/* * Copyright (C) Cvitek Co., Ltd. 2019-2020. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "cvi_eth_phy.h" #include "mii.h" // #define CVI_ETH_PHY_LOOPBACK #define LOOPBACK_XMII2MAC 0x8000 #define LOOPBACK_PCS2MAC 0x2000 #define LOOPBACK_PMA2MAC 0x1000 #define LOOPBACK_RMII2PHY 0x0080 #define EPHY_EFUSE_VALID_BIT_BASE 0x03050120 #define EPHY_EFUSE_TXECHORC_FLAG 0x00000100 // bit 8 #define EPHY_EFUSE_TXITUNE_FLAG 0x00000200 // bit 9 #define EPHY_EFUSE_TXRXTERM_FLAG 0x00000800 // bit 11 static inline bool phy_if_mode_is_rgmii(phy_if_mode_t interface) { return interface >= PHY_IF_MODE_RGMII && interface <= PHY_IF_MODE_RGMII_TXID; } #if defined(CVI_ETH_PHY_LOOPBACK) static int cv181x_set_phy_loopback(eth_phy_handle_t handle, phy_loopback_mode_t mode) { return 0; } #endif /** \brief Configure the cv181x before make it start up. \param[in] handle phy handle \return error code */ /* CVITEK cv181x */ int32_t cv181x_config(eth_phy_handle_t handle) { assert(handle); eth_phy_dev_t *dev = (eth_phy_dev_t *)handle; uint32_t val = 0; // eth_phy_reset(dev); // set rg_ephy_apb_rw_sel 0x0804@[0]=1/APB by using APB interface mmio_write_32(0x03009804, 0x0001); // Release 0x0800[0]=0/shutdown // mmio_write_32(0x03009800, 0x0900); // Release 0x0800[2]=1/dig_rst_n, Let mii_reg can be accessabile // mmio_write_32(0x03009800, 0x0904); //mdelay(10); // ANA INIT (PD/EN), switch to MII-page5 mmio_write_32(0x0300907c, 0x0500); // Release ANA_PD p5.0x10@[13:8] = 6'b001100 mmio_write_32(0x03009040, 0x0c00); // Release ANA_EN p5.0x10@[7:0] = 8'b01111110 mmio_write_32(0x03009040, 0x0c7e); // Wait PLL_Lock, Lock_Status p5.0x12@[15] = 1 //mdelay(1); // Release 0x0800[1] = 1/ana_rst_n mmio_write_32(0x03009800, 0x0906); // ANA INIT // @Switch to MII-page5 mmio_write_32(0x0300907c, 0x0500); // Efuse register // Set Double Bias Current //Set rg_eth_txitune1 0x03009064 [15:8] //Set rg_eth_txitune0 0x03009064 [7:0] if ((mmio_read_32(EPHY_EFUSE_VALID_BIT_BASE) & EPHY_EFUSE_TXITUNE_FLAG) == EPHY_EFUSE_TXITUNE_FLAG) { val = ((mmio_read_32(0x03051024) >> 24) & 0xFF) | (((mmio_read_32(0x03051024) >> 16) & 0xFF) << 8); mmio_clrsetbits_32(0x03009064, 0xFFFF, val); } else mmio_write_32(0x03009064, 0x5a5a); // Set Echo_I // Set rg_eth_txechoiadj 0x03009054 [15:8] if ((mmio_read_32(EPHY_EFUSE_VALID_BIT_BASE) & EPHY_EFUSE_TXECHORC_FLAG) == EPHY_EFUSE_TXECHORC_FLAG) { mmio_clrsetbits_32(0x03009054, 0xFF00, ((mmio_read_32(0x03051024) >> 8) & 0xFF) << 8); } else mmio_write_32(0x03009054, 0x0000); //Set TX_Rterm & Echo_RC_Delay // Set rg_eth_txrterm_p1 0x03009058 [11:8] // Set rg_eth_txrterm 0x03009058 [7:4] // Set rg_eth_txechorcadj 0x03009058 [3:0] if ((mmio_read_32(EPHY_EFUSE_VALID_BIT_BASE) & EPHY_EFUSE_TXRXTERM_FLAG) == EPHY_EFUSE_TXRXTERM_FLAG) { val = (((mmio_read_32(0x03051020) >> 28) & 0xF) << 4) | (((mmio_read_32(0x03051020) >> 24) & 0xF) << 8); mmio_clrsetbits_32(0x03009058, 0xFF0, val); } else mmio_write_32(0x03009058, 0x0bb0); // ETH_100BaseT // Set Rise update mmio_write_32(0x0300905c, 0x0c10); // Set Falling phase mmio_write_32(0x03009068, 