[sensor-v2]将当前sensor框架revert回v1版本并独立为v2 (#7698)

This commit is contained in:
Man, Jianting (Meco) 2023-06-18 22:36:53 -04:00 committed by GitHub
parent 1758de1be1
commit 704554f1f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 1593 additions and 292 deletions

View File

@ -11,18 +11,21 @@ menu "Nuvoton Packages Config"
bool "BMX055 9-axis sensor."
select RT_USING_I2C
select RT_USING_SENSOR
select RT_USING_SENSOR_V2
default n
config NU_PKG_USING_MAX31875
bool "MAX31875 Temperature sensor."
select RT_USING_I2C
select RT_USING_SENSOR
select RT_USING_SENSOR_V2
default n
config NU_PKG_USING_NCT7717U
bool "NCT7717U Temperature sensor."
select RT_USING_I2C
select RT_USING_SENSOR
select RT_USING_SENSOR_V2
default n
config NU_PKG_USING_NAU88L25

View File

@ -370,9 +370,13 @@ config RT_USING_SENSOR
default n
if RT_USING_SENSOR
config RT_USING_SENSOR_V2
bool "Enable Sensor Framework v2"
default n
config RT_USING_SENSOR_CMD
bool "Using Sensor cmd"
select PKG_USING_RT_VSNPRINTF_FULL
select PKG_USING_RT_VSNPRINTF_FULL if RT_USING_SENSOR_V2
default y
endif

