remove the drivers in uffs/nand which is already out of date. now you can look simulator to explore how to use uffs on nand flash or Realtouch demo code on github

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2576 bbd45198-f89e-11dd-88c7-29a3b14d5316
This commit is contained in:
goprife@gmail.com 2012-12-31 06:11:09 +00:00
parent 3b2b01c375
commit e10d628b47
3 changed files with 0 additions and 1808 deletions

View File

@ -1,637 +0,0 @@
/*
* File : rtthread.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006-2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE.
*
* Change Logs:
* Date Author Notes
* 2011-10-13 prife the first version
* 2012-03-11 prife use mtd device interface
*/
#include <rtdevice.h>
#include <s3c24x0.h>
/* nand flash commands. This appears to be generic across all NAND flash chips */
#define CMD_READ 0x00 // Read
#define CMD_READ1 0x01 // Read1
#define CMD_READ2 0x50 // Read2
#define CMD_READ3 0x30 // Read3
#define CMD_READID 0x90 // ReadID
#define CMD_WRITE1 0x80 // Write phase 1
#define CMD_WRITE2 0x10 // Write phase 2
#define CMD_ERASE1 0x60 // Erase phase 1
#define CMD_ERASE2 0xd0 // Erase phase 2
#define CMD_STATUS 0x70 // Status read
#define CMD_RESET 0xff // Reset
#define CMD_RANDOMREAD1 0x05 // random read phase 1
#define CMD_RANDOMREAD2 0xE0 // random read phase 2
#define CMD_RANDOMWRITE 0x85 // random write phase 1
#define NF_CMD(cmd) {NFCMD = (cmd); }
#define NF_ADDR(addr) {NFADDR = (addr); }
#define NF_CE_L() {NFCONT &= ~(1<<1); }
#define NF_CE_H() {NFCONT |= (1<<1); }
#define NF_RSTECC() {NFCONT |= (1<<4); }
#define NF_RDMECC() (NFMECC0 )
#define NF_RDSECC() (NFSECC )
#define NF_RDDATA() (NFDATA)
#define NF_RDDATA8() (NFDATA8)
#define NF_WRDATA(data) {NFDATA = (data); }
#define NF_WRDATA8(data) {NFDATA8 = (data); }
#define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
#define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
#define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
#define NF_MECC_UNLOCK() {NFCONT &= ~(1<<5); }
#define NF_MECC_LOCK() {NFCONT |= (1<<5); }
#define NF_SECC_UNLOCK() {NFCONT &= ~(1<<6); }
#define NF_SECC_LOCK() {NFCONT |= (1<<6); }
/* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
#define TACLS 1 // 1-clock(0ns)
#define TWRPH0 4 // 3-clock(25ns)
#define TWRPH1 0 // 1-clock(10ns)
/* status bit pattern */
#define STATUS_READY 0x40 // ready
#define STATUS_ERROR 0x01 // error
#define STATUS_ILLACC 0x08 // illegal access
/* configurations */
#define PAGE_DATA_SIZE 2048
#define BLOCK_MARK_SPARE_OFFSET 4
//#define CONFIG_USE_HW_ECC
static struct rt_mutex nand;
#define BLOCK_MARK_OFFSET (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
/*
* In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
* Block's status byte which indicate a block is bad or not is BYTE4.