0x0003); // Set Double TX Bias Current mmio_write_32(0x03009054, 0x0000); // Switch to MII-page16 mmio_write_32(0x0300907c, 0x1000); // Set MLT3 Positive phase code, Set MLT3 +0 mmio_write_32(0x03009068, 0x1000); mmio_write_32(0x0300906c, 0x3020); mmio_write_32(0x03009070, 0x5040); mmio_write_32(0x03009074, 0x7060); // Set MLT3 +I mmio_write_32(0x03009058, 0x1708); mmio_write_32(0x0300905c, 0x3827); mmio_write_32(0x03009060, 0x5748); mmio_write_32(0x03009064, 0x7867); // Switch to MII-page17 mmio_write_32(0x0300907c, 0x1100); // Set MLT3 Negative phase code, Set MLT3 -0 mmio_write_32(0x03009040, 0x9080); mmio_write_32(0x03009044, 0xb0a0); mmio_write_32(0x03009048, 0xd0c0); mmio_write_32(0x0300904c, 0xf0e0); // Set MLT3 -I mmio_write_32(0x03009050, 0x9788); mmio_write_32(0x03009054, 0xb8a7); mmio_write_32(0x03009058, 0xd7c8); mmio_write_32(0x0300905c, 0xf8e7); // @Switch to MII-page5 mmio_write_32(0x0300907c, 0x0500); // En TX_Rterm mmio_write_32(0x03009040, (0x0001 | mmio_read_32(0x03009040))); // Link Pulse // Switch to MII-page10 mmio_write_32(0x0300907c, 0x0a00); // Set Link Pulse mmio_write_32(0x03009040, 0x2000); mmio_write_32(0x03009044, 0x3832); mmio_write_32(0x03009048, 0x3132); mmio_write_32(0x0300904c, 0x2d2f); mmio_write_32(0x03009050, 0x2c2d); mmio_write_32(0x03009054, 0x1b2b); mmio_write_32(0x03009058, 0x94a0); mmio_write_32(0x0300905c, 0x8990); mmio_write_32(0x03009060, 0x8788); mmio_write_32(0x03009064, 0x8485); mmio_write_32(0x03009068, 0x8283); mmio_write_32(0x0300906c, 0x8182); mmio_write_32(0x03009070, 0x0081); // TP_IDLE // Switch to MII-page11 mmio_write_32(0x0300907c, 0x0b00); // Set TP_IDLE mmio_write_32(0x03009040, 0x5252); mmio_write_32(0x03009044, 0x5252); mmio_write_32(0x03009048, 0x4B52); mmio_write_32(0x0300904c, 0x3D47); mmio_write_32(0x03009050, 0xAA99); mmio_write_32(0x03009054, 0x989E); mmio_write_32(0x03009058, 0x9395); mmio_write_32(0x0300905C, 0x9091); mmio_write_32(0x03009060, 0x8E8F); mmio_write_32(0x03009064, 0x8D8E); mmio_write_32(0x03009068, 0x8C8C); mmio_write_32(0x0300906C, 0x8B8B); mmio_write_32(0x03009070, 0x008A); // ETH 10BaseT Data // Switch to MII-page13 mmio_write_32(0x0300907c, 0x0d00); mmio_write_32(0x03009040, 0x1E0A); mmio_write_32(0x03009044, 0x3862); mmio_write_32(0x03009048, 0x1E62); mmio_write_32(0x0300904c, 0x2A08); mmio_write_32(0x03009050, 0x244C); mmio_write_32(0x03009054, 0x1A44); mmio_write_32(0x03009058, 0x061C); // Switch to MII-page14 mmio_write_32(0x0300907c, 0x0e00); mmio_write_32(0x03009040, 0x2D30); mmio_write_32(0x03009044, 0x3470); mmio_write_32(0x03009048, 0x0648); mmio_write_32(0x0300904c, 0x261C); mmio_write_32(0x03009050, 0x3160); mmio_write_32(0x03009054, 0x2D5E); // Switch to MII-page15 mmio_write_32(0x0300907c, 0x0f00); mmio_write_32(0x03009040, 0x2922); mmio_write_32(0x03009044, 0x366E); mmio_write_32(0x03009048, 0x0752); mmio_write_32(0x0300904c, 0x2556); mmio_write_32(0x03009050, 0x2348); mmio_write_32(0x03009054, 0x0C30); // Switch to MII-page16 mmio_write_32(0x0300907c, 0x1000); mmio_write_32(0x03009040, 0x1E08); mmio_write_32(0x03009044, 