4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 13:13:31 +08:00

[bsp/wch/arm/Libraries/ch32_drivers]: support ch32f10x hwtimer.

[bsp/wch/arm/ch32f103c8-core]: add hwtimer1~4.
This commit is contained in:
charlown 2021-09-08 16:45:55 +08:00
parent 7aa4dfec8b
commit 84111766f9
5 changed files with 637 additions and 0 deletions

View File

@ -29,6 +29,9 @@ if GetDepend('SOC_ARM_SERIES_CH32F103'):
if GetDepend(['RT_USING_WDT', 'BSP_USING_IWDT']):
src += ['drv_iwdt_ch32f10x.c']
if GetDepend(['RT_USING_HWTIMER', 'BSP_USING_HWTIMER']):
src += ['drv_hwtimer_ch32f10x.c']
src += ['drv_common.c']
path = [cwd]

View File

@ -0,0 +1,372 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-10 charlown first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#ifdef BSP_USING_HWTIMER
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
struct hwtimer_device
{
struct rt_hwtimer_device parent;
TIM_TypeDef *periph;
IRQn_Type irqn;
char *name;
};
#ifdef BSP_USING_TIM1_HWTIMER
struct hwtimer_device hwtimer_device1 =
{
.periph = TIM1,
.irqn = TIM1_UP_IRQn,
.name = "timer1"};
#endif
#ifdef BSP_USING_TIM2_HWTIMER
struct hwtimer_device hwtimer_device2 =
{
.periph = TIM2,
.irqn = TIM2_IRQn,
.name = "timer2"};
#endif
#ifdef BSP_USING_TIM3_HWTIMER
struct hwtimer_device hwtimer_device3 =
{
.periph = TIM3,
.irqn = TIM3_IRQn,
.name = "timer3"};
#endif
#ifdef BSP_USING_TIM4_HWTIMER
struct hwtimer_device hwtimer_device4 =
{
.periph = TIM4,
.irqn = TIM4_IRQn,
.name = "timer4"};
#endif
static void ch32f1_hwtimer_init(struct rt_hwtimer_device *device, rt_uint32_t state)
{
struct hwtimer_device *hwtimer_dev;
struct rt_hwtimer_info *hwtimer_info;
rt_uint32_t clk = 0;
rt_uint16_t prescaler_value = 0;
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitType;
NVIC_InitTypeDef NVIC_InitStructure;
RT_ASSERT(device != RT_NULL);
hwtimer_dev = (struct hwtimer_device *)device;
if (state)
{
ch32f1_hwtimer_clock_init(hwtimer_dev->periph);
hwtimer_info = ch32f1_hwtimer_info_config_get(hwtimer_dev->periph);
clk = ch32f1_hwtimer_clock_get(hwtimer_dev->periph);
prescaler_value = (rt_uint16_t)(clk / hwtimer_info->minfreq) - 1;
/*
* set interrupt callback one or each time need total time =
* (cnt + 1) * (1 / (clk/(prescaler_value + 1) ) )
*/
TIM_TimeBaseInitType.TIM_Period = hwtimer_info->maxcnt - 1;
TIM_TimeBaseInitType.TIM_Prescaler = prescaler_value;
TIM_TimeBaseInitType.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitType.TIM_RepetitionCounter = 0;
if (hwtimer_info == RT_NULL)
{
TIM_TimeBaseInitType.TIM_CounterMode = TIM_CounterMode_Up;
}
else
{
if (hwtimer_info->cntmode == HWTIMER_CNTMODE_UP)
{
TIM_TimeBaseInitType.TIM_CounterMode = TIM_CounterMode_Up;
}
else
{
TIM_TimeBaseInitType.TIM_CounterMode = TIM_CounterMode_Down;
}
}
TIM_TimeBaseInit(hwtimer_dev->periph, &TIM_TimeBaseInitType);
NVIC_InitStructure.NVIC_IRQChannel = hwtimer_dev->irqn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ITConfig(hwtimer_dev->periph, TIM_IT_Update, ENABLE);
TIM_ClearITPendingBit(hwtimer_dev->periph, TIM_IT_Update);
LOG_D("%s init success", hwtimer_dev->name);
}
}
static rt_err_t ch32f1_hwtimer_start(struct rt_hwtimer_device *device, rt_uint32_t cnt, rt_hwtimer_mode_t mode)
{
struct hwtimer_device *hwtimer_dev;
RT_ASSERT(device != RT_NULL);
hwtimer_dev = (struct hwtimer_device *)device;
/*
* interrupt callback one or each time need total time =
* (cnt + 1) * (1 / (clk/(prescaler_value + 1) ) )
*/
TIM_SetCounter(hwtimer_dev->periph, 0);
TIM_SetAutoreload(hwtimer_dev->periph, cnt - 1);
if (mode == HWTIMER_MODE_ONESHOT)
{
TIM_SelectOnePulseMode(hwtimer_dev->periph, TIM_OPMode_Single);
}
else
{
TIM_SelectOnePulseMode(hwtimer_dev->periph, TIM_OPMode_Repetitive);
}
TIM_Cmd(hwtimer_dev->periph, ENABLE);
LOG_D("%s start, cnt = %d", hwtimer_dev->name, cnt);
return RT_EOK;
}
static void ch32f1_hwtimer_stop(struct rt_hwtimer_device *device)
{
struct hwtimer_device *hwtimer_dev;
RT_ASSERT(device != RT_NULL);
hwtimer_dev = (struct hwtimer_device *)device;
TIM_Cmd(hwtimer_dev->periph, DISABLE);
TIM_SetCounter(hwtimer_dev->periph, 0);
}
static rt_uint32_t ch32f1_hwtimer_counter_get(struct rt_hwtimer_device *device)
{
struct hwtimer_device *hwtimer_dev;
RT_ASSERT(device != RT_NULL);