*/
static void nand_hw_init(void)
{
/* initialize GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
/* enable PCLK for nand controller */
CLKCON |= 1 << 4;
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
NFSTAT = 0;
/* reset nand flash */
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_RESET);
NF_DETECT_RB();
NF_CE_H();
}
/*
*check the first byte in spare of the block's first page
*return
* good block, RT_EOK
* bad blcok, return -RT_ERROR
*/
static rt_err_t k9f1g08_mtd_check_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
rt_uint8_t status;
block = block << 6;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB(); /* wait for ready bit */
status = NF_RDDATA8();
NF_CE_H();
/* TODO: more check about status */
return status == 0xFF ? RT_EOK : -RT_ERROR;
#if 0
/* check the second page */
block ++;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB(); /* wait for ready bit */
status = NF_RDDATA8();
NF_CE_H();
return status == 0xFF ? RT_EOK : -RT_ERROR;
#endif
}
static rt_err_t k9f1g08_mtd_mark_bad_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
/* get address of the fisrt page in the block */
rt_err_t result = RT_EOK;
block = block << 6;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
/* write bad block mark in spare*/
NF_WRDATA8(0);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB(); /* wait for ready bit */
if ( NFSTAT & STATUS_ILLACC )
{
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
result = -RT_ERROR;
}
else
{
NF_CMD(CMD_STATUS); /* get the status */
if (NF_RDDATA() & STATUS_ERROR)
result = -RT_ERROR;
}
NF_CE_H(); /* disable chip select */
return result;
}
static rt_err_t k9f1g08_mtd_erase_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
/* 1 block = 64 page= 2^6*/
rt_err_t result = RT_EOK;
block <<= 6; /* get the first page's address in this block*/
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_CE_L(); /* enable chip */
NF_CLEAR_RB();
NF_CMD(CMD_ERASE1); /* erase one block 1st command */
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
// NF_ADDR((block >> 16) & 0xff);
NF_CMD(CMD_ERASE2);
NF_DETECT_RB(); /* wait for ready bit */
if ( NFSTAT & STATUS_ILLACC )
{
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
result = -RT_ERROR;
} else {
NF_CMD(CMD_STATUS); /* check status */
if (NF_RDDATA() & STATUS_ERROR) {
result = -RT_ERROR;
}
}
NF_CE_H();
rt_mutex_release(&nand);
return result;
}
/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
static rt_err_t k9f1g08_mtd_read(
struct rt_mtd_nand_device * dev,
rt_off_t page,
rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc;
rt_uint32_t status;
rt_err_t result = RT_EOK;
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_RSTECC(); /* reset ECC*/
NF_MECC_UNLOCK();/* unlock MECC */
NF_CE_L(); /* enable chip */
if (data != RT_NULL && data_len != 0)
{
/* read page data area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* wait for ready bit */
/*TODO: use a more quick method */
for (i = 0; i < data_len; i++)
data[i] = NF_RDDATA8();
NF_MECC_LOCK();
#if defined(CONFIG_USE_HW_ECC)
/* if read whole page data, then check ecc status */
if (data_len == PAGE_DATA_SIZE)
{
mecc = NF_RDDATA();
NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
/* check data ecc */
status = NFESTAT0 & 0x03;
if (status == 0x00) /* no error */
result = RT_EOK;
else if (status == 0x01) /* error can be fixed */
{
//TODO add code to do ecc correct operation
result = -1;
}
else /* error can't be fixed */
result = -2;
}
#endif
}
if (spare != RT_NULL && spare_len != 0)
{
/* read page spare area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* wait for ready bit */
/*TODO: use a more quick method */
for (i = 0; i < spare_len; i++)
spare[i] = NF_RDDATA8();
NF_MECC_LOCK();
result = RT_EOK;
}
NF_CE_H();
rt_mutex_release(&nand);
/* TODO: more check about status */
return result;
}
static rt_err_t k9f1g08_mtd_write (
struct rt_mtd_nand_device * dev,
rt_off_t page,
const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
const rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc0;
rt_err_t result = RT_EOK;
#if defined(CONFIG_USE_HW_ECC)
rt_uint8_t ecc_data[4];
#endif
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_CE_L(); /* enable chip */
NF_RSTECC();
NF_MECC_UNLOCK();
if (data != RT_NULL && data_len != 0)
{
RT_ASSERT(data_len == PAGE_DATA_SIZE);
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<PAGE_DATA_SIZE; i++)
NF_WRDATA8(data[i]);
NF_MECC_LOCK();
#if defined(CONFIG_USE_HW_ECC)
/* produce HARDWARE ECC */
mecc0=NFMECC0;
ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
/* write ecc to spare[0]..[3] */
for(i=0; i<4; i++)
NF_WRDATA8(ecc_data[i]);
#endif
NF_CMD(CMD_WRITE2);