View File

@ -1,12 +1,11 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
* 2022-12-17 Meco Man re-implement sensor framework
*/
#ifndef __SENSOR_H__
@ -25,293 +24,142 @@ extern "C" {
#define rt_sensor_get_ts() rt_tick_get() /* API for the sensor to get the timestamp */
#endif
#define RT_PIN_NONE 0xFFFF /* RT PIN NONE */
#define RT_DEVICE_FLAG_FIFO_RX 0x200 /* Flag to use when the sensor is open by fifo mode */
#define RT_SENSOR_MODULE_MAX (3) /* The maximum number of members of a sensor module */
#define RT_SENSOR_MACRO_GET_NAME(macro) (macro##_STR)
/* Sensor types */
#define RT_SENSOR_TYPE_NONE (0)
#define RT_SENSOR_TYPE_NONE_STR "None"
#define RT_SENSOR_TYPE_ACCE (1)
#define RT_SENSOR_TYPE_ACCE_STR "Accelerometer"
#define RT_SENSOR_TYPE_GYRO (2)
#define RT_SENSOR_TYPE_GYRO_STR "Gyroscope"
#define RT_SENSOR_TYPE_MAG (3)
#define RT_SENSOR_TYPE_MAG_STR "Magnetometer"
#define RT_SENSOR_TYPE_TEMP (4)
#define RT_SENSOR_TYPE_TEMP_STR "Temperature"
#define RT_SENSOR_TYPE_HUMI (5)
#define RT_SENSOR_TYPE_HUMI_STR "Relative Humidity"
#define RT_SENSOR_TYPE_BARO (6)
#define RT_SENSOR_TYPE_BARO_STR "Barometer"
#define RT_SENSOR_TYPE_LIGHT (7)
#define RT_SENSOR_TYPE_LIGHT_STR "Ambient Light"
#define RT_SENSOR_TYPE_PROXIMITY (8)
#define RT_SENSOR_TYPE_PROXIMITY_STR "Proximity"
#define RT_SENSOR_TYPE_HR (9)
#define RT_SENSOR_TYPE_HR_STR "Heart Rate"
#define RT_SENSOR_TYPE_TVOC (10)
#define RT_SENSOR_TYPE_TVOC_STR "TVOC Level"
#define RT_SENSOR_TYPE_NOISE (11)
#define RT_SENSOR_TYPE_NOISE_STR "Noise Loudness"
#define RT_SENSOR_TYPE_STEP (12)
#define RT_SENSOR_TYPE_STEP_STR "Step"
#define RT_SENSOR_TYPE_FORCE (13)
#define RT_SENSOR_TYPE_FORCE_STR "Force"
#define RT_SENSOR_TYPE_DUST (14)
#define RT_SENSOR_TYPE_DUST_STR "Dust"
#define RT_SENSOR_TYPE_ECO2 (15)
#define RT_SENSOR_TYPE_ECO2_STR "eCO2"
#define RT_SENSOR_TYPE_GNSS (16)
#define RT_SENSOR_TYPE_GNSS_STR "GNSS"
#define RT_SENSOR_TYPE_TOF (17)
#define RT_SENSOR_TYPE_TOF_STR "ToF"
#define RT_SENSOR_TYPE_SPO2 (18)
#define RT_SENSOR_TYPE_SPO2_STR "SpO2"
#define RT_SENSOR_TYPE_IAQ (19)
#define RT_SENSOR_TYPE_IAQ_STR "IAQ"
#define RT_SENSOR_TYPE_ETOH (20)
#define RT_SENSOR_TYPE_ETOH_STR "EtOH"
#define RT_SENSOR_TYPE_BP (21)
#define RT_SENSOR_TYPE_BP_STR "Blood Pressure"
#define RT_SENSOR_TYPE_VOLTAGE (22)
#define RT_SENSOR_TYPE_VOLTAGE_STR "Voltage"
#define RT_SENSOR_TYPE_CURRENT (23)
#define RT_SENSOR_TYPE_CURRENT_STR "Current"
#define RT_SENSOR_CLASS_NONE (0)
#define RT_SENSOR_CLASS_ACCE (1) /* Accelerometer */
#define RT_SENSOR_CLASS_GYRO (2) /* Gyroscope */
#define RT_SENSOR_CLASS_MAG (3) /* Magnetometer */
#define RT_SENSOR_CLASS_TEMP (4) /* Temperature */
#define RT_SENSOR_CLASS_HUMI (5) /* Relative Humidity */
#define RT_SENSOR_CLASS_BARO (6) /* Barometer */
#define RT_SENSOR_CLASS_LIGHT (7) /* Ambient light */
#define RT_SENSOR_CLASS_PROXIMITY (8) /* Proximity */
#define RT_SENSOR_CLASS_HR (9) /* Heart Rate */
#define RT_SENSOR_CLASS_TVOC (10) /* TVOC Level */
#define RT_SENSOR_CLASS_NOISE (11) /* Noise Loudness */
#define RT_SENSOR_CLASS_STEP (12) /* Step sensor */
#define RT_SENSOR_CLASS_FORCE (13) /* Force sensor */
#define RT_SENSOR_CLASS_DUST (14) /* Dust sensor */
#define RT_SENSOR_CLASS_ECO2 (15) /* eCO2 sensor */
#define RT_SENSOR_CLASS_GNSS (16) /* GPS/GNSS sensor */
#define RT_SENSOR_CLASS_TOF (17) /* TOF sensor */
#define RT_SENSOR_CLASS_SPO2 (18) /* SpO2 sensor */
#define RT_SENSOR_CLASS_IAQ (19) /* IAQ sensor. */
#define RT_SENSOR_CLASS_ETOH (20) /* EtOH sensor. */
#define RT_SENSOR_CLASS_BP (21) /* Blood Pressure */
/* Sensor vendor types */
#define RT_SENSOR_VENDOR_UNKNOWN (0)
#define RT_SENSOR_VENDOR_UNKNOWN_STR "Unknown"
#define RT_SENSOR_VENDOR_VIRTUAL (1)
#define RT_SENSOR_VENDOR_VIRTUAL_STR "Virtual Sensor"
#define RT_SENSOR_VENDOR_ONCHIP (2)
#define RT_SENSOR_VENDOR_ONCHIP_STR "OnChip"
#define RT_SENSOR_VENDOR_STM (3)
#define RT_SENSOR_VENDOR_STM_STR "STMicroelectronics"
#define RT_SENSOR_VENDOR_BOSCH (4)
#define RT_SENSOR_VENDOR_BOSCH_STR "Bosch"
#define RT_SENSOR_VENDOR_INVENSENSE (5)
#define RT_SENSOR_VENDOR_INVENSENSE_STR "Invensense"
#define RT_SENSOR_VENDOR_SEMTECH (6)
#define RT_SENSOR_VENDOR_SEMTECH_STR "Semtech"
#define RT_SENSOR_VENDOR_GOERTEK (7)
#define RT_SENSOR_VENDOR_GOERTEK_STR "Goertek"
#define RT_SENSOR_VENDOR_MIRAMEMS (8)
#define RT_SENSOR_VENDOR_MIRAMEMS_STR "MiraMEMS"
#define RT_SENSOR_VENDOR_DALLAS (9)
#define RT_SENSOR_VENDOR_DALLAS_STR "Dallas"
#define RT_SENSOR_VENDOR_ASAIR (10)
#define RT_SENSOR_VENDOR_ASAIR_STR "Aosong"
#define RT_SENSOR_VENDOR_SHARP (11)
#define RT_SENSOR_VENDOR_SHARP_STR "Sharp"
#define RT_SENSOR_VENDOR_SENSIRION (12)
#define RT_SENSOR_VENDOR_SENSIRION_STR "Sensirion"
#define RT_SENSOR_VENDOR_TI (13)
#define RT_SENSOR_VENDOR_TI_STR "Texas Instruments"
#define RT_SENSOR_VENDOR_PLANTOWER (14)
#define RT_SENSOR_VENDOR_PLANTOWER_STR "Plantower"
#define RT_SENSOR_VENDOR_AMS (15)
#define RT_SENSOR_VENDOR_AMS_STR "ams-OSRAM AG"
#define RT_SENSOR_VENDOR_MAXIM (16)
#define RT_SENSOR_VENDOR_MAXIM_STR "Maxim Integrated"
#define RT_SENSOR_VENDOR_MELEXIS (17)
#define RT_SENSOR_VENDOR_MELEXIS_STR "Melexis"
#define RT_SENSOR_VENDOR_LSC (18)
#define RT_SENSOR_VENDOR_LSC_STR "Lite On"
#define RT_SENSOR_VENDOR_STM (1) /* STMicroelectronics */
#define RT_SENSOR_VENDOR_BOSCH (2) /* Bosch */
#define RT_SENSOR_VENDOR_INVENSENSE (3) /* Invensense */
#define RT_SENSOR_VENDOR_SEMTECH (4) /* Semtech */
#define RT_SENSOR_VENDOR_GOERTEK (5) /* Goertek */
#define RT_SENSOR_VENDOR_MIRAMEMS (6) /* MiraMEMS */
#define RT_SENSOR_VENDOR_DALLAS (7) /* Dallas */
#define RT_SENSOR_VENDOR_ASAIR (8) /* Aosong */
#define RT_SENSOR_VENDOR_SHARP (9) /* Sharp */
#define RT_SENSOR_VENDOR_SENSIRION (10) /* Sensirion */
#define RT_SENSOR_VENDOR_TI (11) /* Texas Instruments */
#define RT_SENSOR_VENDOR_PLANTOWER (12) /* Plantower */
#define RT_SENSOR_VENDOR_AMS (13) /* ams AG */
#define RT_SENSOR_VENDOR_MAXIM (14) /* Maxim Integrated */
#define RT_SENSOR_VENDOR_MELEXIS (15) /* Melexis */
/* Sensor unit types */
#define RT_SENSOR_UNIT_NONE (0) /* Dimensionless quantity */
#define RT_SENSOR_UNIT_NONE_STR ""
#define RT_SENSOR_UNIT_NONE (0)
#define RT_SENSOR_UNIT_MG (1) /* Accelerometer unit: mG */
#define RT_SENSOR_UNIT_MG_STR "mG"
#define RT_SENSOR_UNIT_MDPS (2) /* Gyroscope unit: mdps */
#define RT_SENSOR_UNIT_MDPS_STR "mdps"
#define RT_SENSOR_UNIT_MGAUSS (3) /* Magnetometer unit: mGauss */
#define RT_SENSOR_UNIT_MGAUSS_STR "mGauss"
#define RT_SENSOR_UNIT_LUX (4) /* Ambient light unit: lux */
#define RT_SENSOR_UNIT_LUX_STR "lux"
#define RT_SENSOR_UNIT_M (5) /* Distance unit: m */
#define RT_SENSOR_UNIT_M_STR "m"
#define RT_SENSOR_UNIT_CM (6) /* Distance unit: cm */
#define RT_SENSOR_UNIT_CM_STR "cm"
#define RT_SENSOR_UNIT_MM (7) /* Distance unit: mm */
#define RT_SENSOR_UNIT_MM_STR "mm"
#define RT_SENSOR_UNIT_PA (8) /* Barometer unit: Pa */
#define RT_SENSOR_UNIT_PA_STR "Pa"
#define RT_SENSOR_UNIT_MMHG (9) /* Blood Pressure unit: mmHg */
#define RT_SENSOR_UNIT_MMHG_STR "mmHg"
