This commit is contained in:
bernard 2014-08-01 12:03:24 +08:00
commit 582aff86ed
24 changed files with 3245 additions and 42 deletions

View File

@ -540,12 +540,17 @@ struct dirent *readdir(DIR *d)
if (fd == RT_NULL)
{
rt_set_errno(-DFS_STATUS_EBADF);
return RT_NULL;
}
if (!d->num ||
(d->cur += ((struct dirent *)(d->buf + d->cur))->d_reclen) >= d->num)
if (d->num)
{
struct dirent* dirent_ptr;
dirent_ptr = (struct dirent*)&d->buf[d->cur];
d->cur += dirent_ptr->d_reclen;
}
if (!d->num || d->cur >= d->num)
{
/* get a new entry */
result = dfs_file_getdents(fd,

View File

@ -1,8 +1,28 @@
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
cwd = GetCurrentDir()
src = ['spi_core.c', 'spi_dev.c']
CPPPATH = [cwd + '/../include']
src_device = []
if GetDepend('RT_USING_SPI_WIFI'):
src_device += ['spi_wifi_rw009.c']
if GetDepend('RT_USING_W25QXX'):
src_device += ['spi_flash_w25qxx.c']
if GetDepend('RT_USING_ENC28J60'):
src_device += ['enc28j60.c']
if GetDepend('RT_USING_AT45DBXX'):
src_device += ['spi_flash_at45dbxx.c']
if GetDepend('RT_USING_SST25VFXX'):
src_device += ['spi_flash_sst25vfxx.c']
src += src_device
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SPI'], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,15 @@
spi_wifi_rw009.c/spi_wifi_rw009.h
RW009
http://www.rt-thread.com/
enc28j60.c/enc28j60.h
http://www.microchip.com/
spi_flash_at45dbxx.c/spi_flash_at45dbxx.h
http://www.atmel.com/
spi_flash_sst25vfxx.c/spi_flash_sst25vfxx.h
http://www.microchip.com/
spi_flash_w25qxx.c/spi_flash_w25qxx.h
http://www.winbond.com/