NF_DETECT_RB(); /* wait for ready bit */
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_RDDATA() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
if (spare != RT_NULL && spare_len != 0)
{
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<spare_len; i++)
NF_WRDATA8(spare[i]);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB();
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_RDDATA() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
__ret:
NF_CE_H(); /* disable chip */
rt_mutex_release(&nand);
return result;
}
static rt_err_t k9f1g08_read_id(
struct rt_mtd_nand_device * dev)
{
return RT_EOK;
}
const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
{
k9f1g08_read_id,
k9f1g08_mtd_read,
k9f1g08_mtd_write,
k9f1g08_mtd_erase_block,
k9f1g08_mtd_check_block,
k9f1g08_mtd_mark_bad_block,
};
/* interface of nand and rt-thread device */
static struct rt_mtd_nand_device nand_part[4];
void k9f1g08_mtd_init()
{
/* initialize nand controller of S3C2440 */
nand_hw_init();
/* initialize mutex */
if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
{
rt_kprintf("init nand lock mutex failed\n");
}
/* the first partition of nand */
nand_part[0].page_size = PAGE_DATA_SIZE;
nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[0].block_start = 0;
nand_part[0].block_end = 255;
nand_part[0].oob_size = 64;
nand_part[0].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand0", &nand_part[0]);
/* the second partition of nand */
nand_part[1].page_size = PAGE_DATA_SIZE;
nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[1].block_start = 256;
nand_part[1].block_end = 512-1;
nand_part[1].oob_size = 64;
nand_part[1].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand1", &nand_part[1]);
/* the third partition of nand */
nand_part[2].page_size = PAGE_DATA_SIZE;
nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[2].block_start = 512;
nand_part[2].block_end = 512+256-1;
nand_part[2].oob_size = 64;
nand_part[2].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand2", &nand_part[2]);
/* the 4th partition of nand */
nand_part[3].page_size = PAGE_DATA_SIZE;
nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[3].block_start = 512+256;
nand_part[3].block_end = 1024-1;
nand_part[3].oob_size = 64;
nand_part[3].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand3", &nand_part[3]);
}
#include "finsh.h"
static char buf[PAGE_DATA_SIZE+64];
static char spare[64];
void nand_erase(int start, int end)
{
int page;
for(; start <= end; start ++)
{
page = start * 64;
rt_memset(buf, 0, PAGE_DATA_SIZE);
rt_memset(spare, 0, 64);
k9f1g08_mtd_erase_block(RT_NULL, start);
k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
if (spare[0] != 0xFF)
{
rt_kprintf("block %d is bad, mark it bad\n", start);
//rt_memset(spare, 0xFF, 64);
if (spare[4] == 0xFF)
{
spare[4] = 0x00;
k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
}
}
}
}
int nand_read(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
// rt_memset(spare, 0, 64);
// res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
// rt_kprintf("%02x ", spare[i]);
rt_kprintf("%02x ", buf[2048+i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_write(int page)
{
int i;
rt_memset(buf, 0, PAGE_DATA_SIZE);
for(i=0; i<PAGE_DATA_SIZE; i++)
buf[i] = (i % 2) + i / 2;
return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
}
int nand_read2(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_read3(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_check(int block)
{
if ( k9f1g08_mtd_check_block(RT_NULL, block) != RT_EOK)
rt_kprintf("block %d is bad\n", block);
else
rt_kprintf("block %d is good\n", block);
}
int nand_mark(int block)
{
return k9f1g08_mtd_mark_bad_block(RT_NULL, block);
}
FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
FINSH_FUNCTION_EXPORT(nand_check, nand_check(1).);
FINSH_FUNCTION_EXPORT(nand_mark, nand_mark(1).);
FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);

View File

@ -1,549 +0,0 @@
/*
* File : rtthread.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006-2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE.
*
* Change Logs:
* Date Author Notes
* 2011-10-13 prife the first version
* 2012-03-11 prife use mtd device interface
*/
#include <rtdevice.h>
#include <s3c24x0.h>
//#include "nand.h"
// For flash chip that is bigger than 32 MB, we need to have 4 step address
//
#define NFCONF_INIT 0xF830 // 512-byte 4 Step Address
#define NEED_EXT_ADDR 1
//#define NFCONF_INIT 0xA830 // 256-byte 4 Step Address
//#define NEED_EXT_ADDR 0
//#define NFCONF_INIT 0xF840
// NAND Flash Command. This appears to be generic across all NAND flash chips
#define CMD_READ 0x00 // Read
#define CMD_READ1 0x01 // Read1
#define CMD_READ2 0x50 // Read2
