config->enableWriteMask) { base->FLSHCR4 &= ~FLEXSPI_FLSHCR4_WMOPT1_MASK; } else { base->FLSHCR4 |= FLEXSPI_FLSHCR4_WMOPT1_MASK; } if (index == 0) /*PortA*/ { base->FLSHCR4 &= ~FLEXSPI_FLSHCR4_WMENA_MASK; base->FLSHCR4 |= FLEXSPI_FLSHCR4_WMENA(config->enableWriteMask); } else { base->FLSHCR4 &= ~FLEXSPI_FLSHCR4_WMENB_MASK; base->FLSHCR4 |= FLEXSPI_FLSHCR4_WMENB(config->enableWriteMask); } /* Exit stop mode. */ base->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK; } void FLEXSPI_UpdateLUT(FLEXSPI_Type *base, uint32_t index, const uint32_t *cmd, uint32_t count) { assert(index < 64U); uint8_t i = 0; volatile uint32_t *lutBase; /* Wait for bus idle before change flash configuration. */ while (!FLEXSPI_GetBusIdleStatus(base)) { } /* Unlock LUT for update. */ base->LUTKEY = FLEXSPI_LUT_KEY_VAL; base->LUTCR = 0x02; lutBase = &base->LUT[index]; for (i = index; i < count; i++) { *lutBase++ = *cmd++; } /* Lock LUT. */ base->LUTKEY = FLEXSPI_LUT_KEY_VAL; base->LUTCR = 0x01; } status_t FLEXSPI_WriteBlocking(FLEXSPI_Type *base, uint32_t *buffer, size_t size) { uint8_t txWatermark = ((base->IPTXFCR & FLEXSPI_IPTXFCR_TXWMRK_MASK) >> FLEXSPI_IPTXFCR_TXWMRK_SHIFT) + 1; uint32_t status; status_t result = kStatus_Success; uint32_t i = 0; /* Send data buffer */ while (size) { /* Wait until there is room in the fifo. This also checks for errors. */ while (!((status = base->INTR) & kFLEXSPI_IpTxFifoWatermarkEmpltyFlag)) { } result = FLEXSPI_CheckAndClearError(base, status); if (result) { return result; } /* Write watermark level data into tx fifo . */ if (size >= 8 * txWatermark) { for (i = 0; i < 2 * txWatermark; i++) { base->TFDR[i] = *buffer++; } size = size - 8 * txWatermark; } else { for (i = 0; i < (size / 4 + 1); i++) { base->TFDR[i] = *buffer++; } size = 0; } /* Push a watermark level datas into IP TX FIFO. */ base->INTR |= kFLEXSPI_IpTxFifoWatermarkEmpltyFlag; } return result; } status_t FLEXSPI_ReadBlocking(FLEXSPI_Type *base, uint32_t *buffer, size_t size) { uint8_t rxWatermark = ((base->IPRXFCR & FLEXSPI_IPRXFCR_RXWMRK_MASK) >> FLEXSPI_IPRXFCR_RXWMRK_SHIFT) + 1; uint32_t status; status_t result = kStatus_Success; uint32_t i = 0; /* Send data buffer */ while (size) { if (size >= 8 * rxWatermark) { /* Wait until there is room in the fifo. This also checks for errors. */ while (!((status = base->INTR) & kFLEXSPI_IpRxFifoWatermarkAvailableFlag)) { result = FLEXSPI_CheckAndClearError(base, status); if (result) { return result; } } } else { /* Wait fill level. This also checks for errors. */ while (size > ((((base->IPRXFSTS) & FLEXSPI_IPRXFSTS_FILL_MASK) >> FLEXSPI_IPRXFSTS_FILL_SHIFT) * 8U)) { result = FLEXSPI_CheckAndClearError(base, base->INTR); if (result) { return result; } } } result = FLEXSPI_CheckAndClearError(base, base->INTR); if (result) { return result; } /* Read watermark level data from rx fifo . */ if (size >= 8 * rxWatermark) { for (i = 0; i < 2 * rxWatermark; i++) { *buffer++ = base->RFDR[i]; } size = size - 8 * rxWatermark; } else { for (i = 0; i < (size / 4 + 1); i++) { *buffer++ = base->RFDR[i]; } size = 0; } /* Pop out a watermark level datas from IP RX FIFO. */ base->INTR |= kFLEXSPI_IpRxFifoWatermarkAvailableFlag; } return result; } status_t FLEXSPI_TransferBlocking(FLEXSPI_Type *base, flexspi_transfer_t *xfer) { uint32_t configValue = 0; status_t result = kStatus_Success; /* Clear sequence pointer before sending data to external devices. */ base->FLSHCR2[xfer->port] |= FLEXSPI_FLSHCR2_CLRINSTRPTR_MASK; /* Clear former pending status before