/* * Copyright (c) 2006-2024 RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2012-06-02 Bernard the first version * 2018-08-02 Tanek split run and sleep modes, support custom mode * 2019-04-28 Zero-Free improve PM mode and device ops interface * 2020-11-23 zhangsz update pm mode select * 2020-11-27 zhangsz update pm 2.0 * 2024-07-04 wdfk-prog The device is registered and uninstalled by linked list */ #include #include #include #include #ifdef RT_USING_PM /* tickless threshold time */ #ifndef PM_TICKLESS_THRESHOLD_TIME #define PM_TICKLESS_THRESHOLD_TIME 2 #endif /* tickless threshold : sleep mode */ #ifndef PM_TICKLESS_THRESHOLD_MODE #define PM_TICKLESS_THRESHOLD_MODE PM_SLEEP_MODE_IDLE #endif /* busy : sleep mode */ #ifndef PM_BUSY_SLEEP_MODE #define PM_BUSY_SLEEP_MODE PM_SLEEP_MODE_IDLE #endif /* suspend : suspend sleep mode */ #ifndef PM_SUSPEND_SLEEP_MODE #define PM_SUSPEND_SLEEP_MODE PM_SLEEP_MODE_IDLE #endif #ifdef PM_ENABLE_THRESHOLD_SLEEP_MODE #ifndef PM_LIGHT_THRESHOLD_TIME #define PM_LIGHT_THRESHOLD_TIME 5 #endif #ifndef PM_DEEP_THRESHOLD_TIME #define PM_DEEP_THRESHOLD_TIME 20 #endif #ifndef PM_STANDBY_THRESHOLD_TIME #define PM_STANDBY_THRESHOLD_TIME 100 #endif #endif static struct rt_pm _pm; /* default mode : system power on */ static rt_uint8_t _pm_default_sleep = RT_PM_DEFAULT_SLEEP_MODE; /* default deepsleep mode : tick-less mode */ static rt_uint8_t _pm_default_deepsleep = RT_PM_DEFAULT_DEEPSLEEP_MODE; static struct rt_pm_notify _pm_notify; static rt_uint8_t _pm_init_flag = 0; rt_weak rt_uint32_t rt_pm_enter_critical(rt_uint8_t sleep_mode) { return rt_hw_interrupt_disable(); } rt_weak void rt_pm_exit_critical(rt_uint32_t ctx, rt_uint8_t sleep_mode) { rt_hw_interrupt_enable(ctx); } /* lptimer start */ static void pm_lptimer_start(struct rt_pm *pm, uint32_t timeout) { if (_pm.ops->timer_start != RT_NULL) _pm.ops->timer_start(pm, timeout); } /* lptimer stop */ static void pm_lptimer_stop(struct rt_pm *pm) { if (_pm.ops->timer_stop != RT_NULL) _pm.ops->timer_stop(pm); } /* lptimer get timeout tick */ static rt_tick_t pm_lptimer_get_timeout(struct rt_pm *pm) { if (_pm.ops->timer_get_tick != RT_NULL) return _pm.ops->timer_get_tick(pm); return RT_TICK_MAX; } /* enter sleep mode */ static void pm_sleep(struct rt_pm *pm, uint8_t sleep_mode) { if (_pm.ops->sleep != RT_NULL) _pm.ops->sleep(pm, sleep_mode); } /** * This function will suspend all registered devices */ static rt_err_t _pm_device_suspend(rt_uint8_t mode) { rt_err_t ret = RT_EOK; struct rt_device_pm *device_pm = RT_NULL; rt_slist_t *node = RT_NULL; for (node = rt_slist_first(&_pm.device_list); node; node = rt_slist_next(node)) { device_pm = rt_slist_entry(node, struct rt_device_pm, list); if (device_pm->ops != RT_NULL && device_pm->ops->suspend != RT_NULL) { ret = device_pm->ops->suspend(device_pm->device, mode); if(ret != RT_EOK) { break; } } } return ret; } /** * This function will resume all registered devices */ static void _pm_device_resume(rt_uint8_t mode) { struct rt_device_pm *device_pm = RT_NULL; rt_slist_t *node = RT_NULL; for (node = rt_slist_first(&_pm.device_list); node; node = rt_slist_next(node)) { device_pm = rt_slist_entry(node, struct rt_device_pm, list); if (device_pm->ops != RT_NULL && device_pm->ops->resume != RT_NULL) { device_pm->ops->resume(device_pm->device, mode); } } } /** * This function will update the frequency of all registered devices */ static void _pm_device_frequency_change(rt_uint8_t mode) { struct rt_device_pm *device_pm = RT_NULL; rt_slist_t *node = RT_NULL; for (node = rt_slist_first(&_pm.device_list); node; node = rt_slist_next(node)) { device_pm = rt_slist_entry(node, struct rt_device_pm, list); if (device_pm->ops->frequency_change != RT_NULL) { device_pm->ops->frequency_change(device_pm->device, mode); } } } /** * This function will update the system clock frequency when idle */ static void _pm_frequency_scaling(struct rt_pm *pm) { rt_base_t level = 0; if (pm->flags & RT_PM_FREQUENCY_PENDING) { level = rt_hw_interrupt_disable(); /* change system runing mode */ if(pm->ops->run != RT_NULL) { pm->ops->run(pm, pm->run_mode); } /* changer device frequency */ _pm_device_frequency_change(pm->run_mode); pm->flags &= ~RT_PM_FREQUENCY_PENDING; rt_hw_interrupt_enable(level); } } /** * judge sleep mode from sleep request * * @param none * * @return sleep mode */ static rt_uint8_t _judge_sleep_mode(void) { rt_uint16_t index; rt_uint16_t len; for (index = 0; index < PM_SLEEP_MODE_MAX -1; index++) { for (len = 0; len < ((PM_MODULE_MAX_ID + 31) / 32); len++) { if (_pm.sleep_status[index][len] != 0x00) return index; } } return PM_SLEEP_MODE_MAX; /* default sleep mode */ } /** * This function selects the sleep mode according to the rt_pm_request/rt_pm_release count. */ static rt_uint8_t _pm_select_sleep_mode(struct rt_pm *pm) { int index; rt_uint8_t mode; mode = _pm_default_deepsleep; rt_uint8_t request_mode = _judge_sleep_mode(); for (index = PM_SLEEP_MODE_NONE; index < PM_SLEEP_MODE_MAX; index ++) { if (pm->modes[index]) { mode = index; break; } } /* select the high power mode */ if (request_mode < mode) mode = request_mode; return mode; } /** * pm module request delay sleep. */ void rt_pm_module_delay_sleep(rt_uint8_t module_id, rt_tick_t timeout) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) return; if (module_id > (PM_MODULE_MAX_ID - 1)) return; level = rt_hw_interrupt_disable(); pm = &_pm; pm->module_status[module_id].busy_flag = RT_TRUE; pm->module_status[module_id].timeout = timeout; pm->module_status[module_id].start_time = rt_tick_get(); rt_hw_interrupt_enable(level); } /** * This function check if all modules in idle status. */ static rt_bool_t _pm_device_check_idle(void) { struct rt_pm *pm; if (_pm_init_flag == 0) return RT_TRUE; pm = &_pm; for (int i = 0; i < PM_MODULE_MAX_ID; i++) { if (pm->module_status[i].busy_flag == RT_TRUE) { if (rt_tick_get() - pm->module_status[i].start_time > pm->module_status[i].timeout) { pm->module_status[i].busy_flag = RT_FALSE; pm->module_status[i].timeout = 0x00; } } if (pm->module_status[i].busy_flag == RT_TRUE) { return RT_FALSE; } } return RT_TRUE; } /** * @brief Get the next system wake-up time * @note When used by default, it goes into STANDBY mode and sleeps forever. tickless external rewriting is required * @param mode: sleep mode * @retval timeout_tick */ rt_weak rt_tick_t pm_timer_next_timeout_tick(rt_uint8_t mode) { switch (mode) { case PM_SLEEP_MODE_LIGHT: return rt_timer_next_timeout_tick(); case PM_SLEEP_MODE_DEEP: case PM_SLEEP_MODE_STANDBY: return rt_lptimer_next_timeout_tick(); } return RT_TICK_MAX; } /** * This function will judge sleep mode from threshold timeout. * * @param cur_mode the current pm sleep mode * @param timeout_tick the threshold timeout * * @return none */ rt_weak rt_uint8_t pm_get_sleep_threshold_mode(rt_uint8_t cur_mode, rt_tick_t timeout_tick) { rt_uint8_t sleep_mode = cur_mode; if (_pm_init_flag == 0) return sleep_mode; if (cur_mode >= PM_SLEEP_MODE_MAX) return sleep_mode; #ifdef PM_ENABLE_THRESHOLD_SLEEP_MODE switch (cur_mode) { case PM_SLEEP_MODE_NONE: case PM_SLEEP_MODE_IDLE: break; case PM_SLEEP_MODE_LIGHT: if (timeout_tick < PM_LIGHT_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_IDLE; break; case PM_SLEEP_MODE_DEEP: if (timeout_tick < PM_LIGHT_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_IDLE; else if (timeout_tick < PM_DEEP_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_LIGHT; break; case PM_SLEEP_MODE_STANDBY: if (timeout_tick < PM_LIGHT_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_IDLE; else if (timeout_tick < PM_DEEP_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_LIGHT; else if (timeout_tick < PM_STANDBY_THRESHOLD_TIME) sleep_mode = PM_SLEEP_MODE_DEEP; } cur_mode = sleep_mode; #else if (timeout_tick < PM_TICKLESS_THRESHOLD_TIME) { cur_mode = PM_SLEEP_MODE_IDLE; } #endif return cur_mode; } /** * This function changes the power sleep mode base on the result of selection */ static void _pm_change_sleep_mode(struct rt_pm *pm) { rt_tick_t timeout_tick = 0, delta_tick = 0; rt_base_t level = 0; uint8_t sleep_mode = PM_SLEEP_MODE_DEEP; level = rt_pm_enter_critical(pm->sleep_mode); /* judge sleep mode from module request */ pm->sleep_mode = _pm_select_sleep_mode(pm); /* module busy request check */ if (_pm_device_check_idle() == RT_FALSE) { sleep_mode = PM_BUSY_SLEEP_MODE; if (sleep_mode < pm->sleep_mode) { pm->sleep_mode = sleep_mode; /* judge the highest sleep mode */ } } if (_pm.sleep_mode == PM_SLEEP_MODE_NONE) { pm_sleep(pm, PM_SLEEP_MODE_NONE); rt_pm_exit_critical(level, pm->sleep_mode); } else { /* Notify app will enter sleep mode */ if (_pm_notify.notify) { _pm_notify.notify(RT_PM_ENTER_SLEEP, pm->sleep_mode, _pm_notify.data); } /* Suspend all peripheral device */ #ifdef PM_ENABLE_SUSPEND_SLEEP_MODE rt_err_t ret = _pm_device_suspend(pm->sleep_mode); if (ret != RT_EOK) { _pm_device_resume(pm->sleep_mode); if (_pm_notify.notify) { _pm_notify.notify(RT_PM_EXIT_SLEEP, pm->sleep_mode, _pm_notify.data); } if (pm->sleep_mode > PM_SUSPEND_SLEEP_MODE) { pm->sleep_mode = PM_SUSPEND_SLEEP_MODE; } pm->ops->sleep(pm, pm->sleep_mode); /* suspend failed */ rt_pm_exit_critical(level, pm->sleep_mode); return; } #else _pm_device_suspend(pm->sleep_mode); #endif /* Tickless*/ if (pm->timer_mask & (0x01 << pm->sleep_mode)) { timeout_tick = pm_timer_next_timeout_tick(pm->sleep_mode); timeout_tick = timeout_tick - rt_tick_get(); /* Judge sleep_mode from threshold time */ pm->sleep_mode = pm_get_sleep_threshold_mode(pm->sleep_mode, timeout_tick); if (pm->timer_mask & (0x01 << pm->sleep_mode)) { pm_lptimer_start(pm, timeout_tick); } } /* enter lower power state */ pm_sleep(pm, pm->sleep_mode); /* wake up from lower power state*/ if (pm->timer_mask & (0x01 << pm->sleep_mode)) { delta_tick = pm_lptimer_get_timeout(pm); pm_lptimer_stop(pm); if (delta_tick) { rt_interrupt_enter(); rt_tick_increase_tick(delta_tick); rt_interrupt_leave(); } } /* resume all device */ _pm_device_resume(pm->sleep_mode); if (_pm_notify.notify) _pm_notify.notify(RT_PM_EXIT_SLEEP, pm->sleep_mode, _pm_notify.data); rt_pm_exit_critical(level, pm->sleep_mode); } } /** * This function will enter corresponding power mode. */ void rt_system_power_manager(void) { if (_pm_init_flag == 0 || _pm.ops == RT_NULL) { return; } /* CPU frequency scaling according to the runing mode settings */ _pm_frequency_scaling(&_pm); /* Low Power Mode Processing */ _pm_change_sleep_mode(&_pm); } /** * Upper application or device driver requests the system * stall in corresponding power mode. * * @param parameter the parameter of run mode or sleep mode */ rt_err_t rt_pm_request(rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; if (pm->modes[mode] < 255) pm->modes[mode] ++; rt_hw_interrupt_enable(level); return RT_EOK; } /** * Upper application or device driver releases the stall * of corresponding power mode. * * @param parameter the parameter of run mode or sleep mode * */ rt_err_t rt_pm_release(rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; if (pm->modes[mode] > 0) pm->modes[mode] --; rt_hw_interrupt_enable(level); return RT_EOK; } /** * Upper application or device driver releases all the stall * of corresponding power mode. * * @param parameter the parameter of run mode or sleep mode * */ rt_err_t rt_pm_release_all(rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; pm->modes[mode] = 0; rt_hw_interrupt_enable(level); return RT_EOK; } /** * Upper application or device driver requests the system * stall in corresponding power mode. * * @param module_id the application or device module id * @param mode the system power sleep mode */ rt_err_t rt_pm_module_request(uint8_t module_id, rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } if (module_id > (PM_MODULE_MAX_ID - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; pm->module_status[module_id].req_status = 0x01; if (pm->modes[mode] < 255) pm->modes[mode] ++; rt_hw_interrupt_enable(level); return RT_EOK; } /** * Upper application or device driver releases the stall * of corresponding power mode. * * @param module_id the application or device module id * @param mode the system power sleep mode * */ rt_err_t rt_pm_module_release(uint8_t module_id, rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } if (module_id > (PM_MODULE_MAX_ID - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; if (pm->modes[mode] > 0) pm->modes[mode] --; if (pm->modes[mode] == 0) pm->module_status[module_id].req_status = 0x00; rt_hw_interrupt_enable(level); return RT_EOK; } /** * Upper application or device driver releases all the stall * of corresponding power mode. * * @param module_id the application or device module id * @param mode the system power sleep mode * */ rt_err_t rt_pm_module_release_all(uint8_t module_id, rt_uint8_t mode) { rt_base_t level; struct rt_pm *pm; if (_pm_init_flag == 0) { return -RT_EPERM; } if (mode > (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); pm = &_pm; pm->modes[mode] = 0; pm->module_status[module_id].req_status = 0x00; rt_hw_interrupt_enable(level); return RT_EOK; } /** * This function will let current module work with specified sleep mode. * * @param module_id the pm module id * @param mode the pm sleep mode * * @return none */ rt_err_t rt_pm_sleep_request(rt_uint16_t module_id, rt_uint8_t mode) { rt_base_t level; if (module_id >= PM_MODULE_MAX_ID) { return -RT_EINVAL; } if (mode >= (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); _pm.sleep_status[mode][module_id / 32] |= 1 << (module_id % 32); rt_hw_interrupt_enable(level); return RT_EOK; } /** * This function will let current module work with PM_SLEEP_MODE_NONE mode. * * @param module_id the pm module id * * @return NULL */ rt_err_t rt_pm_sleep_none_request(rt_uint16_t module_id) { return rt_pm_sleep_request(module_id, PM_SLEEP_MODE_NONE); } /** * This function will let current module work with PM_SLEEP_MODE_IDLE mode. * * @param module_id the pm module id * * @return NULL */ rt_err_t rt_pm_sleep_idle_request(rt_uint16_t module_id) { return rt_pm_sleep_request(module_id, PM_SLEEP_MODE_IDLE); } /** * This function will let current module work with PM_SLEEP_MODE_LIGHT mode. * * @param module_id the pm module id * * @return NULL */ rt_err_t rt_pm_sleep_light_request(rt_uint16_t