#define CMD_READ3 0x30 // Read3
#define CMD_READID 0x90 // ReadID
#define CMD_WRITE1 0x80 // Write phase 1
#define CMD_WRITE2 0x10 // Write phase 2
#define CMD_ERASE1 0x60 // Erase phase 1
#define CMD_ERASE2 0xd0 // Erase phase 2
#define CMD_STATUS 0x70 // Status read
#define CMD_RESET 0xff // Reset
#define CMD_RANDOMREAD1 0x05 // random read phase 1
#define CMD_RANDOMREAD2 0xE0 // random read phase 2
#define CMD_RANDOMWRITE 0x85 // random write phase 1
#define NF_CMD(cmd) {NFCMD = (cmd); }
#define NF_ADDR(addr) {NFADDR = (addr); }
#define NF_nFCE_L() {NFCONT &= ~(1<<1); }
#define NF_nFCE_H() {NFCONT |= (1<<1); }
#define NF_RSTECC() {NFCONT |= (1<<4); }
#define NF_RDMECC() (NFMECC0 )
#define NF_RDSECC() (NFSECC )
#define NF_RDDATA() (NFDATA)
#define NF_RDDATA8() (NFDATA8)
#define NF_WRDATA(data) {NFDATA = (data); }
#define NF_WRDATA8(data) {NFDATA8 = (data); }
#define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
#define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
#define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
#define NF_MECC_UnLock() {NFCONT &= ~(1<<5); }
#define NF_MECC_Lock() {NFCONT |= (1<<5); }
#define NF_SECC_UnLock() {NFCONT &= ~(1<<6); }
#define NF_SECC_Lock() {NFCONT |= (1<<6); }
#define RdNFDat8() (NFDATA8) //byte access
#define RdNFDat() RdNFDat8() //for 8 bit nand flash, use byte access
#define WrNFDat8(dat) (NFDATA8 = (dat)) //byte access
#define WrNFDat(dat) WrNFDat8() //for 8 bit nand flash, use byte access
#define NF_CE_L() NF_nFCE_L()
#define NF_CE_H() NF_nFCE_H()
#define NF_DATA_R() NFDATA
#define NF_ECC() NFECC0
// HCLK=100Mhz
#define TACLS 1 // 1-clk(0ns)
#define TWRPH0 4 // 3-clk(25ns)
#define TWRPH1 0 // 1-clk(10ns) //TACLS+TWRPH0+TWRPH1>=50ns
// Status bit pattern
#define STATUS_READY 0x40 // Ready
#define STATUS_ERROR 0x01 // Error
#define STATUS_ILLACC 0x08 // Illigar Access
//
// ERROR_Xxx
//
#define ERR_SUCCESS 0
#define ERR_DISK_OP_FAIL1 1
#define ERR_DISK_OP_FAIL2 2
#define ERR_INVALID_BOOT_SECTOR 3
#define ERR_INVALID_LOAD_ADDR 4
#define ERR_GEN_FAILURE 5
#define ERR_INVALID_PARAMETER 6
#define ERR_JUMP_FAILED 7
#define ERR_INVALID_TOC 8
#define ERR_INVALID_FILE_TYPE 9
//#define NF_READID 1
#define READ_SECTOR_INFO
#define NAND_BASE 0xB0E00000
#define IOP_BASE 0xB1600000
#define PAGE_DATA_SIZE 2048
static struct rt_mutex nand;
/*
* In a page, data's ecc code is stored in spare area, spare BYTE0 to BYTEE 3
* block's status byte which indicate a block is bad is BYTE4 in spare area
*/
static void nand_hw_init(void)
{
/* Init GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
/* Enable PCLK into nand Controller */
CLKCON |= 1 << 4;
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
NFSTAT = 0;
/* reset nand flash */
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_RESET);
NF_DETECT_RB();
NF_CE_H();
}
static rt_err_t k9f1g08_mtd_erase_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
/* 1 block = 64 page= 2^6*/
rt_err_t result = RT_EOK;
block <<= 6; /* get the first page's address in this block*/
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_nFCE_L(); /* enable chip */
NF_CLEAR_RB();
NF_CMD(CMD_ERASE1); /* Erase one block 1st command */
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
// NF_ADDR((block >> 16) & 0xff);
NF_CMD(CMD_ERASE2);
NF_DETECT_RB(); /* Wait for ready bit */
if ( NFSTAT & STATUS_ILLACC )
{
NFSTAT |= STATUS_ILLACC; /* Write 1 to clear.*/
result = -RT_ERROR;
} else {
NF_CMD(CMD_STATUS); /* Check the status */
if (NF_DATA_R() & STATUS_ERROR) {
result = -RT_ERROR;
}
}
NF_nFCE_H();
rt_mutex_release(&nand);
return result;
/* TODO: more check about status */
}
/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
static rt_err_t k9f1g08_mtd_read(
struct rt_mtd_nand_device * dev,
rt_off_t page,
rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc;
rt_uint32_t status;
rt_err_t result;
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_RSTECC(); /* reset ECC*/
NF_MECC_UnLock();/* unlock MECC */
NF_nFCE_L(); /* enable chip */
if (data != RT_NULL && data_len != 0)
{
/* read page data area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* Wait for RB */
/*TODO: use a more quick method */
for (i = 0; i < data_len; i++)
data[i] = NF_RDDATA8();
NF_MECC_Lock();
/* if read whole page data, then check ecc status */
if (data_len == PAGE_DATA_SIZE)
{
mecc = NF_RDDATA();
NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
/* check data ecc */
status = NFESTAT0 & 0x03;
if (status == 0x00)
result = RT_EOK; /* no error */
else if (status == 0x01)
result = -1;/* error can be fixed */
else
result = -2; /* erroe can't be fixed */
}
else
result = RT_EOK;
}
if (spare != RT_NULL && spare_len != 0)
{