View File

@ -0,0 +1,876 @@
#include "enc28j60.h"
#define NET_TRACE
#define ETH_RX_DUMP
#define ETH_TX_DUMP
#ifdef NET_TRACE
#define NET_DEBUG rt_kprintf
#else
#define NET_DEBUG(...)
#endif /* #ifdef NET_TRACE */
struct enc28j60_tx_list_typedef
{
struct enc28j60_tx_list_typedef * prev;
struct enc28j60_tx_list_typedef * next;
rt_uint32_t addr; /* pkt addr in buffer */
rt_uint32_t len; /* pkt len */
volatile rt_bool_t free; /* 0:busy, 1:free */
};
static struct enc28j60_tx_list_typedef enc28j60_tx_list[2];
static volatile struct enc28j60_tx_list_typedef * tx_current;
static volatile struct enc28j60_tx_list_typedef * tx_ack;
static struct rt_event tx_event;
/* private enc28j60 define */
/* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address);
static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data);
static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address);
static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data);
static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk);
static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address);
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device);
static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level);
static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address);
static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data);
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device);
#define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER);
#define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock);
static struct net_device enc28j60_dev;
static uint8_t Enc28j60Bank;
//struct rt_spi_device * spi_device;
static uint16_t NextPacketPtr;
static void _delay_us(uint32_t us)
{
volatile uint32_t len;
for (; us > 0; us --)
for (len = 0; len < 20; len++ );
}
/* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address)
{
uint8_t send_buffer[2];
uint8_t recv_buffer[1];
uint32_t send_size = 1;
send_buffer[0] = op | (address & ADDR_MASK);
send_buffer[1] = 0xFF;
/* do dummy read if needed (for mac and mii, see datasheet page 29). */
if(address & 0x80)
{
send_size = 2;
}
rt_spi_send_then_recv(spi_device, send_buffer, send_size, recv_buffer, 1);
return (recv_buffer[0]);
}
static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data)
{
uint32_t level;
uint8_t buffer[2];
level = rt_hw_interrupt_disable();
buffer[0] = op | (address & ADDR_MASK);
buffer[1] = data;
rt_spi_send(spi_device, buffer, 2);
rt_hw_interrupt_enable(level);
}
/* enc28j60 function */
static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk)
{
/* setup clkout: 2 is 12.5MHz: */
spi_write(spi_device, ECOCON, clk & 0x7);
}
static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address)
{
/* set the bank (if needed) .*/
if((address & BANK_MASK) != Enc28j60Bank)
{
/* set the bank. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0));
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5);
Enc28j60Bank = (address & BANK_MASK);
}
}
static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address)
{
/* set the bank. */
enc28j60_set_bank(spi_device, address);
/* do the read. */
return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address);
}
static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data)
{
/* set the bank. */
enc28j60_set_bank(spi_device, address);
/* do the write. */
spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data);
}
static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address)
{
uint16_t value;
/* Set the right address and start the register read operation. */
spi_write(spi_device, MIREGADR, address);
spi_write(spi_device, MICMD, MICMD_MIIRD);
_delay_us(15);
/* wait until the PHY read completes. */
while(spi_read(spi_device, MISTAT) & MISTAT_BUSY);
/* reset reading bit */
spi_write(spi_device, MICMD, 0x00);
value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH)<<8;
return (value);
}
static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data)
{
/* set the PHY register address. */
spi_write(spi_device, MIREGADR, address);
/* write the PHY data. */
spi_write(spi_device, MIWRL, data);
spi_write(spi_device, MIWRH, data>>8);
/* wait until the PHY write completes. */
while(spi_read(spi_device, MISTAT) & MISTAT_BUSY)
{
_delay_us(15);
}
}
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device)
{
uint32_t level;
/* switch to bank 0 */
enc28j60_set_bank(spi_device, EIE);
/* get last interrupt level */
level = spi_read(spi_device, EIE);
/* disable interrutps */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, level);
return level;
}
static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level)
{
/* switch to bank 0 */
enc28j60_set_bank(spi_device, EIE);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, level);
}
/*
* Access the PHY to determine link status
*/
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device)
{
uint16_t reg;
int duplex;
reg = enc28j60_phy_read(spi_device, PHSTAT2);
duplex = reg & PHSTAT2_DPXSTAT;
if (reg & PHSTAT2_LSTAT)
{
/* on */
return RT_TRUE;
}
else
{
/* off */
return RT_FALSE;
}
}
/************************* RT-Thread Device Interface *************************/
void enc28j60_isr(void)
{
eth_device_ready(&enc28j60_dev.parent);
NET_DEBUG("enc28j60_isr\r\n");
}
static void _tx_chain_init(void)
{
enc28j60_tx_list[0].next = &enc28j60_tx_list[1];
enc28j60_tx_list[1].next = &enc28j60_tx_list[0];
enc28j60_tx_list[0].prev = &enc28j60_tx_list[1];
enc28j60_tx_list[1].prev = &enc28j60_tx_list[0];
enc28j60_tx_list[0].addr = TXSTART_INIT;
enc28j60_tx_list[1].addr = TXSTART_INIT + MAX_TX_PACKAGE_SIZE;
enc28j60_tx_list[0].free = RT_TRUE;
enc28j60_tx_list[1].free = RT_TRUE;
tx_current = &enc28j60_tx_list[0];
tx_ack = tx_current;
}
/* initialize the interface */
static rt_err_t enc28j60_init(rt_device_t dev)
{
struct net_device * enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device;
enc28j60_lock(dev);
_tx_chain_init();
// perform system reset
spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */
NextPacketPtr = RXSTART_INIT;
// Rx start
spi_write(spi_device, ERXSTL, RXSTART_INIT&0xFF);
spi_write(spi_device, ERXSTH, RXSTART_INIT>>8);
// set receive pointer address
spi_write(spi_device, ERXRDPTL, RXSTOP_INIT&0xFF);
spi_write(spi_device, ERXRDPTH, RXSTOP_INIT>>8);
// RX end
spi_write(spi_device, ERXNDL, RXSTOP_INIT&0xFF);
spi_write(spi_device, ERXNDH, RXSTOP_INIT>>8);
// TX start
spi_write(spi_device, ETXSTL, TXSTART_INIT&0xFF);
spi_write(spi_device, ETXSTH, TXSTART_INIT>>8);
// set transmission pointer address
spi_write(spi_device, EWRPTL, TXSTART_INIT&0xFF);
spi_write(spi_device, EWRPTH, TXSTART_INIT>>8);
// TX end
spi_write(spi_device, ETXNDL, TXSTOP_INIT&0xFF);
spi_write(spi_device, ETXNDH, TXSTOP_INIT>>8);
// do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets
// All other packets should be unicast only for our mac (MAADR)
//
// The pattern to match on is therefore
// Type ETH.DST
// ARP BROADCAST
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30
spi_write(spi_device, ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN);
// do bank 2 stuff
// enable MAC receive
spi_write(spi_device, MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS);
// enable automatic padding to 60bytes and CRC operations
// spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
// bring MAC out of reset
// set inter-frame gap (back-to-back)
// spi_write(MABBIPG, 0x12);
spi_write(spi_device, MABBIPG, 0x15);
spi_write(spi_device, MACON4, MACON4_DEFER);
spi_write(spi_device, MACLCON2, 63);
// set inter-frame gap (non-back-to-back)
spi_write(spi_device, MAIPGL, 0x12);
spi_write(spi_device, MAIPGH, 0x0C);
// Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN:
spi_write(spi_device, MAMXFLL, MAX_FRAMELEN&0xFF);
spi_write(spi_device, MAMXFLH, MAX_FRAMELEN>>8);
// do bank 3 stuff
// write MAC address
// NOTE: MAC address in ENC28J60 is byte-backward
spi_write(spi_device, MAADR0, enc28j60->dev_addr[5]);
spi_write(spi_device, MAADR1, enc28j60->dev_addr[4]);
spi_write(spi_device, MAADR2, enc28j60->dev_addr[3]);
spi_write(spi_device, MAADR3, enc28j60->dev_addr[2]);
spi_write(spi_device, MAADR4, enc28j60->dev_addr[1]);
spi_write(spi_device, MAADR5, enc28j60->dev_addr[0]);
/* output off */
spi_write(spi_device, ECOCON, 0x00);
// enc28j60_phy_write(PHCON1, 0x00);
enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex
// no loopback of transmitted frames
enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS);
enc28j60_set_bank(spi_device, ECON2);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC);
// switch to bank 0
enc28j60_set_bank(spi_device, ECON1);
// enable all interrutps
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, 0xFF);
// enable packet reception
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
/* clock out */
enc28j60_clkout(spi_device, 2);
enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476
rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */
enc28j60_unlock(dev);
return RT_EOK;
}
/* control the interface */
static rt_err_t enc28j60_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct net_device * enc28j60 = (struct net_device *)dev;
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, enc28j60->dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* Open the ethernet interface */
static rt_err_t enc28j60_open(rt_device_t dev, uint16_t oflag)
{
return RT_EOK;
}
/* Close the interface */
static rt_err_t enc28j60_close(rt_device_t dev)
{
return RT_EOK;
}
/* Read */
static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return RT_EOK;
}
/* Write */
static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/* ethernet device interface */
/* Transmit packet. */
static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
{
struct net_device * enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device;
struct pbuf* q;
rt_uint32_t level;
#ifdef ETH_TX_DUMP
rt_size_t dump_count = 0;
rt_uint8_t * dump_ptr;
rt_size_t dump_i;
#endif
if(tx_current->free == RT_FALSE)
{
NET_DEBUG("[Tx] no empty buffer!\r\n");
while(tx_current->free == RT_FALSE)
{
rt_err_t result;
rt_uint32_t recved;
/* there is no block yet, wait a flag */
result = rt_event_recv(&tx_event, 0x01,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved);
RT_ASSERT(result == RT_EOK);
}
NET_DEBUG("[Tx] wait empty buffer done!\r\n");
}
enc28j60_lock(dev);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable(spi_device);
// Set the write pointer to start of transmit buffer area
// spi_write(EWRPTL, TXSTART_INIT&0xFF);
// spi_write(EWRPTH, TXSTART_INIT>>8);
spi_write(spi_device, EWRPTL, (tx_current->addr)&0xFF);
spi_write(spi_device, EWRPTH, (tx_current->addr)>>8);
// Set the TXND pointer to correspond to the packet size given
tx_current->len = p->tot_len;
// spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
// spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8);
// write per-packet control byte (0x00 means use macon3 settings)
spi_write_op(spi_device, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
#ifdef ETH_TX_DUMP
NET_DEBUG("tx_dump, size:%d\r\n", p->tot_len);
#endif
for (q = p; q != NULL; q = q->next)
{
uint8_t cmd = ENC28J60_WRITE_BUF_MEM;
rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP
dump_ptr = q->payload;
for(dump_i=0; dump_i<q->len; dump_i++)
{
NET_DEBUG("%02x ", *dump_ptr);
if( ((dump_count+1)%8) == 0 )
{
NET_DEBUG(" ");
}
if( ((dump_count+1)%16) == 0 )
{
NET_DEBUG("\r\n");
}
dump_count++;
dump_ptr++;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG("\r\n");
#endif
// send the contents of the transmit buffer onto the network
if(tx_current == tx_ack)
{
NET_DEBUG("[Tx] stop, restart!\r\n");
// TX start
spi_write(spi_device, ETXSTL, (tx_current->addr)&0xFF);
spi_write(spi_device, ETXSTH, (tx_current->addr)>>8);
// TX end
spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len)&0xFF);
spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len)>>8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
}
else
{
NET_DEBUG("[Tx] busy, add to chain!\r\n");
}
tx_current->free = RT_FALSE;
tx_current = tx_current->next;
/* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */
if( (spi_read(spi_device, EIR) & EIR_TXERIF) )
{
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(spi_device, level);
enc28j60_unlock(dev);
return RT_EOK;
}
/* recv packet. */
static struct pbuf *enc28j60_rx(rt_device_t dev)
{
struct net_device * enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device;
struct pbuf* p = RT_NULL;
uint8_t eir, eir_clr;
uint32_t pk_counter;
rt_uint32_t level;
rt_uint32_t len;
rt_uint16_t rxstat;
enc28j60_lock(dev);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable(spi_device);
/* get EIR */
eir = spi_read(spi_device, EIR);
while(eir & ~EIR_PKTIF)
{
eir_clr = 0;
/* clear PKTIF */
if (eir & EIR_PKTIF)
{
NET_DEBUG("EIR_PKTIF\r\n");
/* switch to bank 0. */
enc28j60_set_bank(spi_device, EIE);
/* disable rx interrutps. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE);
eir_clr |= EIR_PKTIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF);
}
/* clear DMAIF */
if (eir & EIR_DMAIF)
{
NET_DEBUG("EIR_DMAIF\r\n");
eir_clr |= EIR_DMAIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF);
}
/* LINK changed handler */
if ( eir & EIR_LINKIF)
{
rt_bool_t link_status;
NET_DEBUG("EIR_LINKIF\r\n");
link_status = enc28j60_check_link_status(spi_device);
/* read PHIR to clear the flag */
enc28j60_phy_read(spi_device, PHIR);
eir_clr |= EIR_LINKIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF);
eth_device_linkchange(&(enc28j60->parent), link_status);
}
if (eir & EIR_TXIF)
{
/* A frame has been transmitted. */
enc28j60_set_bank(spi_device, EIR);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF);
tx_ack->free = RT_TRUE;
tx_ack = tx_ack->next;
if(tx_ack->free == RT_FALSE)
{
NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n");
// TX start
spi_write(spi_device, ETXSTL, (tx_ack->addr)&0xFF);
spi_write(spi_device, ETXSTH, (tx_ack->addr)>>8);
// TX end
spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len)&0xFF);
spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len)>>8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
}
else
{
NET_DEBUG("[tx isr] Tx chain empty, stop!\r\n");
}
/* set event */
rt_event_send(&tx_event, 0x01);
}
/* wake up handler */
if ( eir & EIR_WOLIF)
{
NET_DEBUG("EIR_WOLIF\r\n");
eir_clr |= EIR_WOLIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_WOLIF);
}
/* TX Error handler */
if ((eir & EIR_TXERIF) != 0)
{
NET_DEBUG("EIR_TXERIF re-start tx chain!\r\n");
enc28j60_set_bank(spi_device, ECON1);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
eir_clr |= EIR_TXERIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF);
/* re-init tx chain */
_tx_chain_init();
}
/* RX Error handler */
if ((eir & EIR_RXERIF) != 0)
{
NET_DEBUG("EIR_RXERIF re-start rx!\r\n");
NextPacketPtr = RXSTART_INIT;
enc28j60_set_bank(spi_device, ECON1);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXRST);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXRST);
/* switch to bank 0. */
enc28j60_set_bank(spi_device, ECON1);
/* enable packet reception. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
eir_clr |= EIR_RXERIF;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_RXERIF);
}
enc28j60_set_bank(spi_device, EIR);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, eir_clr);
eir = spi_read(spi_device, EIR);
}
/* read pkt */
pk_counter = spi_read(spi_device, EPKTCNT);
if(pk_counter)
{
/* Set the read pointer to the start of the received packet. */
spi_write(spi_device, ERDPTL, (NextPacketPtr));
spi_write(spi_device, ERDPTH, (NextPacketPtr)>>8);
/* read the next packet pointer. */
NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8;
/* read the packet length (see datasheet page 43). */
len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54
len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; //5554
len-=4; //remove the CRC count
// read the receive status (see datasheet page 43)
rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0))<<8;
// check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this.
if ((rxstat & 0x80)==0)
{
// invalid
len=0;
}
else
{
/* allocation pbuf */
p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
#ifdef ETH_RX_DUMP
rt_size_t dump_count = 0;
rt_uint8_t * dump_ptr;
rt_size_t dump_i;
NET_DEBUG("rx_dump, size:%d\r\n", len);
#endif
for (q = p; q != RT_NULL; q= q->next)
{
uint8_t cmd = ENC28J60_READ_BUF_MEM;
rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP
dump_ptr = q->payload;
for(dump_i=0; dump_i<q->len; dump_i++)
{
NET_DEBUG("%02x ", *dump_ptr);
if( ((dump_count+1)%8) == 0 )
{
NET_DEBUG(" ");
}
if( ((dump_count+1)%16) == 0 )
{
NET_DEBUG("\r\n");
}
dump_count++;
dump_ptr++;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG("\r\n");
#endif
}
}
/* Move the RX read pointer to the start of the next received packet. */
/* This frees the memory we just read out. */
spi_write(spi_device, ERXRDPTL, (NextPacketPtr));
spi_write(spi_device, ERXRDPTH, (NextPacketPtr)>>8);
/* decrement the packet counter indicate we are done with this packet. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
}
else
{
/* switch to bank 0. */
enc28j60_set_bank(spi_device, ECON1);
/* enable packet reception. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
level |= EIE_PKTIE;
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(spi_device, level);
enc28j60_unlock(dev);
return p;
}
rt_err_t enc28j60_attach(const char * spi_device_name)
{
struct rt_spi_device * spi_device;
spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if(spi_device == RT_NULL)
{
NET_DEBUG("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible Modes 0 */
cfg.max_hz = 20 * 1000 * 1000; /* SPI Interface with Clock Speeds Up to 20 MHz */
rt_spi_configure(spi_device, &cfg);
} /* config spi */
memset(&enc28j60_dev, 0, sizeof(enc28j60_dev));
rt_event_init(&tx_event, "eth_tx", RT_IPC_FLAG_FIFO);
enc28j60_dev.spi_device = spi_device;
/* detect device */
{
uint16_t value;
/* perform system reset. */
spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
rt_thread_delay(1); /* delay 20ms */
enc28j60_dev.emac_rev = spi_read(spi_device, EREVID);
value = enc28j60_phy_read(spi_device, PHHID2);
enc28j60_dev.phy_rev = value&0x0F;
enc28j60_dev.phy_pn = (value>>4)&0x3F;
enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value>>10)<<16))<<3;
if(enc28j60_dev.phy_id != 0x00280418)
{
NET_DEBUG("ENC28J60 PHY ID not correct!\r\n");
NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev);
NET_DEBUG("phy_rev:%02X\r\n", enc28j60_dev.phy_rev);
NET_DEBUG("phy_pn:%02X\r\n", enc28j60_dev.phy_pn);
NET_DEBUG("phy_id:%08X\r\n", enc28j60_dev.phy_id);
return RT_EIO;
}
}
/* OUI 00-04-A3 (hex): Microchip Technology, Inc. */
enc28j60_dev.dev_addr[0] = 0x00;
enc28j60_dev.dev_addr[1] = 0x04;
enc28j60_dev.dev_addr[2] = 0xA3;
/* set MAC address, only for test */
enc28j60_dev.dev_addr[3] = 0x12;
enc28j60_dev.dev_addr[4] = 0x34;
enc28j60_dev.dev_addr[5] = 0x56;
/* init rt-thread device struct */
enc28j60_dev.parent.parent.type = RT_Device_Class_NetIf;
enc28j60_dev.parent.parent.init = enc28j60_init;
enc28j60_dev.parent.parent.open = enc28j60_open;
enc28j60_dev.parent.parent.close = enc28j60_close;
enc28j60_dev.parent.parent.read = enc28j60_read;
enc28j60_dev.parent.parent.write = enc28j60_write;
enc28j60_dev.parent.parent.control = enc28j60_control;
/* init rt-thread ethernet device struct */
enc28j60_dev.parent.eth_rx = enc28j60_rx;
enc28j60_dev.parent.eth_tx = enc28j60_tx;
rt_mutex_init(&enc28j60_dev.lock, "enc28j60", RT_IPC_FLAG_FIFO);
eth_device_init(&(enc28j60_dev.parent), "e0");
return RT_EOK;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
/*
* Debug routine to dump useful register contents
*/
static void enc28j60(void)
{
struct rt_spi_device * spi_device = enc28j60_dev.spi_device;
enc28j60_lock(&enc28j60_dev);
rt_kprintf("-- enc28j60 registers:\n");
rt_kprintf("HwRevID: 0x%02X\n", spi_read(spi_device, EREVID));
rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n");
rt_kprintf(" 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n",
spi_read(spi_device, ECON1),
spi_read(spi_device, ECON2),
spi_read(spi_device, ESTAT),
spi_read(spi_device, EIR),
spi_read(spi_device, EIE));
rt_kprintf("MAC : MACON1 MACON3 MACON4\n");
rt_kprintf(" 0x%02X 0x%02X 0x%02X\n",
spi_read(spi_device, MACON1),
spi_read(spi_device, MACON3),
spi_read(spi_device, MACON4));
rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n");
rt_kprintf(" 0x%04X 0x%04X 0x%04X 0x%04X ",
(spi_read(spi_device, ERXSTH) << 8) | spi_read(spi_device, ERXSTL),
(spi_read(spi_device, ERXNDH) << 8) | spi_read(spi_device, ERXNDL),
(spi_read(spi_device, ERXWRPTH) << 8) | spi_read(spi_device, ERXWRPTL),
(spi_read(spi_device, ERXRDPTH) << 8) | spi_read(spi_device, ERXRDPTL));
rt_kprintf("0x%02X 0x%02X 0x%04X\n",
spi_read(spi_device, ERXFCON),
spi_read(spi_device, EPKTCNT),
(spi_read(spi_device, MAMXFLH) << 8) | spi_read(spi_device, MAMXFLL));
rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n");
rt_kprintf(" 0x%04X 0x%04X 0x%02X 0x%02X 0x%02X\n",
(spi_read(spi_device, ETXSTH) << 8) | spi_read(spi_device, ETXSTL),
(spi_read(spi_device, ETXNDH) << 8) | spi_read(spi_device, ETXNDL),
spi_read(spi_device, MACLCON1),
spi_read(spi_device, MACLCON2),
spi_read(spi_device, MAPHSUP));
rt_kprintf("PHY : PHCON1 PHSTAT1\r\n");
rt_kprintf(" 0x%04X 0x%04X\r\n",
enc28j60_phy_read(spi_device, PHCON1),
enc28j60_phy_read(spi_device, PHSTAT1));
enc28j60_unlock(&enc28j60_dev);
}
FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers);
#endif