0x3868); mmio_write_32(0x03009048, 0x1462); mmio_write_32(0x0300904c, 0x1A0E); mmio_write_32(0x03009050, 0x305E); mmio_write_32(0x03009054, 0x2F62); // LED PAD MUX mmio_write_32(0x030010e0, 0x05); mmio_write_32(0x030010e4, 0x05); //(SD1_CLK selphy) mmio_write_32(0x050270b0, 0x11111111); //(SD1_CMD selphy) mmio_write_32(0x050270b4, 0x11111111); // LED // Switch to MII-page1 mmio_write_32(0x0300907c, 0x0100); // select LED_LNK/SPD/DPX out to LED_PAD mmio_write_32(0x03009068, (mmio_read_32(0x03009068) & ~0x0f00)); // @Switch to MII-page0 mmio_write_32(0x0300907c, 0x0000); // PHY_ID mmio_write_32(0x03009008, 0x0043); mmio_write_32(0x0300900c, 0x5649); // Switch to MII-page19 mmio_write_32(0x0300907c, 0x1300); mmio_write_32(0x03009058, 0x0012); // set agc max/min swing mmio_write_32(0x0300905C, 0x6848); // Switch to MII-page18 mmio_write_32(0x0300907c, 0x1200); // p18.0x12, lpf mmio_write_32(0x03009048, 0x0808); mmio_write_32(0x0300904C, 0x0808); // hpf //sean mmio_write_32(0x03009050, 0x32f8); mmio_write_32(0x03009054, 0xf8dc); // Switch to MII-page0 mmio_write_32(0x0300907c, 0x0000); // EPHY start auto-neg procedure mmio_write_32(0x03009800, 0x090e); // switch to MDIO control by ETH_MAC mmio_write_32(0x03009804, 0x0000); genphy_config(dev); #if defined(CVI_ETH_PHY_LOOPBACK) cv181x_set_phy_loopback(handle, LOOPBACK_PCS2MAC); #endif return 0; } /** \brief Parse 88E1xxx's speed and duplex from status register. \param[in] dev phy device pointer \return error code */ static int32_t cv181x_parse_status(eth_phy_dev_t *dev) { assert(dev); assert(dev->priv); eth_phy_priv_t *priv = dev->priv; uint8_t phy_addr = dev->phy_addr; uint16_t mii_reg; int32_t ret; ret = eth_phy_read(priv, phy_addr, CVI_MII_BMSR, &mii_reg); if (ret != 0) { return ret; } if (mii_reg & (CVI_BMSR_100FULL | CVI_BMSR_100HALF)) priv->link_info.speed = CSI_ETH_SPEED_100M; else priv->link_info.speed = CSI_ETH_SPEED_10M; if (mii_reg & (CVI_BMSR_10FULL | CVI_BMSR_100FULL)) priv->link_info.duplex = CSI_ETH_DUPLEX_FULL; else priv->link_info.duplex = CSI_ETH_DUPLEX_HALF; return 0; } /** \brief Start up the 88E1111. \param[in] handle phy handle \return error code */ int32_t cv181x_start(eth_phy_handle_t handle) { assert(handle); eth_phy_dev_t *dev = (eth_phy_dev_t *)handle; /* Read the Status (2x to make sure link is right) */ genphy_update_link(dev); return cv181x_parse_status(dev); } /** \brief Halt the cv181x. \param[in] handle phy handle \return error code */ int32_t cv181x_stop(eth_phy_handle_t handle) { return 0; } /** \brief Update the cv181x's link state. \param[in] handle phy handle \return error code */ int32_t cv181x_update_link(eth_phy_handle_t handle) { assert(handle); eth_phy_dev_t *dev = (eth_phy_dev_t *)handle; return cv181x_parse_status(dev);; } /* Support for cv181x PHYs */ eth_phy_dev_t cv181x_device = { .name = "CVITEK,CV181X", .phy_id = 0x00435649, .mask = 0xffffffff, .features = CVI_PHY_BASIC_FEATURES, .config = &cv181x_config, .start = &cv181x_start, .stop = &cv181x_stop, //.loopback = &cv181x_loopback, //.update_link = &cv181x_update_link, };