/* read page spare area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* Wait for RB */
/*TODO: use a more quick method */
for (i = 0; i < spare_len; i++)
spare[i] = NF_RDDATA8();
NF_MECC_Lock();
result = RT_EOK;
}
NF_nFCE_H();
rt_mutex_release(&nand);
return result;
}
static rt_err_t k9f1g08_mtd_write (
struct rt_mtd_nand_device * dev,
rt_off_t page,
const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
const rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc0;
rt_err_t result = RT_EOK;
rt_uint8_t ecc_data[4];
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_nFCE_L(); /* enable chip */
NF_RSTECC();
NF_MECC_UnLock();
if (data != RT_NULL && data_len != 0)
{
RT_ASSERT(data_len == PAGE_DATA_SIZE);
NF_CLEAR_RB(); /* clear RB */
NF_CMD(CMD_WRITE1);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<PAGE_DATA_SIZE; i++) //PAGE_DATA_SIZE
NF_WRDATA8(data[i]);
NF_MECC_Lock();
/* produce HARDWARE ECC */
mecc0=NFMECC0;
ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
/* write ecc to spare[0]..[3] */
for(i=0; i<4; i++)
NF_WRDATA8(ecc_data[i]);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB(); /* Wait for RB */
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_DATA_R() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
if (spare != RT_NULL && spare_len != 0)
{
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<spare_len; i++)
NF_WRDATA8(spare[i]);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB();
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_DATA_R() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
__ret:
NF_nFCE_H(); /* disable chip */
rt_mutex_release(&nand);
return result;
}
static rt_err_t k9f1g08_read_id(
struct rt_mtd_nand_device * dev)
{
return RT_EOK;
}
const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
{
k9f1g08_read_id,
k9f1g08_mtd_read,
k9f1g08_mtd_write,
k9f1g08_mtd_erase_block,
};
/* interface of nand and rt-thread device */
static struct rt_mtd_nand_device nand_part[4];
void k9f1g08_mtd_init()
{
/* initialize nand controller of S3C2440 */
nand_hw_init();
/* initialize mutex */
if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
{
rt_kprintf("init nand lock mutex failed\n");
}
/* the first partition of nand */
nand_part[0].page_size = PAGE_DATA_SIZE;
nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[0].block_start = 0;
nand_part[0].block_end = 255;
nand_part[0].oob_size = 64;
nand_part[0].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand0", &nand_part[0]);
/* the second partition of nand */
nand_part[1].page_size = PAGE_DATA_SIZE;
nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[1].block_start = 256;
nand_part[1].block_end = 512-1;
nand_part[1].oob_size = 64;
nand_part[1].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand1", &nand_part[1]);
/* the third partition of nand */
nand_part[2].page_size = PAGE_DATA_SIZE;
nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[2].block_start = 512;
nand_part[2].block_end = 512+256-1;
nand_part[2].oob_size = 64;
nand_part[2].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand2", &nand_part[2]);
/* the 4th partition of nand */
nand_part[3].page_size = PAGE_DATA_SIZE;
nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[3].block_start = 512+256;
nand_part[3].block_end = 1024-1;
nand_part[3].oob_size = 64;
nand_part[3].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand3", &nand_part[3]);
}
#include "finsh.h"
static char buf[PAGE_DATA_SIZE+64];
static char spare[64];
void nand_erase(int start, int end)
{
int page;
for(; start <= end; start ++)
{
page = start * 64;
rt_memset(buf, 0, PAGE_DATA_SIZE);
rt_memset(spare, 0, 64);
k9f1g08_mtd_erase_block(RT_NULL, start);
k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
if (spare[0] != 0xFF)
{
rt_kprintf("block %d is bad, mark it bad\n", start);
//rt_memset(spare, 0xFF, 64);
if (spare[4] == 0xFF)
{
spare[4] = 0x00;
k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
}
}
}
}
int nand_read(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
// rt_memset(spare, 0, 64);
// res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
// rt_kprintf("%02x ", spare[i]);
rt_kprintf("%02x ", buf[2048+i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_write(int page)
{
int i;
rt_memset(buf, 0, PAGE_DATA_SIZE);
for(i=0; i<PAGE_DATA_SIZE; i++)
buf[i] = (i % 2) + i / 2;
return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
}
int nand_read2(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_read3(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);

View File

@ -1,622 +0,0 @@
/*
* File : rtthread.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006-2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE.