View File

@ -0,0 +1,329 @@
#ifndef EN28J60_H_INCLUDED
#define EN28J60_H_INCLUDED
#include <stdint.h>
#include <rtthread.h>
#include <drivers/spi.h>
#include <netif/ethernetif.h>
// ENC28J60 Control Registers
// Control register definitions are a combination of address,
// bank number, and Ethernet/MAC/PHY indicator bits.
// - Register address (bits 0-4)
// - Bank number (bits 5-6)
// - MAC/PHY indicator (bit 7)
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define SPRD_MASK 0x80
// All-bank registers
#define EIE 0x1B
#define EIR 0x1C
#define ESTAT 0x1D
#define ECON2 0x1E
#define ECON1 0x1F
// Bank 0 registers
#define ERDPTL (0x00|0x00)
#define ERDPTH (0x01|0x00)
#define EWRPTL (0x02|0x00)
#define EWRPTH (0x03|0x00)
#define ETXSTL (0x04|0x00)
#define ETXSTH (0x05|0x00)
#define ETXNDL (0x06|0x00)
#define ETXNDH (0x07|0x00)
#define ERXSTL (0x08|0x00)
#define ERXSTH (0x09|0x00)
#define ERXNDL (0x0A|0x00)
#define ERXNDH (0x0B|0x00)
#define ERXRDPTL (0x0C|0x00)
#define ERXRDPTH (0x0D|0x00)
#define ERXWRPTL (0x0E|0x00)
#define ERXWRPTH (0x0F|0x00)
#define EDMASTL (0x10|0x00)
#define EDMASTH (0x11|0x00)
#define EDMANDL (0x12|0x00)
#define EDMANDH (0x13|0x00)
#define EDMADSTL (0x14|0x00)
#define EDMADSTH (0x15|0x00)
#define EDMACSL (0x16|0x00)
#define EDMACSH (0x17|0x00)
// Bank 1 registers
#define EHT0 (0x00|0x20)
#define EHT1 (0x01|0x20)
#define EHT2 (0x02|0x20)
#define EHT3 (0x03|0x20)
#define EHT4 (0x04|0x20)
#define EHT5 (0x05|0x20)
#define EHT6 (0x06|0x20)
#define EHT7 (0x07|0x20)
#define EPMM0 (0x08|0x20)
#define EPMM1 (0x09|0x20)
#define EPMM2 (0x0A|0x20)
#define EPMM3 (0x0B|0x20)
#define EPMM4 (0x0C|0x20)
#define EPMM5 (0x0D|0x20)
#define EPMM6 (0x0E|0x20)
#define EPMM7 (0x0F|0x20)
#define EPMCSL (0x10|0x20)
#define EPMCSH (0x11|0x20)
#define EPMOL (0x14|0x20)
#define EPMOH (0x15|0x20)
#define EWOLIE (0x16|0x20)
#define EWOLIR (0x17|0x20)
#define ERXFCON (0x18|0x20)
#define EPKTCNT (0x19|0x20)
// Bank 2 registers
#define MACON1 (0x00|0x40|0x80)
#define MACON2 (0x01|0x40|0x80)
#define MACON3 (0x02|0x40|0x80)
#define MACON4 (0x03|0x40|0x80)
#define MABBIPG (0x04|0x40|0x80)
#define MAIPGL (0x06|0x40|0x80)
#define MAIPGH (0x07|0x40|0x80)
#define MACLCON1 (0x08|0x40|0x80)
#define MACLCON2 (0x09|0x40|0x80)
#define MAMXFLL (0x0A|0x40|0x80)
#define MAMXFLH (0x0B|0x40|0x80)
#define MAPHSUP (0x0D|0x40|0x80)
#define MICON (0x11|0x40|0x80)
#define MICMD (0x12|0x40|0x80)
#define MIREGADR (0x14|0x40|0x80)
#define MIWRL (0x16|0x40|0x80)
#define MIWRH (0x17|0x40|0x80)
#define MIRDL (0x18|0x40|0x80)
#define MIRDH (0x19|0x40|0x80)
// Bank 3 registers
#define MAADR1 (0x00|0x60|0x80)
#define MAADR0 (0x01|0x60|0x80)
#define MAADR3 (0x02|0x60|0x80)
#define MAADR2 (0x03|0x60|0x80)
#define MAADR5 (0x04|0x60|0x80)
#define MAADR4 (0x05|0x60|0x80)
#define EBSTSD (0x06|0x60)
#define EBSTCON (0x07|0x60)
#define EBSTCSL (0x08|0x60)
#define EBSTCSH (0x09|0x60)
#define MISTAT (0x0A|0x60|0x80)
#define EREVID (0x12|0x60)
#define ECOCON (0x15|0x60)
#define EFLOCON (0x17|0x60)
#define EPAUSL (0x18|0x60)
#define EPAUSH (0x19|0x60)
// PHY registers
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHHID1 0x02
#define PHHID2 0x03
#define PHCON2 0x10
#define PHSTAT2 0x11
#define PHIE 0x12
#define PHIR 0x13
#define PHLCON 0x14
// ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80
#define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10
#define EIE_TXIE 0x08
#define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10
#define EIR_TXIF 0x08
#define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01
// ENC28J60 MACON2 Register Bit Definitions
#define MACON2_MARST 0x80
#define MACON2_RNDRST 0x40
#define MACON2_MARXRST 0x08
#define MACON2_RFUNRST 0x04
#define MACON2_MATXRST 0x02
#define MACON2_TFUNRST 0x01
// ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01
// ENC28J60 MACON4 Register Bit Definitions
#define MACON4_DEFER (1<<6)
#define MACON4_BPEN (1<<5)
#define MACON4_NOBKOFF (1<<4)
// ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01
// ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002
/* ENC28J60 PHY PHSTAT2 Register Bit Definitions */
#define PHSTAT2_TXSTAT (1 << 13)
#define PHSTAT2_RXSTAT (1 << 12)
#define PHSTAT2_COLSTAT (1 << 11)
#define PHSTAT2_LSTAT (1 << 10)
#define PHSTAT2_DPXSTAT (1 << 9)
#define PHSTAT2_PLRITY (1 << 5)
// ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100
// ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01
/* ENC28J60 Transmit Status Vector */
#define TSV_TXBYTECNT 0
#define TSV_TXCOLLISIONCNT 16
#define TSV_TXCRCERROR 20
#define TSV_TXLENCHKERROR 21
#define TSV_TXLENOUTOFRANGE 22
#define TSV_TXDONE 23
#define TSV_TXMULTICAST 24
#define TSV_TXBROADCAST 25
#define TSV_TXPACKETDEFER 26
#define TSV_TXEXDEFER 27
#define TSV_TXEXCOLLISION 28
#define TSV_TXLATECOLLISION 29
#define TSV_TXGIANT 30
#define TSV_TXUNDERRUN 31
#define TSV_TOTBYTETXONWIRE 32
#define TSV_TXCONTROLFRAME 48
#define TSV_TXPAUSEFRAME 49
#define TSV_BACKPRESSUREAPP 50
#define TSV_TXVLANTAGFRAME 51
#define TSV_SIZE 7
#define TSV_BYTEOF(x) ((x) / 8)
#define TSV_BITMASK(x) (1 << ((x) % 8))
#define TSV_GETBIT(x, y) (((x)[TSV_BYTEOF(y)] & TSV_BITMASK(y)) ? 1 : 0)
/* ENC28J60 Receive Status Vector */
#define RSV_RXLONGEVDROPEV 16
#define RSV_CARRIEREV 18
#define RSV_CRCERROR 20
#define RSV_LENCHECKERR 21
#define RSV_LENOUTOFRANGE 22
#define RSV_RXOK 23
#define RSV_RXMULTICAST 24
#define RSV_RXBROADCAST 25
#define RSV_DRIBBLENIBBLE 26
#define RSV_RXCONTROLFRAME 27
#define RSV_RXPAUSEFRAME 28
#define RSV_RXUNKNOWNOPCODE 29
#define RSV_RXTYPEVLAN 30
#define RSV_SIZE 6
#define RSV_BITMASK(x) (1 << ((x) - 16))
#define RSV_GETBIT(x, y) (((x) & RSV_BITMASK(y)) ? 1 : 0)
// SPI operation codes
#define ENC28J60_READ_CTRL_REG 0x00
#define ENC28J60_READ_BUF_MEM 0x3A
#define ENC28J60_WRITE_CTRL_REG 0x40
#define ENC28J60_WRITE_BUF_MEM 0x7A
#define ENC28J60_BIT_FIELD_SET 0x80
#define ENC28J60_BIT_FIELD_CLR 0xA0
#define ENC28J60_SOFT_RESET 0xFF
// The RXSTART_INIT should be zero. See Rev. B4 Silicon Errata
// buffer boundaries applied to internal 8K ram
// the entire available packet buffer space is allocated
//
#define MAX_TX_PACKAGE_SIZE (1536)
// start with recbuf at 0/
#define RXSTART_INIT 0x0
// receive buffer end
#define RXSTOP_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2) - 1
// start TX buffer at 0x1FFF-0x0600, pace for one full ethernet frame (~1500 bytes)
#define TXSTART_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2)
// stp TX buffer at end of mem
#define TXSTOP_INIT 0x1FFF
// max frame length which the conroller will accept:
#define MAX_FRAMELEN 1518
#define MAX_ADDR_LEN 6
struct net_device
{
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_uint8_t emac_rev;
rt_uint8_t phy_rev;
rt_uint8_t phy_pn;
rt_uint32_t phy_id;
/* spi device */
struct rt_spi_device * spi_device;
struct rt_mutex lock;
};
/* export function */
extern rt_err_t enc28j60_attach(const char * spi_device_name);
extern void enc28j60_isr(void);
#endif // EN28J60_H_INCLUDED