start this tranfer. */ base->INTR |= FLEXSPI_INTR_AHBCMDERR_MASK | FLEXSPI_INTR_IPCMDERR_MASK | FLEXSPI_INTR_AHBCMDGE_MASK | FLEXSPI_INTR_IPCMDGE_MASK; /* Configure base addresss. */ base->IPCR0 = xfer->deviceAddress; /* Reset fifos. */ base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK; base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK; /* Configure data size. */ if ((xfer->cmdType == kFLEXSPI_Read) || (xfer->cmdType == kFLEXSPI_Write) || (xfer->cmdType == kFLEXSPI_Config)) { configValue = FLEXSPI_IPCR1_IDATSZ(xfer->dataSize); } /* Configure sequence ID. */ configValue |= FLEXSPI_IPCR1_ISEQID(xfer->seqIndex) | FLEXSPI_IPCR1_ISEQNUM(xfer->SeqNumber - 1); base->IPCR1 = configValue; /* Start Transfer. */ base->IPCMD |= FLEXSPI_IPCMD_TRG_MASK; if ((xfer->cmdType == kFLEXSPI_Write) || (xfer->cmdType == kFLEXSPI_Config)) { result = FLEXSPI_WriteBlocking(base, xfer->data, xfer->dataSize); } else if (xfer->cmdType == kFLEXSPI_Read) { result = FLEXSPI_ReadBlocking(base, xfer->data, xfer->dataSize); } else { } /* Wait for bus idle. */ while (!FLEXSPI_GetBusIdleStatus(base)) { } if (xfer->cmdType == kFLEXSPI_Command) { result = FLEXSPI_CheckAndClearError(base, base->INTR); } return result; } void FLEXSPI_TransferCreateHandle(FLEXSPI_Type *base, flexspi_handle_t *handle, flexspi_transfer_callback_t callback, void *userData) { assert(handle); uint32_t instance = FLEXSPI_GetInstance(base); /* Zero handle. */ memset(handle, 0, sizeof(*handle)); /* Set callback and userData. */ handle->completionCallback = callback; handle->userData = userData; #if defined(FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ) && FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ /* Save the context in global variables to support the double weak mechanism. */ s_flexspiHandle[instance] = handle; #endif /* Enable NVIC interrupt. */ EnableIRQ(s_flexspiIrqs[instance]); } status_t FLEXSPI_TransferNonBlocking(FLEXSPI_Type *base, flexspi_handle_t *handle, flexspi_transfer_t *xfer) { uint32_t configValue = 0; status_t result = kStatus_Success; assert(handle); assert(xfer); /* Check if the I2C bus is idle - if not return busy status. */ if (handle->state != kFLEXSPI_Idle) { result = kStatus_FLEXSPI_Busy; } else { handle->data = xfer->data; handle->dataSize = xfer->dataSize; handle->transferTotalSize = xfer->dataSize; handle->state = (xfer->cmdType == kFLEXSPI_Read) ? kFLEXSPI_BusyRead : kFLEXSPI_BusyWrite; /* Clear sequence pointer before sending data to external devices. */ base->FLSHCR2[xfer->port] |= FLEXSPI_FLSHCR2_CLRINSTRPTR_MASK; /* Clear former pending status before start this tranfer. */ base->INTR |= FLEXSPI_INTR_AHBCMDERR_MASK | FLEXSPI_INTR_IPCMDERR_MASK | FLEXSPI_INTR_AHBCMDGE_MASK | FLEXSPI_INTR_IPCMDGE_MASK; /* Configure base addresss. */ base->IPCR0 = xfer->deviceAddress; /* Reset fifos. */ base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK; base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK; /* Configure data size. */ if ((xfer->cmdType == kFLEXSPI_Read) || (xfer->cmdType == kFLEXSPI_Write)) { configValue = FLEXSPI_IPCR1_IDATSZ(xfer->dataSize); } /* Configure sequence ID. */ configValue |= FLEXSPI_IPCR1_ISEQID(xfer->seqIndex) | FLEXSPI_IPCR1_ISEQNUM(xfer->SeqNumber - 1); base->IPCR1 = configValue; /* Start Transfer. */ base->IPCMD |= FLEXSPI_IPCMD_TRG_MASK; if (handle->state == kFLEXSPI_BusyRead) { FLEXSPI_EnableInterrupts(base, kFLEXSPI_IpRxFifoWatermarkAvailableFlag | kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag | kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag); } else { FLEXSPI_EnableInterrupts(base, kFLEXSPI_IpTxFifoWatermarkEmpltyFlag | kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag | kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag); } } return result; } status_t FLEXSPI_TransferGetCount(FLEXSPI_Type *base, flexspi_handle_t *handle, size_t *count) { assert(handle); status_t result = kStatus_Success; if (handle->state == kFLEXSPI_Idle) { result = kStatus_NoTransferInProgress; } else { *count = handle->transferTotalSize - handle->dataSize; } return result; } void FLEXSPI_TransferAbort(FLEXSPI_Type *base, flexspi_handle_t *handle) { assert(handle); FLEXSPI_DisableInterrupts(base, kIrqFlags); handle->state = kFLEXSPI_Idle; } void FLEXSPI_TransferHandleIRQ(FLEXSPI_Type *base, flexspi_handle_t *handle) { uint8_t status; status_t result; uint8_t txWatermark; uint8_t rxWatermark; uint8_t i = 0; status = base->INTR; result = FLEXSPI_CheckAndClearError(base, status); if ((result != kStatus_Success) && (handle->completionCallback != NULL)) { FLEXSPI_TransferAbort(base, handle); if (handle->completionCallback) { handle->completionCallback(base, handle, result, handle->userData); } return; } if ((status & kFLEXSPI_IpRxFifoWatermarkAvailableFlag) && (handle->state == kFLEXSPI_BusyRead)) { rxWatermark = ((base->IPRXFCR & FLEXSPI_IPRXFCR_RXWMRK_MASK) >> FLEXSPI_IPRXFCR_RXWMRK_SHIFT) + 1; /* Read watermark level data from rx fifo . */ if (handle->dataSize >= 8 * rxWatermark) { /* Read watermark level data from rx fifo . */ for (i = 0; i < 2 * rxWatermark; i++) { *handle->data++ = base->RFDR[i]; } handle->dataSize = handle->dataSize - 8 * rxWatermark; } else { for (i = 0; i < (handle->dataSize / 4 + 1); i++) { *handle->data++ = base->RFDR[i]; } handle->dataSize = 0; } /* Pop out a watermark level datas from IP RX FIFO. */ base->INTR |= kFLEXSPI_IpRxFifoWatermarkAvailableFlag; } if (status & kFLEXSPI_IpCommandExcutionDoneFlag) { base->INTR |= kFLEXSPI_IpCommandExcutionDoneFlag; FLEXSPI_TransferAbort(base, handle); if (handle->completionCallback) { handle->completionCallback(base, handle, kStatus_Success, handle->userData); } } /* TX FIFO empty interrupt, push watermark level data into tx FIFO. */ if ((status & kFLEXSPI_IpTxFifoWatermarkEmpltyFlag) && (handle->state == kFLEXSPI_BusyWrite)) { if (handle->dataSize) { txWatermark = ((base->IPTXFCR & FLEXSPI_IPTXFCR_TXWMRK_MASK) >> FLEXSPI_IPTXFCR_TXWMRK_SHIFT) + 1; /* Write watermark level data into tx fifo . */ if (handle->dataSize >= 8 * txWatermark) { for (i = 0; i < 2 * txWatermark; i++) { base->TFDR[i] = *handle->data++; } handle->dataSize = handle->dataSize - 8 * txWatermark; } else { for (i = 0; i < (handle->dataSize / 4 + 1); i++) { base->TFDR[i] = *handle->data++; } handle->dataSize = 0; } /* Push a watermark level datas into IP TX FIFO. */ base->INTR |= kFLEXSPI_IpTxFifoWatermarkEmpltyFlag; } } else { } } #if defined(FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ) && FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ #if defined(FLEXSPI) void FLEXSPI_DriverIRQHandler(void) { FLEXSPI_TransferHandleIRQ(FLEXSPI, s_flexspiHandle[0]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(FLEXSPI0) void FLEXSPI0_DriverIRQHandler(void) { FLEXSPI_TransferHandleIRQ(FLEXSPI0, s_flexspiHandle[0]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(FLEXSPI1) void FLEXSPI1_DriverIRQHandler(void) { FLEXSPI_TransferHandleIRQ(FLEXSPI1, s_flexspiHandle[1]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #endif