hwtimer_dev = (struct hwtimer_device *)device;
return hwtimer_dev->periph->CNT;
}
static rt_err_t ch32f1_hwtimer_control(struct rt_hwtimer_device *device, rt_uint32_t cmd, void *arg)
{
struct hwtimer_device *hwtimer_dev;
rt_err_t result = RT_EOK;
RT_ASSERT(device != RT_NULL);
hwtimer_dev = (struct hwtimer_device *)device;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t freq = 0;
rt_uint32_t clk = 0;
rt_uint16_t prescaler_value = 0;
/*
*set interrupt callback one or each time need total time =
* (cnt + 1) * (1 / (clk/(prescaler_value + 1) ) )
*/
if (arg != RT_NULL)
{
freq = *((rt_uint32_t *)arg);
clk = ch32f1_hwtimer_clock_get(hwtimer_dev->periph);
prescaler_value = (rt_uint16_t)(clk / freq) - 1;
TIM_PrescalerConfig(hwtimer_dev->periph, prescaler_value, TIM_PSCReloadMode_Immediate);
}
else
{
result = RT_EINVAL;
}
}
break;
default:
result = RT_ENOSYS;
break;
}
return result;
}
static const struct rt_hwtimer_ops hwtimer_ops =
{
.init = ch32f1_hwtimer_init,
.start = ch32f1_hwtimer_start,
.stop = ch32f1_hwtimer_stop,
.count_get = ch32f1_hwtimer_counter_get,
.control = ch32f1_hwtimer_control,
};
static int rt_hw_hwtimer_init(void)
{
rt_err_t ret;
struct rt_hwtimer_info *hwtimer_info;
#ifdef BSP_USING_TIM1_HWTIMER
hwtimer_info = ch32f1_hwtimer_info_config_get(hwtimer_device1.periph);
hwtimer_device1.parent.info = hwtimer_info;
hwtimer_device1.parent.ops = &hwtimer_ops;
ret = rt_device_hwtimer_register(&hwtimer_device1.parent, hwtimer_device1.name, RT_NULL);
if (ret == RT_EOK)
{
LOG_D("hwtimer: %s register success.", hwtimer_device1.name);
}
else
{
LOG_D("hwtimer: %s register failed.", hwtimer_device1.name);
}
#endif
#ifdef BSP_USING_TIM2_HWTIMER
hwtimer_info = ch32f1_hwtimer_info_config_get(hwtimer_device2.periph);
hwtimer_device2.parent.info = hwtimer_info;
hwtimer_device2.parent.ops = &hwtimer_ops;
ret = rt_device_hwtimer_register(&hwtimer_device2.parent, hwtimer_device2.name, RT_NULL);
if (ret == RT_EOK)
{
LOG_D("hwtimer: %s register success.", hwtimer_device2.name);
}
else
{
LOG_D("hwtimer: %s register failed.", hwtimer_device2.name);
}
#endif
#ifdef BSP_USING_TIM3_HWTIMER
hwtimer_info = ch32f1_hwtimer_info_config_get(hwtimer_device3.periph);
hwtimer_device3.parent.info = hwtimer_info;
hwtimer_device3.parent.ops = &hwtimer_ops;
ret = rt_device_hwtimer_register(&hwtimer_device3.parent, hwtimer_device3.name, RT_NULL);
if (ret == RT_EOK)
{
LOG_D("hwtimer: %s register success.", hwtimer_device3.name);
}
else
{
LOG_D("hwtimer: %s register failed.", hwtimer_device3.name);
}
#endif
#ifdef BSP_USING_TIM4_HWTIMER
hwtimer_info = ch32f1_hwtimer_info_config_get(hwtimer_device4.periph);
hwtimer_device4.parent.info = hwtimer_info;
hwtimer_device4.parent.ops = &hwtimer_ops;
ret = rt_device_hwtimer_register(&hwtimer_device4.parent, hwtimer_device4.name, RT_NULL);
if (ret == RT_EOK)
{
LOG_D("hwtimer: %s register success.", hwtimer_device4.name);
}
else
{
LOG_D("hwtimer: %s register failed.", hwtimer_device4.name);
}
#endif
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_hwtimer_init);
#ifdef BSP_USING_TIM1_HWTIMER
void TIM1_UP_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetITStatus(hwtimer_device1.periph, TIM_IT_Update) == SET)
{
TIM_ClearITPendingBit(hwtimer_device1.periph, TIM_IT_Update);
rt_device_hwtimer_isr(&hwtimer_device1.parent);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM2_HWTIMER
void TIM2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetITStatus(hwtimer_device2.periph, TIM_IT_Update) == SET)
{
TIM_ClearITPendingBit(hwtimer_device2.periph, TIM_IT_Update);
rt_device_hwtimer_isr(&hwtimer_device2.parent);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM3_HWTIMER
void TIM3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetITStatus(hwtimer_device3.periph, TIM_IT_Update) == SET)
{
TIM_ClearITPendingBit(hwtimer_device3.periph, TIM_IT_Update);
rt_device_hwtimer_isr(&hwtimer_device3.parent);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM4_HWTIMER
void TIM4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetITStatus(hwtimer_device4.periph, TIM_IT_Update) == SET)
{
TIM_ClearITPendingBit(hwtimer_device4.periph, TIM_IT_Update);
rt_device_hwtimer_isr(&hwtimer_device4.parent);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_HWTIMER */