View File

@ -0,0 +1,437 @@
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#include <stdint.h>
#include "spi_flash_at45dbxx.h"
#define FLASH_DEBUG
#define DMA_BUFFER_SIZE 512
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif /**< #ifdef FLASH_DEBUG */
/* JEDEC Manufacturer¡¯s ID */
#define MF_ID (0x1F) /* atmel */
#define DENSITY_CODE_011D (0x02) /* AT45DB011D Density Code : 00010 = 1-Mbit */
#define DENSITY_CODE_021D (0x03) /* AT45DB021D Density Code : 00011 = 2-Mbit */
#define DENSITY_CODE_041D (0x04) /* AT45DB041D Density Code : 00100 = 4-Mbit */
#define DENSITY_CODE_081D (0x05) /* AT45DB081D Density Code : 00101 = 8-Mbit */
#define DENSITY_CODE_161D (0x06) /* AT45DB161D Density Code : 00110 = 16-Mbit */
#define DENSITY_CODE_321D (0x07) /* AT45DB321D Density Code : 00111 = 32-Mbit */
#define DENSITY_CODE_642D (0x08) /* AT45DB642D Density Code : 01000 = 64-Mbit */
struct JEDEC_ID
{
uint8_t manufacturer_id; /* Manufacturer ID */
uint8_t density_code:5; /* Density Code */
uint8_t family_code:3; /* Family Code */
uint8_t version_code:5; /* Product Version Code */
uint8_t mlc_code:3; /* MLC Code */
uint8_t byte_count; /* Byte Count */
};
#define AT45DB_BUFFER_1_WRITE 0x84
#define AT45DB_BUFFER_2_WRITE 0x87
#define AT45DB_BUFFER_1_READ 0xD4
#define AT45DB_BUFFER_2_READ 0xD6
#define AT45DB_B1_TO_MM_PAGE_PROG_WITH_ERASE 0x83
#define AT45DB_B2_TO_MM_PAGE_PROG_WITH_ERASE 0x86
#define AT45DB_MM_PAGE_TO_B1_XFER 0x53
#define AT45DB_MM_PAGE_TO_B2_XFER 0x55
#define AT45DB_PAGE_ERASE 0x81
#define AT45DB_SECTOR_ERASE 0x7C
#define AT45DB_READ_STATE_REGISTER 0xD7
#define AT45DB_MM_PAGE_READ 0xD2
#define AT45DB_MM_PAGE_PROG_THRU_BUFFER1 0x82
#define AT45DB_CMD_JEDEC_ID 0x9F
static struct spi_flash_at45dbxx spi_flash_at45dbxx;
/*****************************************************************************/
/*Status Register Format: */
/* ------------------------------------------------------------------------- */
/* | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | */
/* |--------|--------|--------|--------|--------|--------|--------|--------| */
/* |RDY/BUSY| COMP | device density | X | X | */
/* ------------------------------------------------------------------------- */
/* 0:busy | | AT45DB041:0111 | protect|page size */
/* 1:ready | | AT45DB161:1011 | */
/* --------------------------------------------------------------------------*/
/*****************************************************************************/
static uint8_t AT45DB_StatusRegisterRead(void)
{
return rt_spi_sendrecv8(spi_flash_at45dbxx.rt_spi_device, AT45DB_READ_STATE_REGISTER);
}
static void wait_busy(void)
{
uint16_t i = 0;
while (i++ < 10000)
{
if (AT45DB_StatusRegisterRead() & 0x80)
{
return;
}
}
FLASH_TRACE("\r\nSPI_FLASH timeout!!!\r\n");
}
/* RT-Thread Device Driver Interface */
static rt_err_t AT45DB_flash_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t AT45DB_flash_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t AT45DB_flash_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t AT45DB_flash_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) return -RT_ERROR;
geometry->bytes_per_sector = 512;
geometry->sector_count = 4096;
geometry->block_size = 4096; /* block erase: 4k */
}
return RT_EOK;
}
static rt_size_t AT45DB_flash_read_page_256(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
uint32_t index, nr;
uint8_t * read_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[8];
uint32_t i;
for(i=0; i<sizeof(send_buffer); i++)
{
send_buffer[i] = 0;
}
send_buffer[0] = AT45DB_MM_PAGE_READ;
send_buffer[1] = (uint8_t)(page >> 7);
send_buffer[2] = (uint8_t)(page << 1);
rt_spi_send_then_recv(spi_flash_at45dbxx.rt_spi_device, send_buffer, 8, read_buffer, 256);
read_buffer += 256;
page++;
}
return size;
}
static rt_size_t AT45DB_flash_read_page_512(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
uint32_t index, nr;
uint8_t * read_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[8];
uint32_t i;
for(i=0; i<sizeof(send_buffer); i++)
{
send_buffer[i] = 0;
}
send_buffer[0] = AT45DB_MM_PAGE_READ;
send_buffer[1] = (uint8_t)(page >> 6);
send_buffer[2] = (uint8_t)(page << 2);
rt_spi_send_then_recv(spi_flash_at45dbxx.rt_spi_device, send_buffer, 8, read_buffer, 512);
read_buffer += 512;
page++;
}
return size;
}
static rt_size_t AT45DB_flash_read_page_1024(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
uint32_t index, nr;
uint8_t * read_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[8];
uint32_t i;
for(i=0; i<sizeof(send_buffer); i++)
{
send_buffer[i] = 0;
}
send_buffer[0] = AT45DB_MM_PAGE_READ;
send_buffer[1] = (uint8_t)(page >> 5);
send_buffer[2] = (uint8_t)(page << 3);
rt_spi_send_then_recv(spi_flash_at45dbxx.rt_spi_device, send_buffer, 8, read_buffer, 1024);
read_buffer += 1024;
page++;
}
return size;
}
static rt_size_t AT45DB_flash_write_page_256(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_uint32_t index, nr;
const uint8_t * write_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[4];
send_buffer[0] = AT45DB_MM_PAGE_PROG_THRU_BUFFER1;
send_buffer[1] = (uint8_t) (page >> 7);
send_buffer[2] = (uint8_t) (page << 1);
send_buffer[3] = 0;
rt_spi_send_then_send(spi_flash_at45dbxx.rt_spi_device, send_buffer, 4, write_buffer, 256);
write_buffer += 256;
page++;
wait_busy();
}
return size;
}
static rt_size_t AT45DB_flash_write_page_512(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_uint32_t index, nr;
const uint8_t * write_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[4];
send_buffer[0] = AT45DB_MM_PAGE_PROG_THRU_BUFFER1;
send_buffer[1] = (uint8_t) (page >> 6);
send_buffer[2] = (uint8_t) (page << 2);
send_buffer[3] = 0;
rt_spi_send_then_send(spi_flash_at45dbxx.rt_spi_device, send_buffer, 4, write_buffer, 512);
write_buffer += 512;
page++;
wait_busy();
}
return size;
}
static rt_size_t AT45DB_flash_write_page_1024(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_uint32_t index, nr;
const uint8_t * write_buffer = buffer;
nr = size;
for (index = 0; index < nr; index++)
{
uint32_t page = pos;
uint8_t send_buffer[4];
send_buffer[0] = AT45DB_MM_PAGE_PROG_THRU_BUFFER1;
send_buffer[1] = (uint8_t) (page >> 5);
send_buffer[2] = (uint8_t) (page << 3);
send_buffer[3] = 0;
rt_spi_send_then_send(spi_flash_at45dbxx.rt_spi_device, send_buffer, 4, write_buffer, 1024);
write_buffer += 1024;
page++;
wait_busy();
}
return size;
}
rt_err_t at45dbxx_init(const char * flash_device_name, const char * spi_device_name)
{
struct rt_spi_device * rt_spi_device;
struct JEDEC_ID * JEDEC_ID;
rt_spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if(rt_spi_device == RT_NULL)
{
FLASH_TRACE("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
spi_flash_at45dbxx.rt_spi_device = rt_spi_device;
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible Modes 0 and 3 */
cfg.max_hz = 66000000; /* Atmel RapidS Serial Interface: 66MHz Maximum Clock Frequency */
rt_spi_configure(spi_flash_at45dbxx.rt_spi_device, &cfg);
}
/* read JEDEC ID */
{
uint8_t cmd;
uint8_t id_recv[6];
JEDEC_ID = (struct JEDEC_ID *)id_recv;
cmd = AT45DB_CMD_JEDEC_ID;
rt_spi_send_then_recv(spi_flash_at45dbxx.rt_spi_device, &cmd, 1, id_recv, 6);
/**< 1FH = Atmel */
/**< 001 = Atmel DataFlash */
if(JEDEC_ID->manufacturer_id != 0x1F || JEDEC_ID->family_code != 0x01)
{
FLASH_TRACE("Manufacturer¡¯s ID or Memory Type error!\r\n");
FLASH_TRACE("JEDEC Read-ID Data : %02X %02X %02X\r\n", id_recv[0], id_recv[1], id_recv[2]);
return -RT_ENOSYS;
}
if(JEDEC_ID->density_code == DENSITY_CODE_011D)
{
/**< AT45DB011D Density Code : 00010 = 1-Mbit */
FLASH_TRACE("AT45DB011D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 256; /* Page Erase (256 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 512; /* 1-Mbit / 8 / 256 = 512 */
spi_flash_at45dbxx.geometry.block_size = 1024*2; /* Block Erase (2-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_021D)
{
/**< AT45DB021D Density Code : 00011 = 2-Mbit */
FLASH_TRACE("AT45DB021D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 256; /* Page Erase (256 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 512*2; /* 2-Mbit / 8 / 256 = 1024 */
spi_flash_at45dbxx.geometry.block_size = 1024*2; /* Block Erase (2-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_041D)
{
/**< AT45DB041D Density Code : 00100 = 4-Mbit */
FLASH_TRACE("AT45DB041D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 256; /* Page Erase (256 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 512*4; /* 4-Mbit / 8 / 256 = 2048 */
spi_flash_at45dbxx.geometry.block_size = 1024*2; /* Block Erase (2-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_081D)
{
/**< AT45DB081D Density Code : 00101 = 8-Mbit */
FLASH_TRACE("AT45DB081D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 256; /* Page Erase (256 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 512*8; /* 8-Mbit / 8 / 256 = 4096 */
spi_flash_at45dbxx.geometry.block_size = 1024*2; /* Block Erase (2-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_161D)
{
/**< AT45DB161D Density Code : 00110 = 16-Mbit */
FLASH_TRACE("AT45DB161D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 512; /* Page Erase (512 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 256*16; /* 16-Mbit / 8 / 512 = 4096 */
spi_flash_at45dbxx.geometry.block_size = 1024*4; /* Block Erase (4-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_321D)
{
/**< AT45DB321D Density Code : 00111 = 32-Mbit */
FLASH_TRACE("AT45DB321D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 512; /* Page Erase (512 Bytes) */
spi_flash_at45dbxx.geometry.sector_count = 256*32; /* 32-Mbit / 8 / 512 = 8192 */
spi_flash_at45dbxx.geometry.block_size = 1024*4; /* Block Erase (4-Kbytes) */
}
else if(JEDEC_ID->density_code == DENSITY_CODE_642D)
{
/**< AT45DB642D Density Code : 01000 = 64-Mbit */
FLASH_TRACE("AT45DB642D detection\r\n");
spi_flash_at45dbxx.geometry.bytes_per_sector = 1024; /* Page Erase (1 Kbyte) */
spi_flash_at45dbxx.geometry.sector_count = 128*64; /* 64-Mbit / 8 / 1024 = 8192 */
spi_flash_at45dbxx.geometry.block_size = 1024*8; /* Block Erase (8 Kbytes) */
}
else
{
FLASH_TRACE("Memory Capacity error!\r\n");
return -RT_ENOSYS;
}
}
/* register device */
spi_flash_at45dbxx.flash_device.type = RT_Device_Class_Block;
spi_flash_at45dbxx.flash_device.init = AT45DB_flash_init;
spi_flash_at45dbxx.flash_device.open = AT45DB_flash_open;
spi_flash_at45dbxx.flash_device.close = AT45DB_flash_close;
spi_flash_at45dbxx.flash_device.control = AT45DB_flash_control;
if(JEDEC_ID->density_code == DENSITY_CODE_642D)
{
spi_flash_at45dbxx.flash_device.read = AT45DB_flash_read_page_1024;
spi_flash_at45dbxx.flash_device.write = AT45DB_flash_write_page_1024;
}
else if(JEDEC_ID->density_code == DENSITY_CODE_161D
|| JEDEC_ID->density_code == DENSITY_CODE_321D )
{
spi_flash_at45dbxx.flash_device.read = AT45DB_flash_read_page_512;
spi_flash_at45dbxx.flash_device.write = AT45DB_flash_write_page_512;
}
else
{
spi_flash_at45dbxx.flash_device.read = AT45DB_flash_read_page_256;
spi_flash_at45dbxx.flash_device.write = AT45DB_flash_write_page_256;
}
/* no private */
spi_flash_at45dbxx.flash_device.user_data = RT_NULL;
rt_device_register(&spi_flash_at45dbxx.flash_device, flash_device_name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}