*
* Change Logs:
* Date Author Notes
* 2011-10-13 prife the first version
* 2012-03-11 prife use mtd device interface
*/
#include <rtdevice.h>
#include <s3c24x0.h>
/* nand flash commands. This appears to be generic across all NAND flash chips */
#define CMD_READ 0x00 // Read
#define CMD_READ1 0x01 // Read1
#define CMD_READ2 0x50 // Read2
#define CMD_READ3 0x30 // Read3
#define CMD_READID 0x90 // ReadID
#define CMD_WRITE1 0x80 // Write phase 1
#define CMD_WRITE2 0x10 // Write phase 2
#define CMD_ERASE1 0x60 // Erase phase 1
#define CMD_ERASE2 0xd0 // Erase phase 2
#define CMD_STATUS 0x70 // Status read
#define CMD_RESET 0xff // Reset
#define CMD_RANDOMREAD1 0x05 // random read phase 1
#define CMD_RANDOMREAD2 0xE0 // random read phase 2
#define CMD_RANDOMWRITE 0x85 // random write phase 1
#define NF_CMD(cmd) {NFCMD = (cmd); }
#define NF_ADDR(addr) {NFADDR = (addr); }
#define NF_CE_L() {NFCONT &= ~(1<<1); }
#define NF_CE_H() {NFCONT |= (1<<1); }
#define NF_RSTECC() {NFCONT |= (1<<4); }
#define NF_RDMECC() (NFMECC0 )
#define NF_RDSECC() (NFSECC )
#define NF_RDDATA() (NFDATA)
#define NF_RDDATA8() (NFDATA8)
#define NF_WRDATA(data) {NFDATA = (data); }
#define NF_WRDATA8(data) {NFDATA8 = (data); }
#define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
#define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
#define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
#define NF_MECC_UNLOCK() {NFCONT &= ~(1<<5); }
#define NF_MECC_LOCK() {NFCONT |= (1<<5); }
#define NF_SECC_UNLOCK() {NFCONT &= ~(1<<6); }
#define NF_SECC_LOCK() {NFCONT |= (1<<6); }
/* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
#define TACLS 1 // 1-clock(0ns)
#define TWRPH0 4 // 3-clock(25ns)
#define TWRPH1 0 // 1-clock(10ns)
/* status bit pattern */
#define STATUS_READY 0x40 // ready
#define STATUS_ERROR 0x01 // error
#define STATUS_ILLACC 0x08 // illegal access
/* configurations */
#define PAGE_DATA_SIZE 2048
#define BLOCK_MARK_SPARE_OFFSET 4
//#define CONFIG_USE_HW_ECC
static struct rt_mutex nand;
#define BLOCK_MARK_OFFSET (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
/*
* In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
* Block's status byte which indicate a block is bad or not is BYTE4.
*/
static void nand_hw_init(void)
{
/* initialize GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
/* enable PCLK for nand controller */
CLKCON |= 1 << 4;
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
NFSTAT = 0;
/* reset nand flash */
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_RESET);
NF_DETECT_RB();
NF_CE_H();
}
/*
*check the first byte in spare of the block's first page
*return
* good block, RT_EOK
* bad blcok, return -RT_ERROR
*/
static rt_err_t k9f1g08_mtd_check_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
rt_uint8_t status;
block = block << 6;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB(); /* wait for ready bit */
status = NF_RDDATA8();
NF_CE_H();
/* TODO: more check about status */
return status == 0xFF ? RT_EOK : -RT_ERROR;
#if 0
/* check the second page */
block ++;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB(); /* wait for ready bit */
status = NF_RDDATA8();
NF_CE_H();
return status == 0xFF ? RT_EOK : -RT_ERROR;
#endif
}
static rt_err_t k9f1g08_mtd_mark_bad_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
/* get address of the fisrt page in the block */
block = block << 6;
rt_err_t result = RT_EOK;
NF_CE_L();
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(BLOCK_MARK_OFFSET);
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
NF_ADDR((block >>16) & 0xff);
/* write bad block mark in spare*/
NF_WRDATA8(0);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB(); /* wait for ready bit */
if ( NFSTAT & STATUS_ILLACC )
{
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
result = -RT_ERROR;
}
else
{
NF_CMD(CMD_STATUS); /* get the status */
if (NF_RDDATA() & STATUS_ERROR)
result = -RT_ERROR;
}
NF_CE_H(); /* disable chip select */
return result;
}
static rt_err_t k9f1g08_mtd_erase_block(
struct rt_mtd_nand_device* device,
rt_uint32_t block)
{
/* 1 block = 64 page= 2^6*/
rt_err_t result = RT_EOK;
block <<= 6; /* get the first page's address in this block*/
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_CE_L(); /* enable chip */
NF_CLEAR_RB();
NF_CMD(CMD_ERASE1); /* erase one block 1st command */
NF_ADDR(block & 0xff);
NF_ADDR((block >> 8) & 0xff);
// NF_ADDR((block >> 16) & 0xff);
NF_CMD(CMD_ERASE2);
NF_DETECT_RB(); /* wait for ready bit */
if ( NFSTAT & STATUS_ILLACC )
{
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
result = -RT_ERROR;
} else {
NF_CMD(CMD_STATUS); /* check status */
if (NF_RDDATA() & STATUS_ERROR) {
result = -RT_ERROR;
}
}
NF_CE_H();
rt_mutex_release(&nand);
return result;
}
/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
static rt_err_t k9f1g08_mtd_read(
struct rt_mtd_nand_device * dev,
rt_off_t page,
rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc;
rt_uint32_t status;
rt_err_t result = RT_EOK;
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_RSTECC(); /* reset ECC*/
NF_MECC_UNLOCK();/* unlock MECC */
NF_CE_L(); /* enable chip */
if (data != RT_NULL && data_len != 0)
{
/* read page data area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* wait for ready bit */
/*TODO: use a more quick method */
for (i = 0; i < data_len; i++)
data[i] = NF_RDDATA8();
NF_MECC_LOCK();
#if defined(CONFIG_USE_HW_ECC)
/* if read whole page data, then check ecc status */
if (data_len == PAGE_DATA_SIZE)
{
mecc = NF_RDDATA();
NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
/* check data ecc */
status = NFESTAT0 & 0x03;
if (status == 0x00) /* no error */
result = RT_EOK;
else if (status == 0x01) /* error can be fixed */
{
//TODO add code to do ecc correct operation
result = -1;
}
else /* error can't be fixed */
result = -2;
}
#endif
}
if (spare != RT_NULL && spare_len != 0)
{
/* read page spare area */
NF_CLEAR_RB();
NF_CMD(CMD_READ);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR((page) & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
NF_CMD(CMD_READ3);
NF_DETECT_RB();/* wait for ready bit */
/*TODO: use a more quick method */
for (i = 0; i < spare_len; i++)
spare[i] = NF_RDDATA8();
NF_MECC_LOCK();
result = RT_EOK;
}
NF_CE_H();
rt_mutex_release(&nand);
/* TODO: more check about status */
return result;
}
static rt_err_t k9f1g08_mtd_write (
struct rt_mtd_nand_device * dev,
rt_off_t page,
const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
const rt_uint8_t * spare, rt_uint32_t spare_len)
{
rt_uint32_t i;
rt_uint32_t mecc0;
rt_err_t result = RT_EOK;
#if defined(CONFIG_USE_HW_ECC)
rt_uint8_t ecc_data[4];
#endif
rt_mutex_take(&nand, RT_WAITING_FOREVER);
NF_CE_L(); /* enable chip */
NF_RSTECC();
NF_MECC_UNLOCK();
if (data != RT_NULL && data_len != 0)
{
RT_ASSERT(data_len == PAGE_DATA_SIZE);
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(0);
NF_ADDR(0);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<PAGE_DATA_SIZE; i++)
NF_WRDATA8(data[i]);
NF_MECC_LOCK();
#if defined(CONFIG_USE_HW_ECC)
/* produce HARDWARE ECC */
mecc0=NFMECC0;
ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
/* write ecc to spare[0]..[3] */
for(i=0; i<4; i++)
NF_WRDATA8(ecc_data[i]);
#endif
NF_CMD(CMD_WRITE2);
NF_DETECT_RB(); /* wait for ready bit */
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_RDDATA() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
if (spare != RT_NULL && spare_len != 0)
{
NF_CLEAR_RB();
NF_CMD(CMD_WRITE1);
NF_ADDR(PAGE_DATA_SIZE);
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
NF_ADDR( page & 0xff);
NF_ADDR((page >> 8) & 0xff);
// NF_ADDR((page >> 16) & 0xff);
for(i=0; i<spare_len; i++)
NF_WRDATA8(spare[i]);
NF_CMD(CMD_WRITE2);
NF_DETECT_RB();
if (NFSTAT & STATUS_ILLACC)
{
NFSTAT |= STATUS_ILLACC;
result = -RT_ERROR;
goto __ret;
}
else
{
NF_CMD(CMD_STATUS);
if (NF_RDDATA() & STATUS_ERROR)
{
result = -RT_ERROR;
goto __ret;
}
}
}
__ret:
NF_CE_H(); /* disable chip */
rt_mutex_release(&nand);
return result;
}
static rt_err_t k9f1g08_read_id(
struct rt_mtd_nand_device * dev)
{
return RT_EOK;
}
const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
{
k9f1g08_read_id,
k9f1g08_mtd_read,
k9f1g08_mtd_write,
k9f1g08_mtd_erase_block,
k9f1g08_mtd_check_block,
k9f1g08_mtd_mark_bad_block,
};
/* interface of nand and rt-thread device */
static struct rt_mtd_nand_device nand_part[4];
void k9f1g08_mtd_init()
{
/* initialize nand controller of S3C2440 */
nand_hw_init();
/* initialize mutex */
if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
{
rt_kprintf("init nand lock mutex failed\n");
}
/* the first partition of nand */
nand_part[0].page_size = PAGE_DATA_SIZE;
nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[0].block_start = 0;
nand_part[0].block_end = 255;
nand_part[0].oob_size = 64;
nand_part[0].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand0", &nand_part[0]);
/* the second partition of nand */
nand_part[1].page_size = PAGE_DATA_SIZE;
nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[1].block_start = 256;
nand_part[1].block_end = 512-1;
nand_part[1].oob_size = 64;
nand_part[1].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand1", &nand_part[1]);
/* the third partition of nand */
nand_part[2].page_size = PAGE_DATA_SIZE;
nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[2].block_start = 512;
nand_part[2].block_end = 512+256-1;
nand_part[2].oob_size = 64;
nand_part[2].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand2", &nand_part[2]);
/* the 4th partition of nand */
nand_part[3].page_size = PAGE_DATA_SIZE;
nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
nand_part[3].block_start = 512+256;
nand_part[3].block_end = 1024-1;
nand_part[3].oob_size = 64;
nand_part[3].ops = &k9f1g08_mtd_ops;
rt_mtd_nand_register_device("nand3", &nand_part[3]);
}
#include "finsh.h"
static char buf[PAGE_DATA_SIZE+64];
static char spare[64];
void nand_erase(int start, int end)
{
int page;
for(; start <= end; start ++)
{
page = start * 64;
rt_memset(buf, 0, PAGE_DATA_SIZE);
rt_memset(spare, 0, 64);
k9f1g08_mtd_erase_block(RT_NULL, start);
k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
if (spare[0] != 0xFF)
{
rt_kprintf("block %d is bad, mark it bad\n", start);
//rt_memset(spare, 0xFF, 64);
if (spare[4] == 0xFF)
{
spare[4] = 0x00;
k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
}
}
}
}
int nand_read(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
// rt_memset(spare, 0, 64);
// res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
// rt_kprintf("%02x ", spare[i]);
rt_kprintf("%02x ", buf[2048+i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_write(int page)
{
int i;
rt_memset(buf, 0, PAGE_DATA_SIZE);
for(i=0; i<PAGE_DATA_SIZE; i++)
buf[i] = (i % 2) + i / 2;
return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
}
int nand_read2(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
int nand_read3(int page)
{
int i;
int res;
rt_memset(buf, 0, sizeof(buf));
rt_memset(spare, 0, 64);
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
for(i=0; i<PAGE_DATA_SIZE; i++)
{
rt_kprintf("%02x ", buf[i]);
if((i+1)%16 == 0)
rt_kprintf("\n");
}
rt_kprintf("spare:\n");
for(i=0; i<64; i++)
{
rt_kprintf("%02x ", spare[i]);
if((i+1)%8 == 0)
rt_kprintf("\n");
}
return res;
}
FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);