module_id) { return rt_pm_sleep_request(module_id, PM_SLEEP_MODE_LIGHT); } /** * When current module don't work, release requested sleep mode. * * @param module_id the pm module id * @param mode the pm sleep mode * * @return NULL */ rt_err_t rt_pm_sleep_release(rt_uint16_t module_id, rt_uint8_t mode) { rt_base_t level; if (module_id >= PM_MODULE_MAX_ID) { return -RT_EINVAL; } if (mode >= (PM_SLEEP_MODE_MAX - 1)) { return -RT_EINVAL; } level = rt_hw_interrupt_disable(); _pm.sleep_status[mode][module_id / 32] &= ~(1 << (module_id % 32)); rt_hw_interrupt_enable(level); return RT_EOK; } /** * The specified module release the requested PM_SLEEP_MODE_NONE mode * * @param module_id the pm module id * * @return none */ rt_err_t rt_pm_sleep_none_release(rt_uint16_t module_id) { return rt_pm_sleep_release(module_id, PM_SLEEP_MODE_NONE); } /** * The specified module release the requested PM_SLEEP_MODE_IDLE mode * * @param module_id the pm module id * * @return none */ rt_err_t rt_pm_sleep_idle_release(rt_uint16_t module_id) { return rt_pm_sleep_release(module_id, PM_SLEEP_MODE_IDLE); } /** * The specified module release the requested PM_SLEEP_MODE_LIGHT mode * * @param module_id the pm module id * * @return none */ rt_err_t rt_pm_sleep_light_release(rt_uint16_t module_id) { return rt_pm_sleep_release(module_id, PM_SLEEP_MODE_LIGHT); } /** * Register a device with PM feature * * @param device the device with PM feature * @param ops the PM ops for device */ void rt_pm_device_register(struct rt_device *device, const struct rt_device_pm_ops *ops) { struct rt_device_pm *device_pm; device_pm = RT_KERNEL_MALLOC(sizeof(struct rt_device_pm)); if (device_pm != RT_NULL) { rt_slist_append(&_pm.device_list, &device_pm->list); device_pm->device = device; device_pm->ops = ops; } } /** * Unregister device from PM manager. * * @param device the device with PM feature */ void rt_pm_device_unregister(struct rt_device *device) { struct rt_device_pm *device_pm = RT_NULL; rt_slist_t *node = RT_NULL; for (node = rt_slist_first(&_pm.device_list); node; node = rt_slist_next(node)) { device_pm = rt_slist_entry(node, struct rt_device_pm, list); if (device_pm->device == device) { rt_slist_remove(&_pm.device_list, &device_pm->list); RT_KERNEL_FREE(device_pm); break; } } } /** * This function set notification callback for application */ void rt_pm_notify_set(void (*notify)(rt_uint8_t event, rt_uint8_t mode, void *data), void *data) { _pm_notify.notify = notify; _pm_notify.data = data; } /** * This function set default sleep mode when no pm_request */ void rt_pm_default_set(rt_uint8_t sleep_mode) { _pm_default_sleep = sleep_mode; } /** * RT-Thread device interface for PM device */ static rt_ssize_t _rt_pm_device_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { struct rt_pm *pm; rt_size_t length; length = 0; pm = (struct rt_pm *)dev; RT_ASSERT(pm != RT_NULL); if (pos < PM_SLEEP_MODE_MAX) { int mode; mode = pm->modes[pos]; length = rt_snprintf(buffer, size, "%d", mode); } return length; } static rt_ssize_t _rt_pm_device_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { unsigned char request; if (size) { /* get request */ request = *(unsigned char *)buffer; if (request == 0x01) { rt_pm_request(pos); } else if (request == 0x00) { rt_pm_release(pos); } } return 1; } static rt_err_t _rt_pm_device_control(rt_device_t dev, int cmd, void *args) { rt_uint32_t mode; switch (cmd) { case RT_PM_DEVICE_CTRL_REQUEST: mode = (rt_uint32_t)(rt_ubase_t)args; rt_pm_request(mode); break; case RT_PM_DEVICE_CTRL_RELEASE: mode = (rt_uint32_t)(rt_ubase_t)args; rt_pm_release(mode); break; } return RT_EOK; } rt_err_t rt_pm_run_enter(rt_uint8_t mode) { rt_base_t level = 0; struct rt_pm *pm = RT_NULL; rt_err_t ret = RT_EOK; if (_pm_init_flag == 0) return -RT_EIO; if (mode > PM_RUN_MODE_MAX) return -RT_EINVAL; pm = &_pm; level = rt_hw_interrupt_disable(); if (mode < pm->run_mode) { /* change system runing mode */ if(pm->ops != RT_NULL && pm->ops->run != RT_NULL) { pm->ops->run(pm, mode); } /* changer device frequency */ _pm_device_frequency_change(mode); } else { pm->flags |= RT_PM_FREQUENCY_PENDING; } pm->run_mode = mode; rt_hw_interrupt_enable(level); return ret; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops pm_ops = { RT_NULL, RT_NULL, RT_NULL, _rt_pm_device_read, _rt_pm_device_write, _rt_pm_device_control, }; #endif /** * This function will initialize power management. * * @param ops the PM operations. * @param timer_mask indicates which mode has timer feature. * @param user_data user data */ void rt_system_pm_init(const struct rt_pm_ops *ops, rt_uint8_t timer_mask, void *user_data) { struct rt_device *device; struct rt_pm *pm; pm = &_pm; device = &(_pm.parent); device->type = RT_Device_Class_PM; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; #ifdef RT_USING_DEVICE_OPS device->ops = &pm_ops; #else device->init = RT_NULL; device->open = RT_NULL; device->close = RT_NULL; device->read = _rt_pm_device_read; device->write = _rt_pm_device_write; device->control = _rt_pm_device_control; #endif device->user_data = user_data; /* register PM device to the system */ rt_device_register(device, "pm", RT_DEVICE_FLAG_RDWR); rt_memset(pm->modes, 0, sizeof(pm->modes)); pm->sleep_mode = _pm_default_sleep; /* when system power on, set default sleep modes */ pm->modes[pm->sleep_mode] = 1; pm->module_status[PM_POWER_ID].req_status = 1; pm->run_mode = RT_PM_DEFAULT_RUN_MODE; pm->timer_mask = timer_mask; pm->ops = ops; pm->device_pm = RT_NULL; rt_slist_init(&pm->device_list); #if IDLE_THREAD_STACK_SIZE <= 256 #error "[pm.c ERR] IDLE Stack Size Too Small!" #endif _pm_init_flag = 1; } #ifdef RT_USING_FINSH #include static const char *_pm_sleep_str[] = PM_SLEEP_MODE_NAMES; static const char *_pm_run_str[] = PM_RUN_MODE_NAMES; static void rt_pm_release_mode(int argc, char **argv) { int mode = 0; if (argc >= 2) { mode = atoi(argv[1]); } rt_pm_release(mode); } MSH_CMD_EXPORT_ALIAS(rt_pm_release_mode, pm_release, release power management mode); static void rt_pm_release_mode_all(int argc, char **argv) { int mode = 0; if (argc >= 2) { mode = atoi(argv[1]); } rt_pm_release_all(mode); } MSH_CMD_EXPORT_ALIAS(rt_pm_release_mode_all, pm_release_all, release power management mode count); static void rt_pm_request_mode(int argc, char **argv) { int mode = 0; if (argc >= 2) { mode = atoi(argv[1]); } rt_pm_request(mode); } MSH_CMD_EXPORT_ALIAS(rt_pm_request_mode, pm_request, request power management mode); static void rt_module_release_mode(int argc, char **argv) { int module = 0; int mode = 0; if (argc >= 3) { module = atoi(argv[1]); mode = atoi(argv[2]); } rt_pm_module_release(module, mode); } MSH_CMD_EXPORT_ALIAS(rt_module_release_mode, pm_module_release, release module power mode); static void rt_module_release_mode_all(int argc, char **argv) { int module = 0; int mode = 0; if (argc >= 3) { module = atoi(argv[1]); mode = atoi(argv[2]); } rt_pm_module_release_all(module, mode); } MSH_CMD_EXPORT_ALIAS(rt_module_release_mode_all, pm_module_release_all, release power management mode count); static void rt_module_request_mode(int argc, char **argv) { int module = 0; int