View File

@ -0,0 +1,17 @@
#ifndef SPI_FLASH_AT45DBXX_H_INCLUDED
#define SPI_FLASH_AT45DBXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct spi_flash_at45dbxx
{
struct rt_device flash_device;
struct rt_device_blk_geometry geometry;
struct rt_spi_device * rt_spi_device;
};
extern rt_err_t at45dbxx_init(const char * flash_device_name, const char * spi_device_name);
#endif // SPI_FLASH_AT45DBXX_H_INCLUDED

View File

@ -0,0 +1,346 @@
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#include <stdint.h>
#include "spi_flash_sst25vfxx.h"
#define FLASH_DEBUG
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif /* #ifdef FLASH_DEBUG */
/* JEDEC Manufacturer¡¯s ID */
#define MF_ID (0xBF)
/* JEDEC Device ID : Memory Type */
#define MT_ID (0x25)
/* JEDEC Device ID: Memory Capacity */
#define MC_ID_SST25VF020B (0x8C) /* 2Mbit */
#define MC_ID_SST25VF040B (0x8D) /* 4Mbit */
#define MC_ID_SST25VF080B (0x8E) /* 8Mbit */
#define MC_ID_SST25VF016B (0x41) /* 16Mbit */
#define MC_ID_SST25VF032B (0x4A) /* 32Mbit */
#define MC_ID_SST25VF064C (0x4B) /* 64Mbit */
/* command list */
#define CMD_RDSR (0x05)
#define CMD_WRSR (0x01)
#define CMD_EWSR (0x50)
#define CMD_WRDI (0x04)
#define CMD_WREN (0x06)
#define CMD_READ (0x03)
#define CMD_FAST_READ (0x0B)
#define CMD_BP (0x02)
#define CMD_AAIP (0xAD)
#define CMD_ERASE_4K (0x20)
#define CMD_ERASE_32K (0x52)
#define CMD_ERASE_64K (0xD8)
#define CMD_ERASE_full (0xC7)
#define CMD_JEDEC_ID (0x9F)
#define CMD_EBSY (0x70)
#define CMD_DBSY (0x80)
#define DUMMY (0xFF)
static struct spi_flash_sst25vfxx spi_flash_sst25vfxx;
static uint8_t sst25vfxx_read_status(struct spi_flash_sst25vfxx * spi_flash)
{
return rt_spi_sendrecv8(spi_flash->rt_spi_device, CMD_RDSR);
}
static void sst25vfxx_wait_busy(struct spi_flash_sst25vfxx * spi_flash)
{
while( sst25vfxx_read_status(spi_flash) & (0x01));
}
/** \brief write N page on [page]
*
* \param page uint32_t unit : byte (4096 * N,1 page = 4096byte)
* \param buffer const uint8_t*
* \param size uint32_t unit : byte ( 4096*N )
* \return uint32_t
*
*/
static uint32_t sst25vfxx_page_write(struct spi_flash_sst25vfxx * spi_flash, uint32_t page, const uint8_t * buffer, uint32_t size)
{
uint32_t index;
uint32_t need_wirte = size;
uint8_t send_buffer[6];
page &= ~0xFFF; // page size = 4096byte
send_buffer[0] = CMD_WREN;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_ERASE_4K;
send_buffer[1] = (page >> 16);
send_buffer[2] = (page >> 8);
send_buffer[3] = (page);
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 4);
sst25vfxx_wait_busy(spi_flash); // wait erase done.
send_buffer[0] = CMD_WREN;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_AAIP;
send_buffer[1] = (uint8_t)(page >> 16);
send_buffer[2] = (uint8_t)(page >> 8);
send_buffer[3] = (uint8_t)(page);
send_buffer[4] = *buffer++;
send_buffer[5] = *buffer++;
need_wirte -= 2;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 6);
sst25vfxx_wait_busy(spi_flash);
for(index=0; index < need_wirte/2; index++)
{
send_buffer[0] = CMD_AAIP;
send_buffer[1] = *buffer++;
send_buffer[2] = *buffer++;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 3);
sst25vfxx_wait_busy(spi_flash);
}
send_buffer[0] = CMD_WRDI;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
return size;
}
/* RT-Thread device interface */
static rt_err_t sst25vfxx_flash_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t sst25vfxx_flash_open(rt_device_t dev, rt_uint16_t oflag)
{
rt_err_t result;
uint8_t send_buffer[2];
struct spi_flash_sst25vfxx * spi_flash = (struct spi_flash_sst25vfxx *)dev;
/* lock spi flash */
result = rt_mutex_take(&(spi_flash->lock), RT_WAITING_FOREVER);
if(result != RT_EOK)
{
return result;
}
send_buffer[0] = CMD_DBSY;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_EWSR;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_WRSR;
send_buffer[1] = 0;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 2);
/* release lock */
rt_mutex_release(&(spi_flash->lock));
return RT_EOK;
}
static rt_err_t sst25vfxx_flash_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t sst25vfxx_flash_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct spi_flash_sst25vfxx * spi_flash;
spi_flash = (struct spi_flash_sst25vfxx *)dev;
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) return -RT_ERROR;
geometry->bytes_per_sector = spi_flash->geometry.bytes_per_sector;
geometry->sector_count = spi_flash->geometry.sector_count;
geometry->block_size = spi_flash->geometry.block_size;
}
return RT_EOK;
}
static rt_size_t sst25vfxx_flash_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_err_t result;
uint8_t send_buffer[4];
struct spi_flash_sst25vfxx * spi_flash = (struct spi_flash_sst25vfxx *)dev;
uint32_t offset = pos * spi_flash->geometry.bytes_per_sector;
/* lock spi flash */
result = rt_mutex_take(&(spi_flash->lock), RT_WAITING_FOREVER);
if(result != RT_EOK)
{
return 0;
}
send_buffer[0] = CMD_WRDI;
rt_spi_send(spi_flash->rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_READ;
send_buffer[1] = (uint8_t)(offset>>16);
send_buffer[2] = (uint8_t)(offset>>8);
send_buffer[3] = (uint8_t)(offset);
rt_spi_send_then_recv(spi_flash->rt_spi_device, send_buffer, 4, buffer, size * spi_flash->geometry.bytes_per_sector);
/* release lock */
rt_mutex_release(&(spi_flash->lock));
return size;
}
static rt_size_t sst25vfxx_flash_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
uint32_t i;
rt_err_t result;
const uint8_t * write_buffer = buffer;
struct spi_flash_sst25vfxx * spi_flash = (struct spi_flash_sst25vfxx *)dev;
/* lock spi flash */
result = rt_mutex_take(&(spi_flash->lock), RT_WAITING_FOREVER);
if(result != RT_EOK)
{
return 0;
}
for(i=0; i<size; i++)
{
sst25vfxx_page_write(spi_flash,
(pos + i) * spi_flash->geometry.bytes_per_sector,
write_buffer,
spi_flash->geometry.bytes_per_sector);
write_buffer += spi_flash->geometry.bytes_per_sector;
}
/* release lock */
rt_mutex_release(&(spi_flash->lock));
return size;
}
rt_err_t sst25vfxx_init(const char * flash_device_name, const char * spi_device_name)
{
struct rt_spi_device * rt_spi_device;
struct spi_flash_sst25vfxx * spi_flash = &spi_flash_sst25vfxx;
rt_spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if(rt_spi_device == RT_NULL)
{
FLASH_TRACE("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
spi_flash->rt_spi_device = rt_spi_device;
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible: Mode 0 and Mode 3 */
cfg.max_hz = 50000000; /* 50M */
rt_spi_configure(spi_flash->rt_spi_device, &cfg);
}
/* init flash */
{
rt_uint8_t cmd;
rt_uint8_t id_recv[3];
cmd = CMD_WRDI;
rt_spi_send(spi_flash->rt_spi_device, &cmd, 1);
/* read flash id */
cmd = CMD_JEDEC_ID;
rt_spi_send_then_recv(spi_flash->rt_spi_device, &cmd, 1, id_recv, 3);
if(id_recv[0] != MF_ID || id_recv[1] != MT_ID)
{
FLASH_TRACE("Manufacturer¡¯s ID or Memory Type error!\r\n");
FLASH_TRACE("JEDEC Read-ID Data : %02X %02X %02X\r\n", id_recv[0], id_recv[1], id_recv[2]);
return -RT_ENOSYS;
}
spi_flash->geometry.bytes_per_sector = 4096;
spi_flash->geometry.block_size = 4096; /* block erase: 4k */
if(id_recv[2] == MC_ID_SST25VF020B)
{
FLASH_TRACE("SST25VF020B detection\r\n");
spi_flash->geometry.sector_count = 64;
}
else if(id_recv[2] == MC_ID_SST25VF040B)
{
FLASH_TRACE("SST25VF040B detection\r\n");
spi_flash->geometry.sector_count = 128;
}
else if(id_recv[2] == MC_ID_SST25VF080B)
{
FLASH_TRACE("SST25VF080B detection\r\n");
spi_flash->geometry.sector_count = 256;
}
else if(id_recv[2] == MC_ID_SST25VF016B)
{
FLASH_TRACE("SST25VF016B detection\r\n");
spi_flash->geometry.sector_count = 512;
}
else if(id_recv[2] == MC_ID_SST25VF032B)
{
FLASH_TRACE("SST25VF032B detection\r\n");
spi_flash->geometry.sector_count = 1024;
}
else if(id_recv[2] == MC_ID_SST25VF064C)
{
FLASH_TRACE("SST25VF064C detection\r\n");
spi_flash->geometry.sector_count = 2048;
}
else
{
FLASH_TRACE("Memory Capacity error!\r\n");
return -RT_ENOSYS;
}
}
/* initialize mutex lock */
rt_mutex_init(&spi_flash->lock, flash_device_name, RT_IPC_FLAG_PRIO);
/* register device */
spi_flash->flash_device.type = RT_Device_Class_Block;
spi_flash->flash_device.init = sst25vfxx_flash_init;
spi_flash->flash_device.open = sst25vfxx_flash_open;
spi_flash->flash_device.close = sst25vfxx_flash_close;
spi_flash->flash_device.read = sst25vfxx_flash_read;
spi_flash->flash_device.write = sst25vfxx_flash_write;
spi_flash->flash_device.control = sst25vfxx_flash_control;
/* no private */
spi_flash->flash_device.user_data = RT_NULL;
rt_device_register(&spi_flash->flash_device, flash_device_name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}

View File

@ -0,0 +1,32 @@
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#ifndef SPI_FLASH_SST25VFXX_H_INCLUDED
#define SPI_FLASH_SST25VFXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct spi_flash_sst25vfxx
{
struct rt_device flash_device;
struct rt_device_blk_geometry geometry;
struct rt_spi_device * rt_spi_device;
struct rt_mutex lock;
};
extern rt_err_t sst25vfxx_init(const char * flash_device_name, const char * spi_device_name);
#endif // SPI_FLASH_SST25VFXX_H_INCLUDED