#define RT_SENSOR_UNIT_PERCENTAGE (10) /* Relative Humidity unit: percentage */
#define RT_SENSOR_UNIT_PERCENTAGE_STR "%"
#define RT_SENSOR_UNIT_PERMILLAGE (11) /* Relative Humidity unit: permillage */
#define RT_SENSOR_UNIT_PERMILLAGE_STR "‰"
#define RT_SENSOR_UNIT_CELSIUS (12) /* Temperature unit: Celsius ℃ */
#define RT_SENSOR_UNIT_CELSIUS_STR "℃"
#define RT_SENSOR_UNIT_FAHRENHEIT (13) /* Temperature unit: Fahrenheit ℉ */
#define RT_SENSOR_UNIT_FAHRENHEIT_STR "℉"
#define RT_SENSOR_UNIT_KELVIN (14) /* Temperature unit: Kelvin K */
#define RT_SENSOR_UNIT_KELVIN_STR "K"
#define RT_SENSOR_UNIT_HZ (15) /* Frequency unit: Hz */
#define RT_SENSOR_UNIT_HZ_STR "Hz"
#define RT_SENSOR_UNIT_V (16) /* Voltage unit: V */
#define RT_SENSOR_UNIT_V_STR "V"
#define RT_SENSOR_UNIT_MV (17) /* Voltage unit: mV */
#define RT_SENSOR_UNIT_MV_STR "mV"
#define RT_SENSOR_UNIT_A (18) /* Current unit: A */
#define RT_SENSOR_UNIT_A_STR "A"
#define RT_SENSOR_UNIT_MA (19) /* Current unit: mA */
#define RT_SENSOR_UNIT_MA_STR "mA"
#define RT_SENSOR_UNIT_N (20) /* Force unit: N */
#define RT_SENSOR_UNIT_N_STR "N"
#define RT_SENSOR_UNIT_MN (21) /* Force unit: mN */
#define RT_SENSOR_UNIT_MN_STR "mN"
#define RT_SENSOR_UNIT_BPM (22) /* Heart rate unit: bpm */
#define RT_SENSOR_UNIT_BPM_STR "bpm"
#define RT_SENSOR_UNIT_PPM (23) /* Concentration unit: ppm */
#define RT_SENSOR_UNIT_PPM_STR "ppm"
#define RT_SENSOR_UNIT_PPB (24) /* Concentration unit: ppb */
#define RT_SENSOR_UNIT_PPB_STR "ppb"
#define RT_SENSOR_UNIT_DMS (25) /* Coordinates unit: DMS */
#define RT_SENSOR_UNIT_DMS_STR "DMS"
#define RT_SENSOR_UNIT_DD (26) /* Coordinates unit: DD */
#define RT_SENSOR_UNIT_DD_STR "DD"
#define RT_SENSOR_UNIT_MGM3 (27) /* Concentration unit: mg/m3 */
#define RT_SENSOR_UNIT_MGM3_STR "mg/m3"
#define RT_SENSOR_UNIT_CM (5) /* Distance unit: cm */
#define RT_SENSOR_UNIT_PA (6) /* Barometer unit: pa */
#define RT_SENSOR_UNIT_PERMILLAGE (7) /* Relative Humidity unit: permillage */
#define RT_SENSOR_UNIT_DCELSIUS (8) /* Temperature unit: dCelsius */
#define RT_SENSOR_UNIT_HZ (9) /* Frequency unit: HZ */
#define RT_SENSOR_UNIT_ONE (10) /* Dimensionless quantity unit: 1 */
#define RT_SENSOR_UNIT_BPM (11) /* Heart rate unit: bpm */
#define RT_SENSOR_UNIT_MM (12) /* Distance unit: mm */
#define RT_SENSOR_UNIT_MN (13) /* Force unit: mN */
#define RT_SENSOR_UNIT_PPM (14) /* Concentration unit: ppm */
#define RT_SENSOR_UNIT_PPB (15) /* Concentration unit: ppb */
#define RT_SENSOR_UNIT_DMS (16) /* Coordinates unit: DMS */
#define RT_SENSOR_UNIT_DD (17) /* Coordinates unit: DD */
#define RT_SENSOR_UNIT_MGM3 (18) /* Concentration unit: mg/m3 */
#define RT_SENSOR_UNIT_MMHG (19) /* Blood Pressure unit: mmHg */
/* Sensor communication interface types */
#define RT_SENSOR_INTF_I2C (1 << 0)
#define RT_SENSOR_INTF_I2C_STR "I2C"
#define RT_SENSOR_INTF_SPI (1 << 1)
#define RT_SENSOR_INTF_SPI_STR "SPI"
#define RT_SENSOR_INTF_UART (1 << 2)
#define RT_SENSOR_INTF_UART_STR "UART"
#define RT_SENSOR_INTF_ONEWIRE (1 << 3)
#define RT_SENSOR_INTF_ONEWIRE_STR "1-Wire"
#define RT_SENSOR_INTF_CAN (1 << 4)
#define RT_SENSOR_INTF_CAN_STR "CAN"
#define RT_SENSOR_INTF_MODBUS (1 << 5)
#define RT_SENSOR_INTF_MODBUS_STR "Modbus"
/**
* Sensor mode
* rt_uint16_t mode
* 0000 | 0000 | 0000 | 0000
* unused accuracy power fetch data
*/
#define RT_SENSOR_MODE_ACCURACY_BIT_OFFSET (8)
#define RT_SENSOR_MODE_POWER_BIT_OFFSET (4)
#define RT_SENSOR_MODE_FETCH_BIT_OFFSET (0)
/* Sensor power mode types */
#define RT_SENSOR_MODE_GET_ACCURACY(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_ACCURACY_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_MODE_GET_POWER(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_POWER_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_MODE_GET_FETCH(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_FETCH_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_POWER_NONE (0)
#define RT_SENSOR_POWER_DOWN (1) /* power down mode */
#define RT_SENSOR_POWER_NORMAL (2) /* normal-power mode */
#define RT_SENSOR_POWER_LOW (3) /* low-power mode */
#define RT_SENSOR_POWER_HIGH (4) /* high-power mode */
#define RT_SENSOR_MODE_CLEAR_ACCURACY(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_ACCURACY_BIT_OFFSET)))
#define RT_SENSOR_MODE_CLEAR_POWER(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_POWER_BIT_OFFSET)))
#define RT_SENSOR_MODE_CLEAR_FETCH(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_FETCH_BIT_OFFSET)))
/* Sensor work mode types */
#define RT_SENSOR_MODE_SET_ACCURACY(mode, accuracy_mode) RT_SENSOR_MODE_CLEAR_ACCURACY(mode); (mode |= (accuracy_mode << RT_SENSOR_MODE_ACCURACY_BIT_OFFSET))
#define RT_SENSOR_MODE_SET_POWER(mode, power_mode) RT_SENSOR_MODE_CLEAR_POWER(mode); (mode |= (power_mode << RT_SENSOR_MODE_POWER_BIT_OFFSET))
#define RT_SENSOR_MODE_SET_FETCH(mode, fetch_mode) RT_SENSOR_MODE_CLEAR_FETCH(mode); (mode |= (fetch_mode << RT_SENSOR_MODE_FETCH_BIT_OFFSET))
/* Sensor mode: accuracy */
#define RT_SENSOR_MODE_ACCURACY_HIGHEST (0)
#define RT_SENSOR_MODE_ACCURACY_HIGHEST_STR "Accuracy Highest"
#define RT_SENSOR_MODE_ACCURACY_HIGH (1)
#define RT_SENSOR_MODE_ACCURACY_HIGH_STR "Accuracy High"
#define RT_SENSOR_MODE_ACCURACY_MEDIUM (2)
#define RT_SENSOR_MODE_ACCURACY_MEDIUM_STR "Accuracy Medium"
#define RT_SENSOR_MODE_ACCURACY_LOW (3)
#define RT_SENSOR_MODE_ACCURACY_LOW_STR "Accuracy Low"
#define RT_SENSOR_MODE_ACCURACY_LOWEST (4)
#define RT_SENSOR_MODE_ACCURACY_LOWEST_STR "Accuracy Lowest"
#define RT_SENSOR_MODE_ACCURACY_NOTRUST (5)
#define RT_SENSOR_MODE_ACCURACY_NOTRUST_STR "Accuracy No Trust"
/* Sensor mode: power */
#define RT_SENSOR_MODE_POWER_HIGHEST (0)
#define RT_SENSOR_MODE_POWER_HIGHEST_STR "Power Highest"
#define RT_SENSOR_MODE_POWER_HIGH (1)
#define RT_SENSOR_MODE_POWER_HIGH_STR "Power High"
#define RT_SENSOR_MODE_POWER_MEDIUM (2)
#define RT_SENSOR_MODE_POWER_MEDIUM_STR "Power Medium"
#define RT_SENSOR_MODE_POWER_LOW (3)
#define RT_SENSOR_MODE_POWER_LOW_STR "Power Low"
#define RT_SENSOR_MODE_POWER_LOWEST (4)
#define RT_SENSOR_MODE_POWER_LOWEST_STR "Power Lowest"
#define RT_SENSOR_MODE_POWER_DOWN (5)
#define RT_SENSOR_MODE_POWER_DOWN_STR "Power Down"
/* Sensor mode: fetch data */
#define RT_SENSOR_MODE_FETCH_POLLING (0) /* One shot only read a data */
#define RT_SENSOR_MODE_FETCH_POLLING_STR "Polling Mode"
#define RT_SENSOR_MODE_FETCH_INT (1) /* TODO: One shot interrupt only read a data */
#define RT_SENSOR_MODE_FETCH_INT_STR "Interrupt Mode"
#define RT_SENSOR_MODE_FETCH_FIFO (2) /* TODO: One shot interrupt read all fifo data */
#define RT_SENSOR_MODE_FETCH_FIFO_STR "FIFO Mode"
#define RT_SENSOR_MODE_NONE (0)
#define RT_SENSOR_MODE_POLLING (1) /* One shot only read a data */
#define RT_SENSOR_MODE_INT (2) /* TODO: One shot interrupt only read a data */
#define RT_SENSOR_MODE_FIFO (3) /* TODO: One shot interrupt read all fifo data */
/* Sensor control cmd types */
#define RT_SENSOR_CTRL_GET_ID (RT_DEVICE_CTRL_BASE(Sensor) + 0) /* Get device id */