View File

@ -80,6 +80,174 @@ config LSI_VALUE
int
default 40000
config BSP_USING_TIM
bool "using TIMx"
default n
if BSP_USING_TIM
config BSP_USING_HWTIMER
bool
select RT_USING_HWTIMER
default n
config BSP_USING_PWM
bool
select RT_USING_PWM
default n
config BSP_USING_TIM1
bool "using TIM1"
default n
if BSP_USING_TIM1
choice
prompt "using TIM1 as hwtimer or pwm mode"
default BSP_USING_TIM1_HWTIMER
config BSP_USING_TIM1_HWTIMER
bool "using TIM1 as hwtimer mode"
select BSP_USING_HWTIMER
config BSP_USING_TIM1_PWM
bool "using TIM1 as pwm mode"
select BSP_USING_PWM
endchoice
if BSP_USING_TIM1_PWM
config BSP_USING_TIM1_PWM_CH1
bool "using TIM1 channel 1 as pwm"
default n
config BSP_USING_TIM1_PWM_CH2
bool "using TIM1 channel 2 as pwm"
default n
config BSP_USING_TIM1_PWM_CH3
bool "using TIM1 channel 3 as pwm"
config BSP_USING_TIM1_PWM_CH4
bool "using TIM1 channel 4 as pwm"
endif
endif
config BSP_USING_TIM2
bool "using TIM2"
default n
if BSP_USING_TIM2
choice
prompt "using TIM2 as hwtimer or pwm mode"
default BSP_USING_TIM2_HWTIMER
config BSP_USING_TIM2_HWTIMER
bool "using TIM2 as hwtimer mode"
select BSP_USING_HWTIMER
config BSP_USING_TIM2_PWM
bool "using TIM2 as pwm mode"
select BSP_USING_PWM
endchoice
if BSP_USING_TIM2_PWM
config BSP_USING_TIM2_PWM_CH1
bool "using TIM2 channel 1 as pwm"
default n
config BSP_USING_TIM2_PWM_CH2
bool "using TIM2 channel 2 as pwm"
default n
config BSP_USING_TIM2_PWM_CH3
bool "using TIM2 channel 3 as pwm"
config BSP_USING_TIM2_PWM_CH4
bool "using TIM2 channel 4 as pwm"
endif
endif
config BSP_USING_TIM3
bool "using TIM3"
default n
if BSP_USING_TIM3
choice
prompt "using TIM3 as hwtimer or pwm mode"
default BSP_USING_TIM3_HWTIMER
config BSP_USING_TIM3_HWTIMER
bool "using TIM3 as hwtimer mode"
select BSP_USING_HWTIMER
config BSP_USING_TIM3_PWM
bool "using TIM3 as pwm mode"
select BSP_USING_PWM
endchoice
if BSP_USING_TIM3_PWM
config BSP_USING_TIM3_PWM_CH1
bool "using TIM3 channel 1 as pwm"
default n
config BSP_USING_TIM3_PWM_CH2
bool "using TIM3 channel 2 as pwm"
default n
config BSP_USING_TIM3_PWM_CH3
bool "using TIM3 channel 3 as pwm"
config BSP_USING_TIM3_PWM_CH4
bool "using TIM3 channel 4 as pwm"
endif
endif
config BSP_USING_TIM4
bool "using TIM4"
default n
if BSP_USING_TIM4
choice
prompt "using TIM4 as hwtimer or pwm mode"
default BSP_USING_TIM4_HWTIMER
config BSP_USING_TIM4_HWTIMER
bool "using TIM4 as hwtimer mode"
select BSP_USING_HWTIMER
config BSP_USING_TIM4_PWM
bool "using TIM4 as pwm mode"
select BSP_USING_PWM
endchoice
if BSP_USING_TIM4_PWM
config BSP_USING_TIM4_PWM_CH1
bool "using TIM4 channel 1 as pwm"
default n
config BSP_USING_TIM4_PWM_CH2
bool "using TIM4 channel 2 as pwm"
default n
config BSP_USING_TIM4_PWM_CH3
bool "using TIM4 channel 3 as pwm"
config BSP_USING_TIM4_PWM_CH4
bool "using TIM4 channel 4 as pwm"
endif
endif
endif
endmenu
menu "Onboard Peripheral Drivers"

View File

@ -200,4 +200,95 @@ void ch32f1_i2c_config(I2C_TypeDef *i2cx)
}
}
void ch32f1_hwtimer_clock_init(TIM_TypeDef *timx)
{
if (timx == TIM1)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
}
if (timx == TIM2)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
}
if (timx == TIM3)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
}
if (timx == TIM4)
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);
}
}
rt_uint32_t ch32f1_hwtimer_clock_get(TIM_TypeDef *timx)
{
RCC_ClocksTypeDef RCC_Clocks;
RCC_GetClocksFreq(&RCC_Clocks);
/*tim1~4 all in HCLK*/
return RCC_Clocks.HCLK_Frequency;
}
struct rt_hwtimer_info hwtimer_info1 =
{
.maxfreq = 1000000,
.minfreq = 2000,
.maxcnt = 0xFFFF,
.cntmode = HWTIMER_CNTMODE_UP,
};
struct rt_hwtimer_info hwtimer_info2 =
{
.maxfreq = 1000000,
.minfreq = 2000,
.maxcnt = 0xFFFF,
.cntmode = HWTIMER_CNTMODE_UP,
};
struct rt_hwtimer_info hwtimer_info3 =
{
.maxfreq = 1000000,
.minfreq = 2000,
.maxcnt = 0xFFFF,
.cntmode = HWTIMER_CNTMODE_UP,
};
struct rt_hwtimer_info hwtimer_info4 =
{
.maxfreq = 1000000,
.minfreq = 2000,
.maxcnt = 0xFFFF,
.cntmode = HWTIMER_CNTMODE_UP,
};
struct rt_hwtimer_info *ch32f1_hwtimer_info_config_get(TIM_TypeDef *timx)
{
struct rt_hwtimer_info *info = RT_NULL;
if (timx == TIM1)
{
info = &hwtimer_info1;
}
else if (timx == TIM2)
{
info = &hwtimer_info2;
}
else if (timx == TIM3)
{
info = &hwtimer_info3;
}
else if (timx == TIM4)
{
info = &hwtimer_info4;
}
return info;
}

View File

@ -50,6 +50,9 @@ void ch32f1_spi_clock_and_io_init(SPI_TypeDef* spix);
rt_uint32_t ch32f1_spi_clock_get(SPI_TypeDef* spix);
void ch32f1_i2c_clock_and_io_init(I2C_TypeDef* i2cx);
void ch32f1_i2c_config(I2C_TypeDef* i2cx);
void ch32f1_hwtimer_clock_init(TIM_TypeDef *timx);
rt_uint32_t ch32f1_hwtimer_clock_get(TIM_TypeDef *timx);
struct rt_hwtimer_info* ch32f1_hwtimer_info_config_get(TIM_TypeDef *timx);