View File

@ -0,0 +1,371 @@
/*
* File : spi_flash_w25qxx.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
* 2012-05-06 aozima can page write.
* 2012-08-23 aozima add flash lock.
* 2012-08-24 aozima fixed write status register BUG.
*/
#include <stdint.h>
#include "spi_flash_w25qxx.h"
#define FLASH_DEBUG
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif /* #ifdef FLASH_DEBUG */
#define PAGE_SIZE 4096
/* JEDEC Manufacturer¡¯s ID */
#define MF_ID (0xEF)
/* JEDEC Device ID: Memory type and Capacity */
#define MTC_W25Q16_BV_CL_CV (0x4015) /* W25Q16BV W25Q16CL W25Q16CV */
#define MTC_W25Q16_DW (0x6015) /* W25Q16DW */
#define MTC_W25Q32_BV (0x4016) /* W25Q32BV */
#define MTC_W25Q32_DW (0x6016) /* W25Q32DW */
#define MTC_W25Q64_BV_CV (0x4017) /* W25Q64BV W25Q64CV */
#define MTC_W25Q64_DW (0x4017) /* W25Q64DW */
#define MTC_W25Q128_BV (0x4018) /* W25Q128BV */
#define MTC_W25Q256_FV (TBD) /* W25Q256FV */
/* command list */
#define CMD_WRSR (0x01) /* Write Status Register */
#define CMD_PP (0x02) /* Page Program */
#define CMD_READ (0x03) /* Read Data */
#define CMD_WRDI (0x04) /* Write Disable */
#define CMD_RDSR1 (0x05) /* Read Status Register-1 */
#define CMD_WREN (0x06) /* Write Enable */
#define CMD_FAST_READ (0x0B) /* Fast Read */
#define CMD_ERASE_4K (0x20) /* Sector Erase:4K */
#define CMD_RDSR2 (0x35) /* Read Status Register-2 */
#define CMD_ERASE_32K (0x52) /* 32KB Block Erase */
#define CMD_JEDEC_ID (0x9F) /* Read JEDEC ID */
#define CMD_ERASE_full (0xC7) /* Chip Erase */
#define CMD_ERASE_64K (0xD8) /* 64KB Block Erase */
#define DUMMY (0xFF)
static struct spi_flash_device spi_flash_device;
static void flash_lock(struct spi_flash_device * flash_device)
{
rt_mutex_take(&flash_device->lock, RT_WAITING_FOREVER);
}
static void flash_unlock(struct spi_flash_device * flash_device)
{
rt_mutex_release(&flash_device->lock);
}
static uint8_t w25qxx_read_status(void)
{
return rt_spi_sendrecv8(spi_flash_device.rt_spi_device, CMD_RDSR1);
}
static void w25qxx_wait_busy(void)
{
while( w25qxx_read_status() & (0x01));
}
/** \brief read [size] byte from [offset] to [buffer]
*
* \param offset uint32_t unit : byte
* \param buffer uint8_t*
* \param size uint32_t unit : byte
* \return uint32_t byte for read
*
*/
static uint32_t w25qxx_read(uint32_t offset, uint8_t * buffer, uint32_t size)
{
uint8_t send_buffer[4];
send_buffer[0] = CMD_WRDI;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_READ;
send_buffer[1] = (uint8_t)(offset>>16);
send_buffer[2] = (uint8_t)(offset>>8);
send_buffer[3] = (uint8_t)(offset);
rt_spi_send_then_recv(spi_flash_device.rt_spi_device,
send_buffer, 4,
buffer, size);
return size;
}
/** \brief write N page on [page]
*
* \param page_addr uint32_t unit : byte (4096 * N,1 page = 4096byte)
* \param buffer const uint8_t*
* \return uint32_t
*
*/
uint32_t w25qxx_page_write(uint32_t page_addr, const uint8_t* buffer)
{
uint32_t index;
uint8_t send_buffer[4];
RT_ASSERT((page_addr&0xFF) == 0); /* page addr must align to 256byte. */
send_buffer[0] = CMD_WREN;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_ERASE_4K;
send_buffer[1] = (page_addr >> 16);
send_buffer[2] = (page_addr >> 8);
send_buffer[3] = (page_addr);
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 4);
w25qxx_wait_busy(); // wait erase done.
for(index=0; index < (PAGE_SIZE / 256); index++)
{
send_buffer[0] = CMD_WREN;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_PP;
send_buffer[1] = (uint8_t)(page_addr >> 16);
send_buffer[2] = (uint8_t)(page_addr >> 8);
send_buffer[3] = (uint8_t)(page_addr);
rt_spi_send_then_send(spi_flash_device.rt_spi_device,
send_buffer,
4,
buffer,
256);
buffer += 256;
page_addr += 256;
w25qxx_wait_busy();
}
send_buffer[0] = CMD_WRDI;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 1);
return PAGE_SIZE;
}
/* RT-Thread device interface */
static rt_err_t w25qxx_flash_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t w25qxx_flash_open(rt_device_t dev, rt_uint16_t oflag)
{
uint8_t send_buffer[3];
flash_lock((struct spi_flash_device *)dev);
send_buffer[0] = CMD_WREN;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 1);
send_buffer[0] = CMD_WRSR;
send_buffer[1] = 0;
send_buffer[2] = 0;
rt_spi_send(spi_flash_device.rt_spi_device, send_buffer, 3);
w25qxx_wait_busy();
flash_unlock((struct spi_flash_device *)dev);
return RT_EOK;
}
static rt_err_t w25qxx_flash_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t w25qxx_flash_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) return -RT_ERROR;
geometry->bytes_per_sector = spi_flash_device.geometry.bytes_per_sector;
geometry->sector_count = spi_flash_device.geometry.sector_count;
geometry->block_size = spi_flash_device.geometry.block_size;
}
return RT_EOK;
}
static rt_size_t w25qxx_flash_read(rt_device_t dev,
rt_off_t pos,
void* buffer,
rt_size_t size)
{
flash_lock((struct spi_flash_device *)dev);
w25qxx_read(pos*spi_flash_device.geometry.bytes_per_sector,
buffer,
size*spi_flash_device.geometry.bytes_per_sector);
flash_unlock((struct spi_flash_device *)dev);
return size;
}
static rt_size_t w25qxx_flash_write(rt_device_t dev,
rt_off_t pos,
const void* buffer,
rt_size_t size)
{
rt_size_t i = 0;
rt_size_t block = size;
const uint8_t * ptr = buffer;
flash_lock((struct spi_flash_device *)dev);
while(block--)
{
w25qxx_page_write((pos + i)*spi_flash_device.geometry.bytes_per_sector,
ptr);
ptr += PAGE_SIZE;
i++;
}
flash_unlock((struct spi_flash_device *)dev);
return size;
}
rt_err_t w25qxx_init(const char * flash_device_name, const char * spi_device_name)
{
struct rt_spi_device * rt_spi_device;
/* initialize mutex */
if (rt_mutex_init(&spi_flash_device.lock, spi_device_name, RT_IPC_FLAG_FIFO) != RT_EOK)
{
rt_kprintf("init sd lock mutex failed\n");
return -RT_ENOSYS;
}
rt_spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if(rt_spi_device == RT_NULL)
{
FLASH_TRACE("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
spi_flash_device.rt_spi_device = rt_spi_device;
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible: Mode 0 and Mode 3 */
cfg.max_hz = 50 * 1000 * 1000; /* 50M */
rt_spi_configure(spi_flash_device.rt_spi_device, &cfg);
}
/* init flash */
{
rt_uint8_t cmd;
rt_uint8_t id_recv[3];
uint16_t memory_type_capacity;
flash_lock(&spi_flash_device);
cmd = 0xFF; /* reset SPI FLASH, cancel all cmd in processing. */
rt_spi_send(spi_flash_device.rt_spi_device, &cmd, 1);
cmd = CMD_WRDI;
rt_spi_send(spi_flash_device.rt_spi_device, &cmd, 1);
/* read flash id */
cmd = CMD_JEDEC_ID;
rt_spi_send_then_recv(spi_flash_device.rt_spi_device, &cmd, 1, id_recv, 3);
flash_unlock(&spi_flash_device);
if(id_recv[0] != MF_ID)
{
FLASH_TRACE("Manufacturers ID error!\r\n");
FLASH_TRACE("JEDEC Read-ID Data : %02X %02X %02X\r\n", id_recv[0], id_recv[1], id_recv[2]);
return -RT_ENOSYS;
}
spi_flash_device.geometry.bytes_per_sector = 4096;
spi_flash_device.geometry.block_size = 4096; /* block erase: 4k */
/* get memory type and capacity */
memory_type_capacity = id_recv[1];
memory_type_capacity = (memory_type_capacity << 8) | id_recv[2];
if(memory_type_capacity == MTC_W25Q128_BV)
{
FLASH_TRACE("W25Q128BV detection\r\n");
spi_flash_device.geometry.sector_count = 4096;
}
else if(memory_type_capacity == MTC_W25Q64_BV_CV)
{
FLASH_TRACE("W25Q64BV or W25Q64CV detection\r\n");
spi_flash_device.geometry.sector_count = 2048;
}
else if(memory_type_capacity == MTC_W25Q64_DW)
{
FLASH_TRACE("W25Q64DW detection\r\n");
spi_flash_device.geometry.sector_count = 2048;
}
else if(memory_type_capacity == MTC_W25Q32_BV)
{
FLASH_TRACE("W25Q32BV detection\r\n");
spi_flash_device.geometry.sector_count = 1024;
}
else if(memory_type_capacity == MTC_W25Q32_DW)
{
FLASH_TRACE("W25Q32DW detection\r\n");
spi_flash_device.geometry.sector_count = 1024;
}
else if(memory_type_capacity == MTC_W25Q16_BV_CL_CV)
{
FLASH_TRACE("W25Q16BV or W25Q16CL or W25Q16CV detection\r\n");
spi_flash_device.geometry.sector_count = 512;
}
else if(memory_type_capacity == MTC_W25Q16_DW)
{
FLASH_TRACE("W25Q16DW detection\r\n");
spi_flash_device.geometry.sector_count = 512;
}
else
{
FLASH_TRACE("Memory Capacity error!\r\n");
return -RT_ENOSYS;
}
}
/* register device */
spi_flash_device.flash_device.type = RT_Device_Class_Block;
spi_flash_device.flash_device.init = w25qxx_flash_init;
spi_flash_device.flash_device.open = w25qxx_flash_open;
spi_flash_device.flash_device.close = w25qxx_flash_close;
spi_flash_device.flash_device.read = w25qxx_flash_read;
spi_flash_device.flash_device.write = w25qxx_flash_write;
spi_flash_device.flash_device.control = w25qxx_flash_control;
/* no private */
spi_flash_device.flash_device.user_data = RT_NULL;
rt_device_register(&spi_flash_device.flash_device, flash_device_name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
return RT_EOK;
}

View File

@ -0,0 +1,34 @@
/*
* File : spi_flash_w25qxx.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
* 2012-08-23 aozima add flash lock.
*/
#ifndef SPI_FLASH_W25QXX_H_INCLUDED
#define SPI_FLASH_W25QXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct spi_flash_device
{
struct rt_device flash_device;
struct rt_device_blk_geometry geometry;
struct rt_spi_device * rt_spi_device;
struct rt_mutex lock;
};
extern rt_err_t w25qxx_init(const char * flash_device_name,
const char * spi_device_name);
#endif // SPI_FLASH_W25QXX_H_INCLUDED