#define RT_SENSOR_CTRL_SELF_TEST (RT_DEVICE_CTRL_BASE(Sensor) + 1) /* Take a self test */
#define RT_SENSOR_CTRL_SOFT_RESET (RT_DEVICE_CTRL_BASE(Sensor) + 2) /* soft reset sensor */
#define RT_SENSOR_CTRL_SET_FETCH_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 3) /* set fetch data mode */
#define RT_SENSOR_CTRL_SET_POWER_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 4) /* set power mode */
#define RT_SENSOR_CTRL_SET_ACCURACY_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 5) /* set accuracy mode */
#define RT_SENSOR_CTRL_GET_INFO (RT_DEVICE_CTRL_BASE(Sensor) + 1) /* Get sensor info */
#define RT_SENSOR_CTRL_SET_RANGE (RT_DEVICE_CTRL_BASE(Sensor) + 2) /* Set the measure range of sensor. unit is info of sensor */
#define RT_SENSOR_CTRL_SET_ODR (RT_DEVICE_CTRL_BASE(Sensor) + 3) /* Set output date rate. unit is HZ */
#define RT_SENSOR_CTRL_SET_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 4) /* Set sensor's work mode. ex. RT_SENSOR_MODE_POLLING,RT_SENSOR_MODE_INT */
#define RT_SENSOR_CTRL_SET_POWER (RT_DEVICE_CTRL_BASE(Sensor) + 5) /* Set power mode. args type of sensor power mode. ex. RT_SENSOR_POWER_DOWN,RT_SENSOR_POWER_NORMAL */
#define RT_SENSOR_CTRL_SELF_TEST (RT_DEVICE_CTRL_BASE(Sensor) + 6) /* Take a self test */
#define RT_SENSOR_CTRL_USER_CMD_START 0x100 /* User commands should be greater than 0x100 */
/* sensor floating data type */
#ifdef RT_USING_SENSOR_DOUBLE_FLOAT
typedef double rt_sensor_float_t;
#else
typedef float rt_sensor_float_t;
#endif /* RT_USING_SENSOR_DOUBLE_FLOAT */
struct rt_sensor_accuracy
{
rt_sensor_float_t resolution; /* resolution of sesnor measurement */
rt_sensor_float_t error; /* error of sesnor measurement */
};
struct rt_sensor_scale
{
rt_sensor_float_t range_max; /* maximum range of this sensor's value. unit is 'unit' */
rt_sensor_float_t range_min; /* minimum range of this sensor's value. unit is 'unit' */
};
struct rt_sensor_info
{
rt_uint8_t type; /* sensor type */
rt_uint8_t vendor; /* sensors vendor */
const char *name; /* name of sensor */
rt_uint8_t type; /* The sensor type */
rt_uint8_t vendor; /* Vendor of sensors */
const char *model; /* model name of sensor */
rt_uint8_t unit; /* unit of measurement */
rt_uint8_t intf_type; /* communication interface type */
rt_uint16_t mode; /* sensor work mode */
rt_uint8_t intf_type; /* Communication interface type */
rt_int32_t range_max; /* maximum range of this sensor's value. unit is 'unit' */
rt_int32_t range_min; /* minimum range of this sensor's value. unit is 'unit' */
rt_uint32_t period_min; /* Minimum measurement period,unit:ms. zero = not a constant rate */
rt_uint8_t fifo_max;
rt_sensor_float_t acquire_min; /* minimum acquirement period, unit:ms. zero = not a constant rate */
struct rt_sensor_accuracy accuracy; /* sensor current measure accuracy */
struct rt_sensor_scale scale; /* sensor current scale range */
};
struct rt_sensor_intf
{
char *dev_name; /* The name of the communication device */
rt_uint8_t type; /* Communication interface type */
void *arg; /* Interface argument for the sensor. ex. i2c addr,spi cs,control I/O */
void *user_data; /* Private data for the sensor. ex. i2c addr,spi cs,control I/O */
};
struct rt_sensor_config
{
struct rt_sensor_intf intf; /* sensor interface config */
struct rt_device_pin_mode irq_pin; /* Interrupt pin, The purpose of this pin is to notification read data */
rt_uint8_t mode; /* sensor work mode */
rt_uint8_t power; /* sensor power mode */
rt_uint16_t odr; /* sensor out data rate */
rt_int32_t range; /* sensor range of measurement */
};
typedef struct rt_sensor_device *rt_sensor_t;
typedef struct rt_sensor_data *rt_sensor_data_t;
typedef struct rt_sensor_info *rt_sensor_info_t;
typedef struct rt_sensor_accuracy *rt_sensor_accuracy_t;
typedef struct rt_sensor_scale *rt_sensor_scale_t;
struct rt_sensor_device
{
@ -320,7 +168,7 @@ struct rt_sensor_device
struct rt_sensor_info info; /* The sensor info data */
struct rt_sensor_config config; /* The sensor config data */
rt_sensor_data_t data_buf; /* The buf of the data received */
void *data_buf; /* The buf of the data received */
rt_size_t data_len; /* The size of the data received */
const struct rt_sensor_ops *ops; /* The sensor ops */
@ -341,22 +189,22 @@ struct rt_sensor_module
/* 3-axis Data Type */
struct sensor_3_axis
{
rt_sensor_float_t x;
rt_sensor_float_t y;
rt_sensor_float_t z;
rt_int32_t x;
rt_int32_t y;
rt_int32_t z;
};
/* Blood Pressure Data Type */
struct sensor_bp
{
rt_sensor_float_t sbp; /* SBP : systolic pressure */
rt_sensor_float_t dbp; /* DBP : diastolic pressure */
rt_int32_t sbp; /* SBP : systolic pressure */
rt_int32_t dbp; /* DBP : diastolic pressure */
};
struct coordinates
{
rt_sensor_float_t longitude;
rt_sensor_float_t latitude;
double longitude;
double latitude;
};
struct rt_sensor_data
@ -369,29 +217,29 @@ struct rt_sensor_data
struct sensor_3_axis gyro; /* Gyroscope. unit: mdps */
struct sensor_3_axis mag; /* Magnetometer. unit: mGauss */
struct coordinates coord; /* Coordinates unit: degrees */
rt_int32_t temp; /* Temperature. unit: dCelsius */
rt_int32_t humi; /* Relative humidity. unit: permillage */
rt_int32_t baro; /* Pressure. unit: pascal (Pa) */
rt_int32_t light; /* Light. unit: lux */
rt_int32_t proximity; /* Distance. unit: centimeters */
rt_int32_t hr; /* Heart rate. unit: bpm */
rt_int32_t tvoc; /* TVOC. unit: permillage */
rt_int32_t noise; /* Noise Loudness. unit: HZ */
rt_uint32_t step; /* Step sensor. unit: 1 */
rt_int32_t force; /* Force sensor. unit: mN */
rt_uint32_t dust; /* Dust sensor. unit: ug/m3 */
rt_uint32_t eco2; /* eCO2 sensor. unit: ppm */
rt_uint32_t spo2; /* SpO2 sensor. unit: permillage */
rt_uint32_t iaq; /* IAQ sensor. unit: 1 */
rt_uint32_t etoh; /* EtOH sensor. unit: ppm */
struct sensor_bp bp; /* BloodPressure. unit: mmHg */
rt_sensor_float_t temp; /* Temperature. unit: dCelsius */
rt_sensor_float_t humi; /* Relative humidity. unit: permillage */
rt_sensor_float_t baro; /* Pressure. unit: pascal (Pa) */
rt_sensor_float_t light; /* Light. unit: lux */
rt_sensor_float_t proximity; /* Distance. unit: centimeters */
rt_sensor_float_t hr; /* Heart rate. unit: bpm */
rt_sensor_float_t tvoc; /* TVOC. unit: permillage */
rt_sensor_float_t noise; /* Noise Loudness. unit: HZ */
rt_sensor_float_t step; /* Step sensor. unit: 1 */
rt_sensor_float_t force; /* Force sensor. unit: mN */
rt_sensor_float_t dust; /* Dust sensor. unit: ug/m3 */
rt_sensor_float_t eco2; /* eCO2 sensor. unit: ppm */
rt_sensor_float_t spo2; /* SpO2 sensor. unit: permillage */
rt_sensor_float_t iaq; /* IAQ sensor. unit: 1 */
rt_sensor_float_t etoh; /* EtOH sensor. unit: ppm */
} data;
};
struct rt_sensor_ops
{
rt_ssize_t (*fetch_data)(rt_sensor_t sensor, rt_sensor_data_t buf, rt_size_t len);
rt_err_t (*control)(rt_sensor_t sensor, int cmd, void *arg);
rt_size_t (*fetch_data)(struct rt_sensor_device *sensor, void *buf, rt_size_t len);
rt_err_t (*control)(struct rt_sensor_device *sensor, int cmd, void *arg);
};
int rt_hw_sensor_register(rt_sensor_t sensor,