mode = 0; if (argc >= 3) { module = atoi(argv[1]); mode = atoi(argv[2]); } rt_pm_module_request(module, mode); } MSH_CMD_EXPORT_ALIAS(rt_module_request_mode, pm_module_request, request power management mode); static void rt_module_delay_sleep(int argc, char **argv) { int module = 0; unsigned int timeout = 0; if (argc >= 3) { module = atoi(argv[1]); timeout = atoi(argv[2]); } rt_pm_module_delay_sleep(module, timeout); } MSH_CMD_EXPORT_ALIAS(rt_module_delay_sleep, pm_module_delay, module request delay sleep); static void rt_pm_run_mode_switch(int argc, char **argv) { int mode = 0; if (argc >= 2) { mode = atoi(argv[1]); } rt_pm_run_enter(mode); } MSH_CMD_EXPORT_ALIAS(rt_pm_run_mode_switch, pm_run, switch power management run mode); rt_uint32_t rt_pm_module_get_status(void) { rt_uint8_t index = 0; struct rt_pm *pm; rt_uint32_t req_status = 0x00; pm = &_pm; for (index = 0; index < PM_MODULE_MAX_ID; index ++) { if (pm->module_status[index].req_status == 0x01) req_status |= 1<sleep_mode; } /* get pm entity pointer */ struct rt_pm *rt_pm_get_handle(void) { return &_pm; } #ifdef PM_ENABLE_DEBUG /** * print current module sleep request list * * @param none * * @return none */ void pm_sleep_dump(void) { uint8_t index; uint16_t len; rt_kprintf("+-------------+--------------+\n"); rt_kprintf("| Sleep Mode | Request List |\n"); rt_kprintf("+-------------+--------------+\n"); for (index = 0; index < PM_SLEEP_MODE_MAX -1; index++) { for (len = 0; len < ((PM_MODULE_MAX_ID + 31) / 32); len++) { rt_kprintf("| Mode[%d] : %d | 0x%08x |\n", index, len, _pm.sleep_status[index][len]); } } rt_kprintf("+-------------+--------------+\n"); } MSH_CMD_EXPORT(pm_sleep_dump, dump pm request list); static void pm_sleep_request(int argc, char **argv) { int module = 0; int mode = 0; if (argc >= 3) { module = atoi(argv[1]); mode = atoi(argv[2]); rt_pm_sleep_request(module, mode); } } MSH_CMD_EXPORT(pm_sleep_request, pm_sleep_request module sleep_mode); static void pm_sleep_release(int argc, char **argv) { int module = 0; int mode = 0; if (argc >= 3) { module = atoi(argv[1]); mode = atoi(argv[2]); rt_pm_sleep_release(module, mode); } } MSH_CMD_EXPORT(pm_sleep_release, pm_sleep_release module sleep_mode); #endif static void rt_pm_dump_status(void) { rt_uint32_t index; struct rt_pm *pm; pm = &_pm; rt_kprintf("| Power Management Mode | Counter | Timer |\n"); rt_kprintf("+-----------------------+---------+-------+\n"); for (index = 0; index < PM_SLEEP_MODE_MAX; index ++) { int has_timer = 0; if (pm->timer_mask & (1 << index)) has_timer = 1; rt_kprintf("| %021s | %7d | %5d |\n", _pm_sleep_str[index], pm->modes[index], has_timer); } rt_kprintf("+-----------------------+---------+-------+\n"); rt_kprintf("pm current sleep mode: %s\n", _pm_sleep_str[pm->sleep_mode]); rt_kprintf("pm current run mode: %s\n", _pm_run_str[pm->run_mode]); rt_kprintf("\n"); rt_kprintf("| module | busy | start time | timeout |\n"); rt_kprintf("+--------+------+------------+-----------+\n"); for (index = 0; index < PM_MODULE_MAX_ID; index ++) { if ((pm->module_status[index].busy_flag == RT_TRUE) || (pm->module_status[index].req_status != 0x00)) { rt_kprintf("| %04d | %d | 0x%08x | 0x%08x |\n", index, pm->module_status[index].busy_flag, pm->module_status[index].start_time, pm->module_status[index].timeout); } } rt_kprintf("+--------+------+------------+-----------+\n"); } FINSH_FUNCTION_EXPORT_ALIAS(rt_pm_dump_status, pm_dump, dump power management status); MSH_CMD_EXPORT_ALIAS(rt_pm_dump_status, pm_dump, dump power management status); #endif #endif /* RT_USING_PM */