View File

@ -0,0 +1,590 @@
/*
* File : spi_wifi_rw009.c
* This file is part of RT-Thread RTOS
* Copyright by Shanghai Real-Thread Electronic Technology Co.,Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2014-07-31 aozima the first version
*/
#include <rtthread.h>
#include <drivers/spi.h>
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "lwipopts.h"
#include "spi_wifi_rw009.h"
#define SSID_NAME "AP_SSID"
#define SSID_PASSWORD "AP_passwd"
//#define WIFI_DEBUG_ON
// #define ETH_RX_DUMP
// #define ETH_TX_DUMP
#ifdef WIFI_DEBUG_ON
#define WIFI_DEBUG rt_kprintf("[WIFI] ");rt_kprintf
#else
#define WIFI_DEBUG(...)
#endif /* #ifdef WIFI_DEBUG_ON */
#define MAX_BUFFER_SIZE (sizeof(struct response) + MAX_DATA_LEN)
#define MAX_ADDR_LEN 6
struct spi_wifi_eth
{
/* inherit from ethernet device */
struct eth_device parent;
struct rt_spi_device *rt_spi_device;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_uint8_t active;
struct rt_mempool spi_tx_mp;
struct rt_mempool spi_rx_mp;
struct rt_mailbox spi_tx_mb;
struct rt_mailbox eth_rx_mb;
int spi_tx_mb_pool[SPI_TX_POOL_SIZE];
int eth_rx_mb_pool[SPI_TX_POOL_SIZE];
int spi_wifi_cmd_mb_pool[3];
struct rt_mailbox spi_wifi_cmd_mb;
ALIGN(4)
rt_uint8_t spi_tx_mempool[(sizeof(struct spi_data_packet) + 4) * SPI_TX_POOL_SIZE];
ALIGN(4)
rt_uint8_t spi_rx_mempool[(sizeof(struct spi_data_packet) + 4) * SPI_TX_POOL_SIZE];
ALIGN(4)
uint8_t spi_hw_rx_buffer[MAX_BUFFER_SIZE];
};
static struct spi_wifi_eth spi_wifi_device;
static struct rt_event spi_wifi_data_event;
static void resp_handler(struct spi_wifi_eth *wifi_device, struct spi_wifi_resp *resp)
{
struct spi_wifi_resp *resp_return;
switch (resp->cmd)
{
case SPI_WIFI_CMD_INIT:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_INIT\n");
resp_return = (struct spi_wifi_resp *)rt_malloc(sizeof(struct spi_wifi_resp)); //TODO:
memcpy(resp_return, resp, 10);
rt_mb_send(&wifi_device->spi_wifi_cmd_mb, (rt_uint32_t)resp_return);
break;
case SPI_WIFI_CMD_SCAN:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_SCAN\n");
break;
case SPI_WIFI_CMD_JOIN:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_JOIN\n");
wifi_device->active = 1;
eth_device_linkchange(&wifi_device->parent, RT_TRUE);
break;
default:
WIFI_DEBUG("resp_handler %d\n", resp->cmd);
break;
}
}
static rt_err_t spi_wifi_transfer(struct spi_wifi_eth *dev)
{
struct pbuf *p = RT_NULL;
struct cmd_request cmd;
struct response resp;
rt_err_t result;
const struct spi_data_packet *data_packet = RT_NULL;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
struct rt_spi_device *rt_spi_device = wifi_device->rt_spi_device;
spi_wifi_int_cmd(0);
while (spi_wifi_is_busy());
WIFI_DEBUG("sequence start!\n");
memset(&cmd, 0, sizeof(struct cmd_request));
cmd.magic1 = CMD_MAGIC1;
cmd.magic2 = CMD_MAGIC2;
cmd.flag |= CMD_FLAG_MRDY;
result = rt_mb_recv(&wifi_device->spi_tx_mb,
(rt_uint32_t *)&data_packet,
0);
if ((result == RT_EOK) && (data_packet != RT_NULL) && (data_packet->data_len > 0))
{
cmd.M2S_len = data_packet->data_len + member_offset(struct spi_data_packet, buffer);
//WIFI_DEBUG("cmd.M2S_len = %d\n", cmd.M2S_len);
}
rt_spi_send(rt_spi_device, &cmd, sizeof(cmd));
while (spi_wifi_is_busy());
{
struct rt_spi_message message;
uint32_t max_data_len = 0;
/* setup message */
message.send_buf = RT_NULL;
message.recv_buf = &resp;
message.length = sizeof(resp);
message.cs_take = 1;
message.cs_release = 0;
rt_spi_take_bus(rt_spi_device);
/* transfer message */
rt_spi_device->bus->ops->xfer(rt_spi_device, &message);
if ((resp.magic1 != RESP_MAGIC1) || (resp.magic2 != RESP_MAGIC2))
{
WIFI_DEBUG("bad resp magic, abort!\n");
goto _bad_resp_magic;
}
if (resp.flag & RESP_FLAG_SRDY)
{
WIFI_DEBUG("RESP_FLAG_SRDY\n");
max_data_len = cmd.M2S_len;
}
if (resp.S2M_len)
{
WIFI_DEBUG("resp.S2M_len: %d\n", resp.S2M_len);
if (resp.S2M_len > sizeof(struct spi_data_packet))
{
WIFI_DEBUG("resp.S2M_len > sizeof(struct spi_data_packet), drop!\n");
resp.S2M_len = 0;//drop
}
if (resp.S2M_len > max_data_len)
max_data_len = resp.S2M_len;
}
if (max_data_len == 0)
{
WIFI_DEBUG("no rx or tx data!\n");
}
//WIFI_DEBUG("max_data_len = %d\n", max_data_len);
_bad_resp_magic:
/* setup message */
message.send_buf = data_packet;//&tx_buffer;
message.recv_buf = wifi_device->spi_hw_rx_buffer;//&rx_buffer;
message.length = max_data_len;
message.cs_take = 0;
message.cs_release = 1;
/* transfer message */
rt_spi_device->bus->ops->xfer(rt_spi_device, &message);
rt_spi_release_bus(rt_spi_device);
if (cmd.M2S_len && (resp.flag & RESP_FLAG_SRDY))
{
rt_mp_free((void *)data_packet);
}
if ((resp.S2M_len) && (resp.S2M_len <= MAX_DATA_LEN))
{
data_packet = (struct spi_data_packet *)wifi_device->spi_hw_rx_buffer;
if (data_packet->data_type == data_type_eth_data)
{
if (wifi_device->active)
{
p = pbuf_alloc(PBUF_LINK, data_packet->data_len, PBUF_RAM);
pbuf_take(p, (rt_uint8_t *)data_packet->buffer, data_packet->data_len);
rt_mb_send(&wifi_device->eth_rx_mb, (rt_uint32_t)p);
eth_device_ready((struct eth_device *)dev);
}
else
{
WIFI_DEBUG("!active, RX drop.\n");
}
}
else if (data_packet->data_type == data_type_resp)
{
WIFI_DEBUG("data_type_resp\n");
resp_handler(dev, (struct spi_wifi_resp *)data_packet->buffer);
}
else
{
WIFI_DEBUG("data_type: %d, %dbyte\n",
data_packet->data_type,
data_packet->data_len);
}
}
}
spi_wifi_int_cmd(1);
WIFI_DEBUG("sequence finish!\n\n");
if ((cmd.M2S_len == 0) && (resp.S2M_len == 0))
{
return -RT_ERROR;
}
return RT_EOK;
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char *msg, const struct pbuf *p)
{
rt_uint32_t i;
rt_uint8_t *ptr = p->payload;
rt_kprintf("%s %d byte\n", msg, p->tot_len);
for (i = 0; i < p->tot_len; i++)
{
if ((i % 8) == 0)
{
rt_kprintf(" ");
}
if ((i % 16) == 0)
{
rt_kprintf("\r\n");
}
rt_kprintf("%02x ", *ptr);
ptr++;
}
rt_kprintf("\n\n");
}
#endif /* dump */
/* initialize the interface */
static rt_err_t spi_wifi_eth_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t spi_wifi_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t spi_wifi_eth_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t spi_wifi_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t spi_wifi_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t spi_wifi_eth_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
struct spi_data_packet *data_packet;
struct spi_wifi_cmd *wifi_cmd;
struct spi_wifi_resp *resp;
switch (cmd)
{
case NIOCTL_GADDR:
memcpy(args, wifi_device->dev_addr, 6);
break;
case SPI_WIFI_CMD_INIT:
/* get mac address */
if (args)
{
rt_err_t result;
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
// TODO: check result.
wifi_cmd = (struct spi_wifi_cmd *)data_packet->buffer;
wifi_cmd->cmd = SPI_WIFI_CMD_INIT;
data_packet->data_type = data_type_cmd;
data_packet->data_len = member_offset(struct spi_wifi_cmd, buffer) + 0;
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
rt_event_send(&spi_wifi_data_event, 1);
result = rt_mb_recv(&wifi_device->spi_wifi_cmd_mb,
(rt_uint32_t *)&resp,
RT_WAITING_FOREVER);
if ((result == RT_EOK) && (resp != RT_NULL))
{
WIFI_DEBUG("resp cmd: %d\n", resp->cmd);
rt_memcpy(args, resp->buffer, 6);
}
}
else return -RT_ERROR;
break;
case SPI_WIFI_CMD_SCAN:
case SPI_WIFI_CMD_JOIN:
if (args)
{
struct cmd_join *cmd_join;
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
wifi_cmd = (struct spi_wifi_cmd *)data_packet->buffer;
wifi_cmd->cmd = SPI_WIFI_CMD_JOIN;
cmd_join = (struct cmd_join *)wifi_cmd->buffer;
#define WPA_SECURITY 0x00200000
#define WPA2_SECURITY 0x00400000
#define TKIP_ENABLED 0x0002
#define AES_ENABLED 0x0004
strncpy(cmd_join->ssid, SSID_NAME, SSID_NAME_LENGTH_MAX);
strncpy(cmd_join->passwd, SSID_PASSWORD, PASSWORD_LENGTH_MAX);
cmd_join->security = WPA2_SECURITY | TKIP_ENABLED | AES_ENABLED;
// cmd_join->security = WPA_SECURITY | TKIP_ENABLED;
data_packet->data_type = data_type_cmd;
data_packet->data_len = sizeof(struct cmd_join) + member_offset(struct spi_wifi_cmd, buffer);
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
rt_event_send(&spi_wifi_data_event, 1);
}
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* transmit packet. */
rt_err_t spi_wifi_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t result = RT_EOK;
struct spi_data_packet *data_packet;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
if (!wifi_device->active)
{
WIFI_DEBUG("!active, TX drop!\n");
return RT_EOK;
}
/* get free tx buffer */
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
if (data_packet != RT_NULL)
{
data_packet->data_type = data_type_eth_data;
data_packet->data_len = p->tot_len;
pbuf_copy_partial(p, data_packet->buffer, data_packet->data_len, 0);
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
eth_device_ready((struct eth_device *)dev);
}
else
return -RT_ERROR;
#ifdef ETH_TX_DUMP
packet_dump("TX dump", p);
#endif /* ETH_TX_DUMP */
/* Return SUCCESS */
return result;
}
/* reception packet. */
struct pbuf *spi_wifi_eth_rx(rt_device_t dev)
{
struct pbuf *p = RT_NULL;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
if (rt_mb_recv(&wifi_device->eth_rx_mb, (rt_uint32_t *)&p, 0) != RT_EOK)
{
return RT_NULL;
}
return p;
}
static void spi_wifi_data_thread_entry(void *parameter)
{
rt_uint32_t e;
rt_err_t result;
while (1)
{
/* receive first event */
if (rt_event_recv(&spi_wifi_data_event,
1,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER,
&e) != RT_EOK)
{
continue;
}
result = spi_wifi_transfer(&spi_wifi_device);
if (result == RT_EOK)
{
rt_event_send(&spi_wifi_data_event, 1);
}
}
}
rt_err_t rt_hw_wifi_init(const char *spi_device_name)
{
memset(&spi_wifi_device, 0, sizeof(struct spi_wifi_eth));
spi_wifi_device.rt_spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if (spi_wifi_device.rt_spi_device == RT_NULL)
{
WIFI_DEBUG("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible: Mode 0 and Mode 3 */
cfg.max_hz = 1000000; /* 50M */
rt_spi_configure(spi_wifi_device.rt_spi_device, &cfg);
}
spi_wifi_device.parent.parent.init = spi_wifi_eth_init;
spi_wifi_device.parent.parent.open = spi_wifi_eth_open;
spi_wifi_device.parent.parent.close = spi_wifi_eth_close;
spi_wifi_device.parent.parent.read = spi_wifi_eth_read;
spi_wifi_device.parent.parent.write = spi_wifi_eth_write;
spi_wifi_device.parent.parent.control = spi_wifi_eth_control;
spi_wifi_device.parent.parent.user_data = RT_NULL;
spi_wifi_device.parent.eth_rx = spi_wifi_eth_rx;
spi_wifi_device.parent.eth_tx = spi_wifi_eth_tx;
rt_mp_init(&spi_wifi_device.spi_tx_mp,
"spi_tx",
&spi_wifi_device.spi_tx_mempool[0],
sizeof(spi_wifi_device.spi_tx_mempool),
sizeof(struct spi_data_packet));
rt_mp_init(&spi_wifi_device.spi_rx_mp,
"spi_rx",
&spi_wifi_device.spi_rx_mempool[0],
sizeof(spi_wifi_device.spi_rx_mempool),
sizeof(struct spi_data_packet));
rt_mb_init(&spi_wifi_device.spi_tx_mb,
"spi_tx",
&spi_wifi_device.spi_tx_mb_pool[0],
SPI_TX_POOL_SIZE,
RT_IPC_FLAG_PRIO);
rt_mb_init(&spi_wifi_device.eth_rx_mb,
"eth_rx",
&spi_wifi_device.eth_rx_mb_pool[0],
SPI_TX_POOL_SIZE,
RT_IPC_FLAG_PRIO);
rt_mb_init(&spi_wifi_device.spi_wifi_cmd_mb,
"wifi_cmd",
&spi_wifi_device.spi_wifi_cmd_mb_pool[0],
sizeof(spi_wifi_device.spi_wifi_cmd_mb_pool) / 4,
RT_IPC_FLAG_PRIO);
rt_event_init(&spi_wifi_data_event, "wifi", RT_IPC_FLAG_FIFO);
spi_wifi_hw_init();
{
rt_thread_t tid;
tid = rt_thread_create("wifi",
spi_wifi_data_thread_entry,
RT_NULL,
2048,
RT_THREAD_PRIORITY_MAX - 2,
20);
if (tid != RT_NULL)
rt_thread_startup(tid);
}
/* init: get mac address */
{
WIFI_DEBUG("wifi_control SPI_WIFI_CMD_INIT\n");
spi_wifi_eth_control((rt_device_t)&spi_wifi_device,
SPI_WIFI_CMD_INIT,
(void *)&spi_wifi_device.dev_addr[0]);
}
/* register eth device */
eth_device_init(&(spi_wifi_device.parent), "w0");
eth_device_linkchange(&spi_wifi_device.parent, RT_FALSE);
{
WIFI_DEBUG("wifi_control SPI_WIFI_CMD_JOIN\n");
spi_wifi_eth_control((rt_device_t)&spi_wifi_device,
SPI_WIFI_CMD_JOIN,
(void *)&spi_wifi_device.dev_addr[0]);
WIFI_DEBUG("wifi_control exit\n");
}
return RT_EOK;
}
void spi_wifi_isr(int vector)
{
/* enter interrupt */
rt_interrupt_enter();
WIFI_DEBUG("spi_wifi_isr\n");
rt_event_send(&spi_wifi_data_event, 1);
/* leave interrupt */
rt_interrupt_leave();
}