View File

@ -0,0 +1,406 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
* 2022-12-17 Meco Man re-implement sensor framework
*/
#ifndef __SENSOR_H__
#define __SENSOR_H__
#include <rtthread.h>
#include "pin.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef RT_USING_RTC
#define rt_sensor_get_ts() time(RT_NULL) /* API for the sensor to get the timestamp */
#else
#define rt_sensor_get_ts() rt_tick_get() /* API for the sensor to get the timestamp */
#endif
#define RT_DEVICE_FLAG_FIFO_RX 0x200 /* Flag to use when the sensor is open by fifo mode */
#define RT_SENSOR_MODULE_MAX (3) /* The maximum number of members of a sensor module */
#define RT_SENSOR_MACRO_GET_NAME(macro) (macro##_STR)
/* Sensor types */
#define RT_SENSOR_TYPE_NONE (0)
#define RT_SENSOR_TYPE_NONE_STR "None"
#define RT_SENSOR_TYPE_ACCE (1)
#define RT_SENSOR_TYPE_ACCE_STR "Accelerometer"
#define RT_SENSOR_TYPE_GYRO (2)
#define RT_SENSOR_TYPE_GYRO_STR "Gyroscope"
#define RT_SENSOR_TYPE_MAG (3)
#define RT_SENSOR_TYPE_MAG_STR "Magnetometer"
#define RT_SENSOR_TYPE_TEMP (4)
#define RT_SENSOR_TYPE_TEMP_STR "Temperature"
#define RT_SENSOR_TYPE_HUMI (5)
#define RT_SENSOR_TYPE_HUMI_STR "Relative Humidity"
#define RT_SENSOR_TYPE_BARO (6)
#define RT_SENSOR_TYPE_BARO_STR "Barometer"
#define RT_SENSOR_TYPE_LIGHT (7)
#define RT_SENSOR_TYPE_LIGHT_STR "Ambient Light"
#define RT_SENSOR_TYPE_PROXIMITY (8)
#define RT_SENSOR_TYPE_PROXIMITY_STR "Proximity"
#define RT_SENSOR_TYPE_HR (9)
#define RT_SENSOR_TYPE_HR_STR "Heart Rate"
#define RT_SENSOR_TYPE_TVOC (10)
#define RT_SENSOR_TYPE_TVOC_STR "TVOC Level"
#define RT_SENSOR_TYPE_NOISE (11)
#define RT_SENSOR_TYPE_NOISE_STR "Noise Loudness"
#define RT_SENSOR_TYPE_STEP (12)
#define RT_SENSOR_TYPE_STEP_STR "Step"
#define RT_SENSOR_TYPE_FORCE (13)
#define RT_SENSOR_TYPE_FORCE_STR "Force"
#define RT_SENSOR_TYPE_DUST (14)
#define RT_SENSOR_TYPE_DUST_STR "Dust"
#define RT_SENSOR_TYPE_ECO2 (15)
#define RT_SENSOR_TYPE_ECO2_STR "eCO2"
#define RT_SENSOR_TYPE_GNSS (16)
#define RT_SENSOR_TYPE_GNSS_STR "GNSS"
#define RT_SENSOR_TYPE_TOF (17)
#define RT_SENSOR_TYPE_TOF_STR "ToF"
#define RT_SENSOR_TYPE_SPO2 (18)
#define RT_SENSOR_TYPE_SPO2_STR "SpO2"
#define RT_SENSOR_TYPE_IAQ (19)
#define RT_SENSOR_TYPE_IAQ_STR "IAQ"
#define RT_SENSOR_TYPE_ETOH (20)
#define RT_SENSOR_TYPE_ETOH_STR "EtOH"
#define RT_SENSOR_TYPE_BP (21)
#define RT_SENSOR_TYPE_BP_STR "Blood Pressure"
#define RT_SENSOR_TYPE_VOLTAGE (22)
#define RT_SENSOR_TYPE_VOLTAGE_STR "Voltage"
#define RT_SENSOR_TYPE_CURRENT (23)
#define RT_SENSOR_TYPE_CURRENT_STR "Current"
/* Sensor vendor types */
#define RT_SENSOR_VENDOR_UNKNOWN (0)
#define RT_SENSOR_VENDOR_UNKNOWN_STR "Unknown"
#define RT_SENSOR_VENDOR_VIRTUAL (1)
#define RT_SENSOR_VENDOR_VIRTUAL_STR "Virtual Sensor"
#define RT_SENSOR_VENDOR_ONCHIP (2)
#define RT_SENSOR_VENDOR_ONCHIP_STR "OnChip"
#define RT_SENSOR_VENDOR_STM (3)
#define RT_SENSOR_VENDOR_STM_STR "STMicroelectronics"
#define RT_SENSOR_VENDOR_BOSCH (4)
#define RT_SENSOR_VENDOR_BOSCH_STR "Bosch"
#define RT_SENSOR_VENDOR_INVENSENSE (5)
#define RT_SENSOR_VENDOR_INVENSENSE_STR "Invensense"
#define RT_SENSOR_VENDOR_SEMTECH (6)
#define RT_SENSOR_VENDOR_SEMTECH_STR "Semtech"
#define RT_SENSOR_VENDOR_GOERTEK (7)
#define RT_SENSOR_VENDOR_GOERTEK_STR "Goertek"
#define RT_SENSOR_VENDOR_MIRAMEMS (8)
#define RT_SENSOR_VENDOR_MIRAMEMS_STR "MiraMEMS"
#define RT_SENSOR_VENDOR_DALLAS (9)
#define RT_SENSOR_VENDOR_DALLAS_STR "Dallas"
#define RT_SENSOR_VENDOR_ASAIR (10)
#define RT_SENSOR_VENDOR_ASAIR_STR "Aosong"
#define RT_SENSOR_VENDOR_SHARP (11)
#define RT_SENSOR_VENDOR_SHARP_STR "Sharp"
#define RT_SENSOR_VENDOR_SENSIRION (12)
#define RT_SENSOR_VENDOR_SENSIRION_STR "Sensirion"
#define RT_SENSOR_VENDOR_TI (13)
#define RT_SENSOR_VENDOR_TI_STR "Texas Instruments"
#define RT_SENSOR_VENDOR_PLANTOWER (14)
#define RT_SENSOR_VENDOR_PLANTOWER_STR "Plantower"
#define RT_SENSOR_VENDOR_AMS (15)
#define RT_SENSOR_VENDOR_AMS_STR "ams-OSRAM AG"
#define RT_SENSOR_VENDOR_MAXIM (16)
#define RT_SENSOR_VENDOR_MAXIM_STR "Maxim Integrated"
#define RT_SENSOR_VENDOR_MELEXIS (17)
#define RT_SENSOR_VENDOR_MELEXIS_STR "Melexis"
#define RT_SENSOR_VENDOR_LSC (18)
#define RT_SENSOR_VENDOR_LSC_STR "Lite On"
/* Sensor unit types */
#define RT_SENSOR_UNIT_NONE (0) /* Dimensionless quantity */
#define RT_SENSOR_UNIT_NONE_STR ""
#define RT_SENSOR_UNIT_MG (1) /* Accelerometer unit: mG */
#define RT_SENSOR_UNIT_MG_STR "mG"
#define RT_SENSOR_UNIT_MDPS (2) /* Gyroscope unit: mdps */
#define RT_SENSOR_UNIT_MDPS_STR "mdps"
#define RT_SENSOR_UNIT_MGAUSS (3) /* Magnetometer unit: mGauss */
#define RT_SENSOR_UNIT_MGAUSS_STR "mGauss"
#define RT_SENSOR_UNIT_LUX (4) /* Ambient light unit: lux */
#define RT_SENSOR_UNIT_LUX_STR "lux"
#define RT_SENSOR_UNIT_M (5) /* Distance unit: m */
#define RT_SENSOR_UNIT_M_STR "m"
#define RT_SENSOR_UNIT_CM (6) /* Distance unit: cm */
#define RT_SENSOR_UNIT_CM_STR "cm"
#define RT_SENSOR_UNIT_MM (7) /* Distance unit: mm */
#define RT_SENSOR_UNIT_MM_STR "mm"
#define RT_SENSOR_UNIT_PA (8) /* Barometer unit: Pa */
#define RT_SENSOR_UNIT_PA_STR "Pa"
#define RT_SENSOR_UNIT_MMHG (9) /* Blood Pressure unit: mmHg */
#define RT_SENSOR_UNIT_MMHG_STR "mmHg"
#define RT_SENSOR_UNIT_PERCENTAGE (10) /* Relative Humidity unit: percentage */
#define RT_SENSOR_UNIT_PERCENTAGE_STR "%"
#define RT_SENSOR_UNIT_PERMILLAGE (11) /* Relative Humidity unit: permillage */
#define RT_SENSOR_UNIT_PERMILLAGE_STR "‰"
#define RT_SENSOR_UNIT_CELSIUS (12) /* Temperature unit: Celsius ℃ */
#define RT_SENSOR_UNIT_CELSIUS_STR "℃"
#define RT_SENSOR_UNIT_FAHRENHEIT (13) /* Temperature unit: Fahrenheit ℉ */
#define RT_SENSOR_UNIT_FAHRENHEIT_STR "℉"
#define RT_SENSOR_UNIT_KELVIN (14) /* Temperature unit: Kelvin K */
#define RT_SENSOR_UNIT_KELVIN_STR "K"
#define RT_SENSOR_UNIT_HZ (15) /* Frequency unit: Hz */
#define RT_SENSOR_UNIT_HZ_STR "Hz"
#define RT_SENSOR_UNIT_V (16) /* Voltage unit: V */
#define RT_SENSOR_UNIT_V_STR "V"
#define RT_SENSOR_UNIT_MV (17) /* Voltage unit: mV */
#define RT_SENSOR_UNIT_MV_STR "mV"
#define RT_SENSOR_UNIT_A (18) /* Current unit: A */
#define RT_SENSOR_UNIT_A_STR "A"
#define RT_SENSOR_UNIT_MA (19) /* Current unit: mA */
#define RT_SENSOR_UNIT_MA_STR "mA"
#define RT_SENSOR_UNIT_N (20) /* Force unit: N */
#define RT_SENSOR_UNIT_N_STR "N"
#define RT_SENSOR_UNIT_MN (21) /* Force unit: mN */
#define RT_SENSOR_UNIT_MN_STR "mN"
#define RT_SENSOR_UNIT_BPM (22) /* Heart rate unit: bpm */
#define RT_SENSOR_UNIT_BPM_STR "bpm"
#define RT_SENSOR_UNIT_PPM (23) /* Concentration unit: ppm */
#define RT_SENSOR_UNIT_PPM_STR "ppm"
#define RT_SENSOR_UNIT_PPB (24) /* Concentration unit: ppb */
#define RT_SENSOR_UNIT_PPB_STR "ppb"
#define RT_SENSOR_UNIT_DMS (25) /* Coordinates unit: DMS */
#define RT_SENSOR_UNIT_DMS_STR "DMS"
#define RT_SENSOR_UNIT_DD (26) /* Coordinates unit: DD */
#define RT_SENSOR_UNIT_DD_STR "DD"
#define RT_SENSOR_UNIT_MGM3 (27) /* Concentration unit: mg/m3 */
#define RT_SENSOR_UNIT_MGM3_STR "mg/m3"
/* Sensor communication interface types */
#define RT_SENSOR_INTF_I2C (1 << 0)
#define RT_SENSOR_INTF_I2C_STR "I2C"
#define RT_SENSOR_INTF_SPI (1 << 1)
#define RT_SENSOR_INTF_SPI_STR "SPI"
#define RT_SENSOR_INTF_UART (1 << 2)
#define RT_SENSOR_INTF_UART_STR "UART"
#define RT_SENSOR_INTF_ONEWIRE (1 << 3)
#define RT_SENSOR_INTF_ONEWIRE_STR "1-Wire"
#define RT_SENSOR_INTF_CAN (1 << 4)
#define RT_SENSOR_INTF_CAN_STR "CAN"
#define RT_SENSOR_INTF_MODBUS (1 << 5)
#define RT_SENSOR_INTF_MODBUS_STR "Modbus"
/**
* Sensor mode
* rt_uint16_t mode
* 0000 | 0000 | 0000 | 0000
* unused accuracy power fetch data
*/
#define RT_SENSOR_MODE_ACCURACY_BIT_OFFSET (8)
#define RT_SENSOR_MODE_POWER_BIT_OFFSET (4)
#define RT_SENSOR_MODE_FETCH_BIT_OFFSET (0)
#define RT_SENSOR_MODE_GET_ACCURACY(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_ACCURACY_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_MODE_GET_POWER(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_POWER_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_MODE_GET_FETCH(mode) (rt_uint8_t)((mode >> RT_SENSOR_MODE_FETCH_BIT_OFFSET) & 0x0F)
#define RT_SENSOR_MODE_CLEAR_ACCURACY(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_ACCURACY_BIT_OFFSET)))
#define RT_SENSOR_MODE_CLEAR_POWER(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_POWER_BIT_OFFSET)))
#define RT_SENSOR_MODE_CLEAR_FETCH(mode) (mode &= ((rt_uint16_t)~((rt_uint16_t)0x0F << RT_SENSOR_MODE_FETCH_BIT_OFFSET)))
#define RT_SENSOR_MODE_SET_ACCURACY(mode, accuracy_mode) RT_SENSOR_MODE_CLEAR_ACCURACY(mode); (mode |= (accuracy_mode << RT_SENSOR_MODE_ACCURACY_BIT_OFFSET))
#define RT_SENSOR_MODE_SET_POWER(mode, power_mode) RT_SENSOR_MODE_CLEAR_POWER(mode); (mode |= (power_mode << RT_SENSOR_MODE_POWER_BIT_OFFSET))
#define RT_SENSOR_MODE_SET_FETCH(mode, fetch_mode) RT_SENSOR_MODE_CLEAR_FETCH(mode); (mode |= (fetch_mode << RT_SENSOR_MODE_FETCH_BIT_OFFSET))
/* Sensor mode: accuracy */
#define RT_SENSOR_MODE_ACCURACY_HIGHEST (0)
#define RT_SENSOR_MODE_ACCURACY_HIGHEST_STR "Accuracy Highest"
#define RT_SENSOR_MODE_ACCURACY_HIGH (1)
#define RT_SENSOR_MODE_ACCURACY_HIGH_STR "Accuracy High"
#define RT_SENSOR_MODE_ACCURACY_MEDIUM (2)
#define RT_SENSOR_MODE_ACCURACY_MEDIUM_STR "Accuracy Medium"
#define RT_SENSOR_MODE_ACCURACY_LOW (3)
#define RT_SENSOR_MODE_ACCURACY_LOW_STR "Accuracy Low"
#define RT_SENSOR_MODE_ACCURACY_LOWEST (4)
#define RT_SENSOR_MODE_ACCURACY_LOWEST_STR "Accuracy Lowest"
#define RT_SENSOR_MODE_ACCURACY_NOTRUST (5)
#define RT_SENSOR_MODE_ACCURACY_NOTRUST_STR "Accuracy No Trust"
/* Sensor mode: power */
#define RT_SENSOR_MODE_POWER_HIGHEST (0)
#define RT_SENSOR_MODE_POWER_HIGHEST_STR "Power Highest"
#define RT_SENSOR_MODE_POWER_HIGH (1)
#define RT_SENSOR_MODE_POWER_HIGH_STR "Power High"
#define RT_SENSOR_MODE_POWER_MEDIUM (2)
#define RT_SENSOR_MODE_POWER_MEDIUM_STR "Power Medium"
#define RT_SENSOR_MODE_POWER_LOW (3)
#define RT_SENSOR_MODE_POWER_LOW_STR "Power Low"
#define RT_SENSOR_MODE_POWER_LOWEST (4)
#define RT_SENSOR_MODE_POWER_LOWEST_STR "Power Lowest"
#define RT_SENSOR_MODE_POWER_DOWN (5)
#define RT_SENSOR_MODE_POWER_DOWN_STR "Power Down"
/* Sensor mode: fetch data */
#define RT_SENSOR_MODE_FETCH_POLLING (0) /* One shot only read a data */
#define RT_SENSOR_MODE_FETCH_POLLING_STR "Polling Mode"
#define RT_SENSOR_MODE_FETCH_INT (1) /* TODO: One shot interrupt only read a data */
#define RT_SENSOR_MODE_FETCH_INT_STR "Interrupt Mode"
#define RT_SENSOR_MODE_FETCH_FIFO (2) /* TODO: One shot interrupt read all fifo data */
#define RT_SENSOR_MODE_FETCH_FIFO_STR "FIFO Mode"
/* Sensor control cmd types */
#define RT_SENSOR_CTRL_GET_ID (RT_DEVICE_CTRL_BASE(Sensor) + 0) /* Get device id */
#define RT_SENSOR_CTRL_SELF_TEST (RT_DEVICE_CTRL_BASE(Sensor) + 1) /* Take a self test */
#define RT_SENSOR_CTRL_SOFT_RESET (RT_DEVICE_CTRL_BASE(Sensor) + 2) /* soft reset sensor */
#define RT_SENSOR_CTRL_SET_FETCH_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 3) /* set fetch data mode */
#define RT_SENSOR_CTRL_SET_POWER_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 4) /* set power mode */
#define RT_SENSOR_CTRL_SET_ACCURACY_MODE (RT_DEVICE_CTRL_BASE(Sensor) + 5) /* set accuracy mode */
#define RT_SENSOR_CTRL_USER_CMD_START 0x100 /* User commands should be greater than 0x100 */
/* sensor floating data type */
#ifdef RT_USING_SENSOR_DOUBLE_FLOAT
typedef double rt_sensor_float_t;
#else
typedef float rt_sensor_float_t;
#endif /* RT_USING_SENSOR_DOUBLE_FLOAT */
struct rt_sensor_accuracy
{
rt_sensor_float_t resolution; /* resolution of sesnor measurement */
rt_sensor_float_t error; /* error of sesnor measurement */
};
struct rt_sensor_scale
{
rt_sensor_float_t range_max; /* maximum range of this sensor's value. unit is 'unit' */
rt_sensor_float_t range_min; /* minimum range of this sensor's value. unit is 'unit' */
};
struct rt_sensor_info
{
rt_uint8_t type; /* sensor type */
rt_uint8_t vendor; /* sensors vendor */
const char *name; /* name of sensor */
rt_uint8_t unit; /* unit of measurement */
rt_uint8_t intf_type; /* communication interface type */
rt_uint16_t mode; /* sensor work mode */
rt_uint8_t fifo_max;
rt_sensor_float_t acquire_min; /* minimum acquirement period, unit:ms. zero = not a constant rate */
struct rt_sensor_accuracy accuracy; /* sensor current measure accuracy */
struct rt_sensor_scale scale; /* sensor current scale range */
};
struct rt_sensor_intf
{
char *dev_name; /* The name of the communication device */
rt_uint8_t type; /* Communication interface type */
void *arg; /* Interface argument for the sensor. ex. i2c addr,spi cs,control I/O */
};
struct rt_sensor_config
{
struct rt_sensor_intf intf; /* sensor interface config */
struct rt_device_pin_mode irq_pin; /* Interrupt pin, The purpose of this pin is to notification read data */
};
typedef struct rt_sensor_device *rt_sensor_t;
typedef struct rt_sensor_data *rt_sensor_data_t;
typedef struct rt_sensor_info *rt_sensor_info_t;
typedef struct rt_sensor_accuracy *rt_sensor_accuracy_t;
typedef struct rt_sensor_scale *rt_sensor_scale_t;
struct rt_sensor_device
{
struct rt_device parent; /* The standard device */
struct rt_sensor_info info; /* The sensor info data */
struct rt_sensor_config config; /* The sensor config data */
rt_sensor_data_t data_buf; /* The buf of the data received */
rt_size_t data_len; /* The size of the data received */
const struct rt_sensor_ops *ops; /* The sensor ops */
struct rt_sensor_module *module; /* The sensor module */
rt_err_t (*irq_handle)(rt_sensor_t sensor); /* Called when an interrupt is generated, registered by the driver */
};
struct rt_sensor_module
{
rt_mutex_t lock; /* The module lock */
rt_sensor_t sen[RT_SENSOR_MODULE_MAX]; /* The module contains a list of sensors */
rt_uint8_t sen_num; /* Number of sensors contained in the module */
};
/* 3-axis Data Type */
struct sensor_3_axis
{
rt_sensor_float_t x;
rt_sensor_float_t y;
rt_sensor_float_t z;
};
/* Blood Pressure Data Type */
struct sensor_bp
{
rt_sensor_float_t sbp; /* SBP : systolic pressure */
rt_sensor_float_t dbp; /* DBP : diastolic pressure */
};
struct coordinates
{
rt_sensor_float_t longitude;
rt_sensor_float_t latitude;
};
struct rt_sensor_data
{
rt_uint32_t timestamp; /* The timestamp when the data was received */
rt_uint8_t type; /* The sensor type of the data */
union
{
struct sensor_3_axis acce; /* Accelerometer. unit: mG */
struct sensor_3_axis gyro; /* Gyroscope. unit: mdps */
struct sensor_3_axis mag; /* Magnetometer. unit: mGauss */
struct coordinates coord; /* Coordinates unit: degrees */
struct sensor_bp bp; /* BloodPressure. unit: mmHg */
rt_sensor_float_t temp; /* Temperature. unit: dCelsius */
rt_sensor_float_t humi; /* Relative humidity. unit: permillage */
rt_sensor_float_t baro; /* Pressure. unit: pascal (Pa) */
rt_sensor_float_t light; /* Light. unit: lux */
rt_sensor_float_t proximity; /* Distance. unit: centimeters */
rt_sensor_float_t hr; /* Heart rate. unit: bpm */
rt_sensor_float_t tvoc; /* TVOC. unit: permillage */
rt_sensor_float_t noise; /* Noise Loudness. unit: HZ */
rt_sensor_float_t step; /* Step sensor. unit: 1 */
rt_sensor_float_t force; /* Force sensor. unit: mN */
rt_sensor_float_t dust; /* Dust sensor. unit: ug/m3 */
rt_sensor_float_t eco2; /* eCO2 sensor. unit: ppm */
rt_sensor_float_t spo2; /* SpO2 sensor. unit: permillage */
rt_sensor_float_t iaq; /* IAQ sensor. unit: 1 */
rt_sensor_float_t etoh; /* EtOH sensor. unit: ppm */
} data;
};
struct rt_sensor_ops
{
rt_ssize_t (*fetch_data)(rt_sensor_t sensor, rt_sensor_data_t buf, rt_size_t len);
rt_err_t (*control)(rt_sensor_t sensor, int cmd, void *arg);
};
int rt_hw_sensor_register(rt_sensor_t sensor,
const char *name,
rt_uint32_t flag,
void *data);
#ifdef __cplusplus
}
#endif
#endif /* __SENSOR_H__ */

View File

@ -94,7 +94,11 @@ extern "C" {
#endif /* RT_USING_PIN */
#ifdef RT_USING_SENSOR
#ifdef RT_USING_SENSOR_V2
#include "drivers/sensor_v2.h"
#else
#include "drivers/sensor.h"
#endif /* RT_USING_SENSOR_V2 */
#endif /* RT_USING_SENSOR */
#ifdef RT_USING_CAN

View File

@ -1,14 +1,15 @@
# SConscript for sensor framework
# RT-Thread building script for bridge
import os
from building import *
cwd = GetCurrentDir()
src = ['sensor.c']
CPPPATH = [cwd, cwd + '/../include']
objs = []
list = os.listdir(cwd)
if GetDepend('RT_USING_SENSOR_CMD'):
src += ['sensor_cmd.c']
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SENSOR', 'RT_USING_DEVICE'], CPPPATH = CPPPATH)
Return('group')
Return('objs')

View File

@ -0,0 +1,12 @@
# SConscript for sensor framework
from building import *
src = ['sensor.c']
if GetDepend('RT_USING_SENSOR_CMD'):
src += ['sensor_cmd.c']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SENSOR'])
Return('group')

View File

@ -0,0 +1,495 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
* 2020-02-22 luhuadong support custom commands
*/
#include <drivers/sensor.h>
#define DBG_TAG "sensor"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <string.h>
static char *const sensor_name_str[] =
{
"none",
"acce_", /* Accelerometer */
"gyro_", /* Gyroscope */
"mag_", /* Magnetometer */
"temp_", /* Temperature */
"humi_", /* Relative Humidity */
"baro_", /* Barometer */
"li_", /* Ambient light */
"pr_", /* Proximity */
"hr_", /* Heart Rate */
"tvoc_", /* TVOC Level */
"noi_", /* Noise Loudness */
"step_", /* Step sensor */
"forc_", /* Force sensor */
"dust_", /* Dust sensor */
"eco2_", /* eCO2 sensor */
"gnss_", /* GPS/GNSS sensor */
"tof_", /* TOF sensor */
"spo2_", /* SpO2 sensor */
"iaq_", /* IAQ sensor */
"etoh_", /* EtOH sensor */
"bp_" /* Blood Pressure */
};
/* Sensor interrupt correlation function */
/*
* Sensor interrupt handler function
*/
void rt_sensor_cb(rt_sensor_t sen)
{
if (sen->parent.rx_indicate == RT_NULL)
{
return;
}
if (sen->irq_handle != RT_NULL)
{
sen->irq_handle(sen);
}
/* The buffer is not empty. Read the data in the buffer first */
if (sen->data_len > 0)
{
sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
}
else if (sen->config.mode == RT_SENSOR_MODE_INT)
{
/* The interrupt mode only produces one data at a time */
sen->parent.rx_indicate(&sen->parent, 1);
}
else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
{
sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
}
}
/* ISR for sensor interrupt */
static void irq_callback(void *args)
{
rt_sensor_t sensor = (rt_sensor_t)args;
rt_uint8_t i;
if (sensor->module)
{
/* Invoke a callback for all sensors in the module */
for (i = 0; i < sensor->module->sen_num; i++)
{
rt_sensor_cb(sensor->module->sen[i]);
}
}
else
{
rt_sensor_cb(sensor);
}
}
/* Sensor interrupt initialization function */
static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
{
if (sensor->config.irq_pin.pin == RT_PIN_NONE)
{
return -RT_EINVAL;
}
rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
}
else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
}
else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
{
rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
}
rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
LOG_I("interrupt init success");
return 0;
}
// local rt_sensor_ops
static rt_size_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
{
LOG_D("Undefined fetch_data");
return 0;
}
static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
{
LOG_D("Undefined control");
return RT_ERROR;
}
static struct rt_sensor_ops local_ops =
{
.fetch_data = local_fetch_data,
.control = local_control
};
/* RT-Thread Device Interface */
static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
RT_ASSERT(dev != RT_NULL);
rt_err_t res = RT_EOK;
rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
if (sensor->module)
{
/* take the module mutex */
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
{
/* Allocate memory for the sensor buffer */
sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
if (sensor->data_buf == RT_NULL)
{
res = -RT_ENOMEM;
goto __exit;
}
}
if (sensor->ops->control != RT_NULL)
{
local_ctrl = sensor->ops->control;
}
sensor->config.mode = RT_SENSOR_MODE_POLLING;
if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
{
/* If polling mode is supported, configure it to polling mode */
local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
}
else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* If interrupt mode is supported, configure it to interrupt mode */
if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
{
/* Initialization sensor interrupt */
rt_sensor_irq_init(sensor);
sensor->config.mode = RT_SENSOR_MODE_INT;
}
}
else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
{
/* If fifo mode is supported, configure it to fifo mode */
if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
{
/* Initialization sensor interrupt */
rt_sensor_irq_init(sensor);
sensor->config.mode = RT_SENSOR_MODE_FIFO;
}
}
else
{
res = -RT_EINVAL;
goto __exit;
}
/* Configure power mode to normal mode */
if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
{
sensor->config.power = RT_SENSOR_POWER_NORMAL;
}
__exit:
if (sensor->module)
{
/* release the module mutex */
rt_mutex_release(sensor->module->lock);
}
return res;
}
static rt_err_t rt_sensor_close(rt_device_t dev)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
int i;
rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
RT_ASSERT(dev != RT_NULL);
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
if (sensor->ops->control != RT_NULL)
{
local_ctrl = sensor->ops->control;
}
/* Configure power mode to power down mode */
if (local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
{
sensor->config.power = RT_SENSOR_POWER_DOWN;
}
if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
{
for (i = 0; i < sensor->module->sen_num; i ++)
{
if (sensor->module->sen[i]->parent.ref_count > 0)
goto __exit;
}
/* Free memory for the sensor buffer */
for (i = 0; i < sensor->module->sen_num; i ++)
{
if (sensor->module->sen[i]->data_buf != RT_NULL)
{
rt_free(sensor->module->sen[i]->data_buf);
sensor->module->sen[i]->data_buf = RT_NULL;
}
}
}
if (sensor->config.mode != RT_SENSOR_MODE_POLLING)
{
/* Sensor disable interrupt */
if (sensor->config.irq_pin.pin != RT_PIN_NONE)
{
rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
}
}
__exit:
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return RT_EOK;
}
static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
rt_size_t result = 0;
RT_ASSERT(dev != RT_NULL);
if (buf == NULL || len == 0)
{
return 0;
}
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
/* The buffer is not empty. Read the data in the buffer first */
if (sensor->data_len > 0)
{
if (len > sensor->data_len / sizeof(struct rt_sensor_data))
{
len = sensor->data_len / sizeof(struct rt_sensor_data);
}
rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
/* Clear the buffer */
sensor->data_len = 0;
result = len;
}
else
{
/* If the buffer is empty read the data */
if (sensor->ops->fetch_data != RT_NULL)
{
result = sensor->ops->fetch_data(sensor, buf, len);
}
}
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return result;
}
static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
{
rt_sensor_t sensor = (rt_sensor_t)dev;
rt_err_t result = RT_EOK;
RT_ASSERT(dev != RT_NULL);
rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
if (sensor->module)
{
rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
}
if (sensor->ops->control != RT_NULL)
{
local_ctrl = sensor->ops->control;
}
switch (cmd)
{
case RT_SENSOR_CTRL_GET_ID:
if (args)
{
result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
}
break;
case RT_SENSOR_CTRL_GET_INFO:
if (args)
{
rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
}
break;
case RT_SENSOR_CTRL_SET_RANGE:
/* Configuration measurement range */
result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
if (result == RT_EOK)
{
sensor->config.range = (rt_int32_t)args;
LOG_D("set range %d", sensor->config.range);
}
break;
case RT_SENSOR_CTRL_SET_ODR:
/* Configuration data output rate */
result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
if (result == RT_EOK)
{
sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
LOG_D("set odr %d", sensor->config.odr);
}
break;
case RT_SENSOR_CTRL_SET_POWER:
/* Configuration sensor power mode */
result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
if (result == RT_EOK)
{
sensor->config.power = (rt_uint32_t)args & 0xFF;
LOG_D("set power mode code:", sensor->config.power);
}
break;
case RT_SENSOR_CTRL_SELF_TEST:
/* Device self-test */
result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
break;
default:
if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
{
/* Custom commands */
result = local_ctrl(sensor, cmd, args);
}
else
{
result = -RT_ERROR;
}
break;
}
if (sensor->module)
{
rt_mutex_release(sensor->module->lock);
}
return result;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops rt_sensor_ops =
{
RT_NULL,
rt_sensor_open,
rt_sensor_close,
rt_sensor_read,
RT_NULL,
rt_sensor_control
};
#endif
/*
* sensor register
*/
int rt_hw_sensor_register(rt_sensor_t sensor,
const char *name,
rt_uint32_t flag,
void *data)
{
rt_int8_t result;
rt_device_t device;
RT_ASSERT(sensor != RT_NULL);
char *sensor_name = RT_NULL, *device_name = RT_NULL;
if (sensor->ops == RT_NULL)
{
sensor->ops = &local_ops;
}
/* Add a type name for the sensor device */
sensor_name = sensor_name_str[sensor->info.type];
device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
if (device_name == RT_NULL)
{
LOG_E("device_name calloc failed!");
return -RT_ERROR;
}
rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
strcat(device_name, name);
if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
{
/* Create a mutex lock for the module */
sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
if (sensor->module->lock == RT_NULL)
{
rt_free(device_name);
return -RT_ERROR;
}
}
device = &sensor->parent;
#ifdef RT_USING_DEVICE_OPS
device->ops = &rt_sensor_ops;
#else
device->init = RT_NULL;
device->open = rt_sensor_open;
device->close = rt_sensor_close;
device->read = rt_sensor_read;
device->write = RT_NULL;
device->control = rt_sensor_control;
#endif
device->type = RT_Device_Class_Sensor;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->user_data = data;
result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
if (result != RT_EOK)
{
LOG_E("rt_sensor[%s] register err code: %d", device_name, result);
rt_free(device_name);
return result;
}
LOG_I("rt_sensor[%s] init success", device_name);
rt_free(device_name);
return RT_EOK;
}

View File

@ -0,0 +1,516 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-31 flybreak first version
* 2019-07-16 WillianChan Increase the output of sensor information
* 2020-02-22 luhuadong Add vendor info and sensor types for cmd
*/
#include <drivers/sensor.h>
#define DBG_TAG "sensor.cmd"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <stdlib.h>
#include <string.h>
static rt_sem_t sensor_rx_sem = RT_NULL;
static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
{
switch (sensor->info.type)
{
case RT_SENSOR_CLASS_ACCE:
LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_GYRO:
LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_MAG:
LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_GNSS:
LOG_I("num:%3d, lon:%5d, lat:%5d, timestamp:%5d", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_TEMP:
LOG_I("num:%3d, temp:%3d.%d C, timestamp:%5d", num, sensor_data->data.temp / 10, (rt_uint32_t)sensor_data->data.temp % 10, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_HUMI:
LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_BARO:
LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_LIGHT:
LOG_I("num:%3d, light:%5d lux, timestamp:%5d", num, sensor_data->data.light, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_PROXIMITY:
case RT_SENSOR_CLASS_TOF:
LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_HR:
LOG_I("num:%3d, heart rate:%5d bpm, timestamp:%5d", num, sensor_data->data.hr, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_TVOC:
LOG_I("num:%3d, tvoc:%5d ppb, timestamp:%5d", num, sensor_data->data.tvoc, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_NOISE:
LOG_I("num:%3d, noise:%5d, timestamp:%5d", num, sensor_data->data.noise, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_STEP:
LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_FORCE:
LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_DUST:
LOG_I("num:%3d, dust:%5d ug/m3, timestamp:%5d", num, sensor_data->data.dust, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_ECO2:
LOG_I("num:%3d, eco2:%5d ppm, timestamp:%5d", num, sensor_data->data.eco2, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_IAQ:
LOG_I("num:%3d, IAQ:%5d.%d , timestamp:%5d", num, sensor_data->data.iaq / 10, sensor_data->data.iaq % 10, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_ETOH:
LOG_I("num:%3d, EtOH:%5d.%03d ppm, timestamp:%5d", num, sensor_data->data.etoh / 1000, sensor_data->data.etoh % 1000, sensor_data->timestamp);
break;
case RT_SENSOR_CLASS_BP:
LOG_I("num:%3d, bp.sbp:%5d mmHg, bp.dbp:%5d mmHg, timestamp:%5d", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, sensor_data->timestamp);
break;
default:
break;
}
}
static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
{
rt_sem_release(sensor_rx_sem);
return 0;
}
static void sensor_fifo_rx_entry(void *parameter)
{
rt_device_t dev = (rt_device_t)parameter;
rt_sensor_t sensor = (rt_sensor_t)parameter;
struct rt_sensor_data *data = RT_NULL;
struct rt_sensor_info info;
rt_size_t res, i;
rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
if (data == RT_NULL)
{
LOG_E("Memory allocation failed!");
}
while (1)
{
rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
res = rt_device_read(dev, 0, data, info.fifo_max);
for (i = 0; i < res; i++)
{
sensor_show_data(i, sensor, &data[i]);
}
}
}
static void sensor_fifo(int argc, char **argv)
{
static rt_thread_t tid1 = RT_NULL;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
sensor = (rt_sensor_t)dev;
if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
if (sensor_rx_sem == RT_NULL)
{
sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
}
else
{
LOG_E("The thread is running, please reboot and try again");
return;
}
tid1 = rt_thread_create("sen_rx_thread",
sensor_fifo_rx_entry, sensor,
1024,
15, 5);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
rt_device_set_rx_indicate(dev, rx_callback);
rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
}
#ifdef RT_USING_FINSH
MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
#endif
static void sensor_irq_rx_entry(void *parameter)
{
rt_device_t dev = (rt_device_t)parameter;
rt_sensor_t sensor = (rt_sensor_t)parameter;
struct rt_sensor_data data;
rt_size_t res, i = 0;
while (1)
{
rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
res = rt_device_read(dev, 0, &data, 1);
if (res == 1)
{
sensor_show_data(i++, sensor, &data);
}
}
}
static void sensor_int(int argc, char **argv)
{
static rt_thread_t tid1 = RT_NULL;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
sensor = (rt_sensor_t)dev;
if (sensor_rx_sem == RT_NULL)
{
sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
}
else
{
LOG_E("The thread is running, please reboot and try again");
return;
}
tid1 = rt_thread_create("sen_rx_thread",
sensor_irq_rx_entry, sensor,
1024,
15, 5);
if (tid1 != RT_NULL)
rt_thread_startup(tid1);
rt_device_set_rx_indicate(dev, rx_callback);
if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
}
#ifdef RT_USING_FINSH
MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
#endif
static void sensor_polling(int argc, char **argv)
{
rt_uint16_t num = 10;
rt_device_t dev = RT_NULL;
rt_sensor_t sensor;
struct rt_sensor_data data;
rt_size_t res, i;
rt_int32_t delay;
rt_err_t result;
dev = rt_device_find(argv[1]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[1]);
return;
}
if (argc > 2)
num = atoi(argv[2]);
sensor = (rt_sensor_t)dev;
delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY);
if (result != RT_EOK)
{
LOG_E("open device failed! error code : %d", result);
return;
}
rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
for (i = 0; i < num; i++)
{
res = rt_device_read(dev, 0, &data, 1);
if (res != 1)
{
LOG_E("read data failed!size is %d", res);
}
else
{
sensor_show_data(i, sensor, &data);
}
rt_thread_mdelay(delay);
}
rt_device_close(dev);
}
#ifdef RT_USING_FINSH
MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
#endif
static void sensor(int argc, char **argv)
{
static rt_device_t dev = RT_NULL;
struct rt_sensor_data data;
rt_sensor_t sensor;
rt_size_t res, i;
rt_int32_t delay;
/* If the number of arguments less than 2 */
if (argc < 2)
{
rt_kprintf("\n");
rt_kprintf("sensor [OPTION] [PARAM]\n");
rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
rt_kprintf(" info Get sensor info\n");
rt_kprintf(" sr <var> Set range to var\n");
rt_kprintf(" sm <var> Set work mode to var\n");
rt_kprintf(" sp <var> Set power mode to var\n");
rt_kprintf(" sodr <var> Set output date rate to var\n");
rt_kprintf(" read [num] Read [num] times sensor\n");
rt_kprintf(" num default 5\n");
return ;
}
else if (!strcmp(argv[1], "info"))
{
struct rt_sensor_info info;
if (dev == RT_NULL)
{
LOG_W("Please probe sensor device first!");
return ;
}
rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
switch (info.vendor)
{
case RT_SENSOR_VENDOR_UNKNOWN:
rt_kprintf("vendor :unknown vendor\n");
break;
case RT_SENSOR_VENDOR_STM:
rt_kprintf("vendor :STMicroelectronics\n");
break;
case RT_SENSOR_VENDOR_BOSCH:
rt_kprintf("vendor :Bosch\n");
break;
case RT_SENSOR_VENDOR_INVENSENSE:
rt_kprintf("vendor :Invensense\n");
break;
case RT_SENSOR_VENDOR_SEMTECH:
rt_kprintf("vendor :Semtech\n");
break;
case RT_SENSOR_VENDOR_GOERTEK:
rt_kprintf("vendor :Goertek\n");
break;
case RT_SENSOR_VENDOR_MIRAMEMS:
rt_kprintf("vendor :MiraMEMS\n");
break;
case RT_SENSOR_VENDOR_DALLAS:
rt_kprintf("vendor :Dallas\n");
break;
case RT_SENSOR_VENDOR_ASAIR:
rt_kprintf("vendor :Asair\n");
break;
case RT_SENSOR_VENDOR_SHARP:
rt_kprintf("vendor :Sharp\n");
break;
case RT_SENSOR_VENDOR_SENSIRION:
rt_kprintf("vendor :Sensirion\n");
break;
case RT_SENSOR_VENDOR_TI:
rt_kprintf("vendor :Texas Instruments\n");
break;
case RT_SENSOR_VENDOR_PLANTOWER:
rt_kprintf("vendor :Plantower\n");
break;
case RT_SENSOR_VENDOR_AMS:
rt_kprintf("vendor :AMS\n");
break;
case RT_SENSOR_VENDOR_MAXIM:
rt_kprintf("vendor :Maxim Integrated\n");
break;
case RT_SENSOR_VENDOR_MELEXIS:
rt_kprintf("vendor :Melexis\n");
break;
}
rt_kprintf("model :%s\n", info.model);
switch (info.unit)
{
case RT_SENSOR_UNIT_NONE:
rt_kprintf("unit :none\n");
break;
case RT_SENSOR_UNIT_MG:
rt_kprintf("unit :mG\n");
break;
case RT_SENSOR_UNIT_MDPS:
rt_kprintf("unit :mdps\n");
break;
case RT_SENSOR_UNIT_MGAUSS:
rt_kprintf("unit :mGauss\n");
break;
case RT_SENSOR_UNIT_LUX:
rt_kprintf("unit :lux\n");
break;
case RT_SENSOR_UNIT_CM:
rt_kprintf("unit :cm\n");
break;
case RT_SENSOR_UNIT_PA:
rt_kprintf("unit :pa\n");
break;
case RT_SENSOR_UNIT_PERMILLAGE:
rt_kprintf("unit :permillage\n");
break;
case RT_SENSOR_UNIT_DCELSIUS:
rt_kprintf("unit :Celsius\n");
break;
case RT_SENSOR_UNIT_HZ:
rt_kprintf("unit :HZ\n");
break;
case RT_SENSOR_UNIT_ONE:
rt_kprintf("unit :1\n");
break;
case RT_SENSOR_UNIT_BPM:
rt_kprintf("unit :bpm\n");
break;
case RT_SENSOR_UNIT_MM:
rt_kprintf("unit :mm\n");
break;
case RT_SENSOR_UNIT_MN:
rt_kprintf("unit :mN\n");
break;
case RT_SENSOR_UNIT_PPM:
rt_kprintf("unit :ppm\n");
break;
case RT_SENSOR_UNIT_PPB:
rt_kprintf("unit :ppb\n");
break;
case RT_SENSOR_UNIT_MMHG:
rt_kprintf("unit :mmHg\n");
break;
}
rt_kprintf("range_max :%d\n", info.range_max);
rt_kprintf("range_min :%d\n", info.range_min);
rt_kprintf("period_min:%dms\n", info.period_min);
rt_kprintf("fifo_max :%d\n", info.fifo_max);
}
else if (!strcmp(argv[1], "read"))
{
rt_uint16_t num = 5;
if (dev == RT_NULL)
{
LOG_W("Please probe sensor device first!");
return ;
}
if (argc == 3)
{
num = atoi(argv[2]);
}
sensor = (rt_sensor_t)dev;
delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100;
for (i = 0; i < num; i++)
{
res = rt_device_read(dev, 0, &data, 1);
if (res != 1)
{
LOG_E("read data failed!size is %d", res);
}
else
{
sensor_show_data(i, sensor, &data);
}
rt_thread_mdelay(delay);
}
}
else if (argc == 3)
{
if (!strcmp(argv[1], "probe"))
{
rt_uint8_t reg = 0xFF;
if (dev)
{
rt_device_close(dev);
}
dev = rt_device_find(argv[2]);
if (dev == RT_NULL)
{
LOG_E("Can't find device:%s", argv[2]);
return;
}
if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
{
LOG_E("open device failed!");
return;
}
rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
LOG_I("device id: 0x%x!", reg);
}
else if (dev == RT_NULL)
{
LOG_W("Please probe sensor first!");
return ;
}
else if (!strcmp(argv[1], "sr"))
{
rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
}
else if (!strcmp(argv[1], "sm"))
{
rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
}
else if (!strcmp(argv[1], "sp"))
{
rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
}
else if (!strcmp(argv[1], "sodr"))
{
rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
}
else
{
LOG_W("Unknown command, please enter 'sensor' get help information!");
}
}
else
{
LOG_W("Unknown command, please enter 'sensor' get help information!");
}
}
#ifdef RT_USING_FINSH
MSH_CMD_EXPORT(sensor, sensor test function);
#endif

View File

@ -0,0 +1,12 @@
# SConscript for sensor framework
from building import *
src = ['sensor_v2.c']
if GetDepend('RT_USING_SENSOR_CMD'):
src += ['sensor_cmd.c']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SENSOR_V2'])
Return('group')

View File

@ -11,9 +11,9 @@
* 2022-12-17 Meco Man re-implement sensor framework
*/
#include <drivers/sensor.h>
#include <drivers/sensor_v2.h>
#define DBG_TAG "sensor.cmd"
#define DBG_TAG "sensor_v2.cmd"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>

View File

@ -10,9 +10,9 @@
* 2022-12-17 Meco Man re-implement sensor framework
*/
#include <drivers/sensor.h>
#include <drivers/sensor_v2.h>
#define DBG_TAG "sensor"
#define DBG_TAG "sensor_v2"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>