View File

@ -0,0 +1,123 @@
/*
* File : spi_wifi_rw009.h
* This file is part of RT-Thread RTOS
* Copyright by Shanghai Real-Thread Electronic Technology Co.,Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2014-07-31 aozima the first version
*/
#ifndef SPI_WIFI_H_INCLUDED
#define SPI_WIFI_H_INCLUDED
#include <stdint.h>
// little-endian
struct cmd_request
{
uint32_t flag;
uint32_t M2S_len; // master to slave data len.
uint32_t magic1;
uint32_t magic2;
};
#define CMD_MAGIC1 (0x67452301)
#define CMD_MAGIC2 (0xEFCDAB89)
#define CMD_FLAG_MRDY (0x01)
// little-endian
struct response
{
uint32_t flag;
uint32_t S2M_len; // slave to master data len.
uint32_t magic1;
uint32_t magic2;
};
#define RESP_FLAG_SRDY (0x01)
#define RESP_MAGIC1 (0x98BADCFE)
#define RESP_MAGIC2 (0x10325476)
/* spi slave configure. */
#define MAX_DATA_LEN 1520
#define SPI_TX_POOL_SIZE 2
// align check
#if (MAX_DATA_LEN & 0x03) != 0
#error MAX_DATA_LEN must ALIGN to 4byte!
#endif
typedef enum
{
data_type_eth_data = 0,
data_type_cmd,
data_type_resp,
}
app_data_type_typedef;
struct spi_data_packet
{
uint32_t data_len;
uint32_t data_type;
char buffer[MAX_DATA_LEN];
};
struct spi_wifi_cmd
{
uint32_t cmd;
char buffer[128];
};
struct spi_wifi_resp
{
uint32_t cmd;
char buffer[128];
};
#define SPI_WIFI_CMD_INIT 128 //wait
#define SPI_WIFI_CMD_SCAN 129 //no wait
#define SPI_WIFI_CMD_JOIN 130 //no wait
/* porting */
extern void spi_wifi_hw_init(void);
extern void spi_wifi_int_cmd(rt_bool_t cmd);
extern rt_bool_t spi_wifi_is_busy(void);
/* tools */
#define node_entry(node, type, member) \
((type *)((char *)(node) - (unsigned long)(&((type *)0)->member)))
#define member_offset(type, member) \
((unsigned long)(&((type *)0)->member))
#define SSID_NAME_LENGTH_MAX (32)
#define PASSWORD_LENGTH_MAX (32)
struct cmd_join
{
char ssid[SSID_NAME_LENGTH_MAX];
char passwd[PASSWORD_LENGTH_MAX];
uint8_t bssid[8]; // 6byte + 2byte PAD.
uint32_t channel;
uint32_t security;
};
#endif // SPI_WIFI_H_INCLUDED

View File

@ -24,10 +24,10 @@
#define PNG_MAX_MALLOC_64K
#define PNG_NO_STDIO
#define PNG_NO_ERROR_NUMBERS
#define PNG_NO_WRITE_SUPPORTED
#define PNG_ABORT() do { rt_kprintf("libpng abort.\n"); } while (0)
#ifndef RT_USING_NEWLIB
#define PNG_NO_WRITE_SUPPORTED
#define PNG_NO_SETJMP_SUPPORTED
#define malloc rtgui_malloc
#define free rtgui_free

View File

@ -3,6 +3,14 @@
#include <sys/time.h>
#include <rtthread.h>
#ifdef RT_USING_DFS
#include <dfs_posix.h>
#endif
#ifdef RT_USING_PTHREADS
#include <pthread.h>
#endif
/* Reentrant versions of system calls. */
int

View File

@ -79,8 +79,8 @@ _reswitch:
STR R1, [R0]
BX LR
/* R0 --> swith from thread stack
* R1 --> swith to thread stack
/* R0 --> switch from thread stack
* R1 --> switch to thread stack
* psr, pc, LR, R12, R3, R2, R1, R0 are pushed into [from] stack
*/
.global PendSV_Handler
@ -103,7 +103,7 @@ PendSV_Handler:
LDR R0, =rt_interrupt_from_thread
LDR R1, [R0]
CMP R1, #0x00
BEQ swtich_to_thread /* skip register save at the first time */
BEQ switch_to_thread /* skip register save at the first time */
MRS R1, PSP /* get from thread stack pointer */
@ -118,7 +118,7 @@ PendSV_Handler:
MOV R6, R10
MOV R7, R11
STMIA R1!, {R4 - R7} /* push thread {R8 - R11} high register to thread stack */
swtich_to_thread:
switch_to_thread:
LDR R1, =rt_interrupt_to_thread
LDR R1, [R1]
LDR R1, [R1] /* load thread stack pointer */

View File

@ -81,8 +81,8 @@ _reswitch
STR r1, [r0]
BX LR
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
EXPORT PendSV_Handler
PendSV_Handler:
@ -104,7 +104,7 @@ PendSV_Handler:
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CMP r1, #0x00
BEQ swtich_to_thread ; skip register save at the first time
BEQ switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
@ -120,7 +120,7 @@ PendSV_Handler:
MOV r7, r11
STMIA r1!, {r4 - r7} ; push thread {r8 - r11} high register to thread stack
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer

View File

@ -85,8 +85,8 @@ _reswitch
BX LR
ENDP
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
PendSV_Handler PROC
EXPORT PendSV_Handler
@ -108,7 +108,7 @@ PendSV_Handler PROC
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CMP r1, #0x00
BEQ swtich_to_thread ; skip register save at the first time
BEQ switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
@ -124,7 +124,7 @@ PendSV_Handler PROC
MOV r7, r11
STMIA r1!, {r4 - r7} ; push thread {r8 - r11} high register to thread stack
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer

View File

@ -80,8 +80,8 @@ _reswitch:
STR R1, [R0]
BX LR
/* R0 --> swith from thread stack
* R1 --> swith to thread stack
/* R0 --> switch from thread stack
* R1 --> switch to thread stack
* psr, pc, LR, R12, R3, R2, R1, R0 are pushed into [from] stack
*/
.global PendSV_Handler
@ -102,14 +102,14 @@ PendSV_Handler:
LDR R0, =rt_interrupt_from_thread
LDR R1, [R0]
CBZ R1, swtich_to_thread /* skip register save at the first time */
CBZ R1, switch_to_thread /* skip register save at the first time */
MRS R1, PSP /* get from thread stack pointer */
STMFD R1!, {R4 - R11} /* push R4 - R11 register */
LDR R0, [R0]
STR R1, [R0] /* update from thread stack pointer */
swtich_to_thread:
switch_to_thread:
LDR R1, =rt_interrupt_to_thread
LDR R1, [R1]
LDR R1, [R1] /* load thread stack pointer */

View File

@ -81,8 +81,8 @@ _reswitch
STR r1, [r0]
BX LR
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
EXPORT PendSV_Handler
PendSV_Handler:
@ -102,14 +102,14 @@ PendSV_Handler:
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread ; skip register save at the first time
CBZ r1, switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
STMFD r1!, {r4 - r11} ; push r4 - r11 register
LDR r0, [r0]
STR r1, [r0] ; update from thread stack pointer
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer

View File

@ -84,8 +84,8 @@ _reswitch
BX LR
ENDP
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
PendSV_Handler PROC
EXPORT PendSV_Handler
@ -105,14 +105,14 @@ PendSV_Handler PROC
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread ; skip register save at the first time
CBZ r1, switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
STMFD r1!, {r4 - r11} ; push r4 - r11 register
LDR r0, [r0]
STR r1, [r0] ; update from thread stack pointer
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer

View File

@ -82,8 +82,8 @@ _reswitch:
STR r1, [r0]
BX LR
/* r0 --> swith from thread stack
* r1 --> swith to thread stack
/* r0 --> switch from thread stack
* r1 --> switch to thread stack
* psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
*/
.global PendSV_Handler
@ -104,7 +104,7 @@ PendSV_Handler:
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread /* skip register save at the first time */
CBZ r1, switch_to_thread /* skip register save at the first time */
MRS r1, psp /* get from thread stack pointer */
@ -127,7 +127,7 @@ PendSV_Handler:
LDR r0, [r0]
STR r1, [r0] /* update from thread stack pointer */
swtich_to_thread:
switch_to_thread:
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] /* load thread stack pointer */

View File

@ -82,8 +82,8 @@ _reswitch
STR r1, [r0]
BX LR
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
EXPORT PendSV_Handler
PendSV_Handler:
@ -103,7 +103,7 @@ PendSV_Handler:
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread ; skip register save at the first time
CBZ r1, switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
@ -130,7 +130,7 @@ push_flag
LDR r0, [r0]
STR r1, [r0] ; update from thread stack pointer
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer

View File

@ -85,8 +85,8 @@ _reswitch
BX LR
ENDP
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; r0 --> switch from thread stack
; r1 --> switch to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
PendSV_Handler PROC
EXPORT PendSV_Handler
@ -106,7 +106,7 @@ PendSV_Handler PROC
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread ; skip register save at the first time
CBZ r1, switch_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
@ -129,7 +129,7 @@ PendSV_Handler PROC
LDR r0, [r0]
STR r1, [r0] ; update from thread stack pointer
swtich_to_thread
switch_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer