4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-19 14:23:30 +08:00

[bsp][zynqmp] 为 DFZU2EG MPSoC 开发板支持标准版和Smart版内核 (#8773)

zynqmp support RT-Thread  and RT-smart
This commit is contained in:
liYangYang 2024-04-12 15:57:06 +08:00 committed by GitHub
parent 6dbdf9c360
commit 48b86cbb8e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 2701 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,34 @@
mainmenu "RT-Thread Project Configuration"
config BSP_DIR
string
option env="BSP_ROOT"
default "."
config RTT_DIR
string
option env="RTT_ROOT"
default "../../"
config PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
config SOC_ZYNQMP_AARCH64
bool
select ARCH_ARMV8
select ARCH_CPU_64BIT
select ARCH_ARM_MMU
select RT_USING_CACHE
select RT_USING_COMPONENTS_INIT
select RT_USING_USER_MAIN
select RT_USING_GIC
select BSP_USING_GIC
select ARCH_MM_MMU
default y
source "$BSP_DIR/drivers/Kconfig"

View File

@ -0,0 +1,157 @@
# DFZU2EG MPSoC 板级支持包说明
## 1. 简介
正点原子 DFZU2EG MPSoC 开发板采用Xilinx的Zynq UltraScale+ MPSoC芯片作为主控芯片。它主要分为PS和PL两部分在PS部分中主要由Arm Cortex A53APU 共4个核、Arm Cortex R5FRPU 共两个核以及Arm Mali 400 MP2GPU三种内核处理器构成并且还包括DDR 控制单元、平台管理单元、高速外设控制器以及普通外设控制器等外设组成。
该板级支持包主要是针对APU做的一份移植支持RT-Thread标准版和Smart版内核。
DFZU2EG MPSoC 开发板的详细资源信息可以查阅正点原子此开发板的相关手册,也可以参考下图:
![2eg_mpsoc_board](figures/2eg_mpsoc_board.png)
## 2. 编译说明
推荐使用ubuntu20的[env环境](https://github.com/RT-Thread/env)当然也可以使用windows上的[env工具](https://www.rt-thread.org/download.html#download-rt-thread-env-tool)进行编译。下面介绍**标准版**和**Smart版本**的编译流程。
### 2.1 RT-Thread编译
**1.menuconfig配置工程**
该BSP默认menuconfig支持的就是RT-Thread标准版无需配置工程。
**2.配置工具链相关环境:**
依次执行下面命令进行环境变量的相关配置:
```shell
export RTT_CC=gcc
export RTT_EXEC_PATH="/opt/tools/gnu_gcc/arm-gnu-toolchain-13.2.Rel1-x86_64-aarch64-none-elf/bin"
export RTT_CC_PREFIX=aarch64-none-elf-
export PATH=$PATH:$RTT_EXEC_PATH
```
**3.编译:**
```shell
scons -j12
```
### 2.2 RT-Smart编译
**1.menuconfig配置工程**
```shell
RT-Thread Kernel --->
[*] Enable RT-Thread Smart (microkernel on kernel/userland)
```
**2.配置工具链相关环境:**
依次执行下面命令进行环境变量的相关配置:
```shell
export RTT_CC=gcc
export RTT_EXEC_PATH="/opt/tools/gnu_gcc/aarch64-linux-musleabi_for_x86_64-pc-linux-gnu/bin"
export RTT_CC_PREFIX=aarch64-linux-musleabi-
export PATH=$PATH:$RTT_EXEC_PATH
```
**3.编译:**
```shell
scons -j12
```
如果编译正确无误,会产生 `rtthread.elf`, `rtthread.bin` 文件。
## 3. 环境搭建
### 3.1 准备好串口线
连线情况如下图所示:
![2eg_mpsoc_uart](figures/2eg_mpsoc_uart.png)
串口参数: 115200 8N1 ,硬件和软件流控为关。
### 3.2 RTT固件放在SD卡运行
暂时不支持,需要使用 u-boot 加载。
### 3.3 RTT程序用uboot加载
需要注意的以下问题:
- 保证开发板和保存固件的PC机处于同一网段互相可以ping通。
- 保证PC机已经成功配置TFTP的相关服务。
可以使用开发板出厂自带的uboot(EMMC)来加载RTT程序将网线连接到开发板的PS网口然后在uboot控制台输入下列命令
```shell
setenv ipaddr 192.168.1.50
setenv ethaddr b8:ae:1d:01:00:00
setenv gatewayip 192.168.1.1
setenv netmask 255.255.255.0
setenv serverip 192.168.1.3
tftpboot 0x00200000 rtthread.bin
go 0x00200000
```
其中`192.168.1.3`为TFTP服务器的PC机的IP地址大家可以根据自己的实际情况进行修改。
执行完上述命令后uboot就可以自动从tftp服务器上获取固件然后开始执行了。
完成后可以看到串口的输出信息:
**标准版log信息**
```shell
heap: [0x00299540 - 0x04000000]
\ | /
- RT - Thread Operating System
/ | \ 5.1.0 build Apr 11 2024 11:43:19
2006 - 2024 Copyright by RT-Thread team
hello rt-thread
msh />
```
**Smart版log信息**
```shell
heap: [0x002fd030 - 0x04000000]
\ | /
- RT - Thread Smart Operating System
/ | \ 5.1.0 build Apr 11 2024 11:47:02
2006 - 2024 Copyright by RT-Thread team
Press any key to stop init process startup ... 3
Press any key to stop init process startup ... 2
Press any key to stop init process startup ... 1
Starting init ...
[E/lwp] lwp_startup: init program not found
Switching to legacy mode...
hello rt-thread
msh />
```
## 4. 支持情况
| 驱动 | 支持情况 | 备注 |
| ------ | ---- | :------: |
| UART | 支持 | UART0 |
| GPIO | 暂不支持 | - |
| SPI | 暂不支持 | - |
| SDIO | 暂不支持 | - |
| ETH | 暂不支持 | - |
目前BSP仅保证成功运行驱动后续会慢慢支持
## 5. 注意事项
对于ZYNQ的开发需要使用Vivado软件对开发板的硬件进行一些配置来生产相应的fsbl.elf文件比如串口引脚的初始化等等所以如果大家需要修改串口的输出引脚信息需要更新fsbl.elf而这些知识是需要具备一定的ZYNQ开发基础的。
## 6. 联系人信息
维护人:[liYony](https://github.com/liYony)

View File

@ -0,0 +1,14 @@
# for module compiling
import os
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')

View File

@ -0,0 +1,44 @@
import os
import sys
import rtconfig
import re
if os.getenv('RTT_ROOT'):
RTT_ROOT = os.getenv('RTT_ROOT')
else:
RTT_ROOT = os.path.join(os.getcwd(), '..', '..')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
from building import *
TARGET = 'rtthread.' + rtconfig.TARGET_EXT
TRACE_CONFIG = ""
content = ""
with open("rtconfig.h") as f:
for line in f.readlines():
if line.find("RT_BACKTRACE_FUNCTION_NAME") != -1:
for token in line.split(" "):
if re.match(r'RT_BACKTRACE_FUNCTION_NAME$', token, flags=0):
TRACE_CONFIG = " "
DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS + TRACE_CONFIG,
CC = rtconfig.CC, CFLAGS = rtconfig.CFLAGS + TRACE_CONFIG,
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS + TRACE_CONFIG,
AR = rtconfig.AR, ARFLAGS = '-rc',
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
env['ASCOM'] = env['ASPPCOM']
env['LINKCOM'] = '$LINK -o $TARGET $LINKFLAGS $__RPATH $SOURCES $_LIBDIRFLAGS -Wl,--start-group $_LIBFLAGS -Wl,--end-group'
Export('RTT_ROOT')
Export('rtconfig')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT)
# make a building
DoBuilding(TARGET, objs)

View File

@ -0,0 +1,9 @@
from building import *
cwd = GetCurrentDir()
src = Glob('*.c') + Glob('*.cpp')
CPPPATH = [cwd]
group = DefineGroup('Applications', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,18 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020/10/7 bernard the first version
*/
#include <rtthread.h>
int main(void)
{
rt_kprintf("hello rt-thread\n");
return 0;
}

View File

@ -0,0 +1,32 @@
menu "Hardware Drivers Config"
config BSP_SUPPORT_FPU
bool "Using Float"
default y
menuconfig BSP_USING_UART
bool "Using UART"
select RT_USING_SERIAL
default y
if BSP_USING_UART
config BSP_USING_UART0
bool "Enabel UART 0"
default y
endif
config BSP_USING_GIC
bool
default y
choice
prompt "GIC Version"
default BSP_USING_GICV2
config BSP_USING_GICV2
bool "GICv2"
config BSP_USING_GICV3
bool "GICv3"
endchoice
endmenu

View File

@ -0,0 +1,11 @@
# RT-Thread building script for component
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd , cwd + '/zynqmp']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,77 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-11 liYony the first version
*/
#include <mmu.h>
#include <board.h>
#include <mm_aspace.h>
#include <mm_page.h>
#include <drv_uart.h>
#include <gtimer.h>
extern size_t MMUTable[];
#ifdef RT_USING_SMART
struct mem_desc platform_mem_desc[] = {
{KERNEL_VADDR_START, KERNEL_VADDR_START + 0x7FF00000 - 1, (rt_size_t)ARCH_MAP_FAILED, NORMAL_MEM}
};
#else
struct mem_desc platform_mem_desc[] =
{
{0x00200000, 0x7FF00000 - 1, 0x00200000, NORMAL_MEM},
{GIC400_DISTRIBUTOR_PPTR, GIC400_DISTRIBUTOR_PPTR + GIC400_SIZE - 1, GIC400_DISTRIBUTOR_PPTR, DEVICE_MEM},
{GIC400_CONTROLLER_PPTR, GIC400_CONTROLLER_PPTR + GIC400_SIZE - 1, GIC400_CONTROLLER_PPTR, DEVICE_MEM},
};
#endif
const rt_uint32_t platform_mem_desc_size = sizeof(platform_mem_desc) / sizeof(platform_mem_desc[0]);
void idle_wfi(void)
{
asm volatile("wfi");
}
void rt_hw_board_init(void)
{
#ifdef RT_USING_SMART
rt_hw_mmu_map_init(&rt_kernel_space, (void *)0xfffffffff0000000, 0x10000000, MMUTable, PV_OFFSET);
#else
rt_hw_mmu_map_init(&rt_kernel_space, (void *)0xffffd0000000, 0x10000000, MMUTable, 0);
#endif
rt_region_t init_page_region;
init_page_region.start = PAGE_START;
init_page_region.end = PAGE_END;
rt_page_init(init_page_region);
rt_hw_mmu_setup(&rt_kernel_space, platform_mem_desc, platform_mem_desc_size);
#ifdef RT_USING_HEAP
/* initialize system heap */
rt_system_heap_init((void *)HEAP_BEGIN, (void *)HEAP_END);
#endif
/* initialize hardware interrupt */
rt_hw_interrupt_init();
/* initialize uart */
rt_hw_uart_init();
/* initialize timer for os tick */
rt_hw_gtimer_init();
rt_thread_idle_sethook(idle_wfi);
#if defined(RT_USING_CONSOLE) && defined(RT_USING_DEVICE)
/* set console device */
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
rt_kprintf("heap: [0x%08x - 0x%08x]\n", HEAP_BEGIN, HEAP_END);
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
}

View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-11 liYony the first version
*/
#ifndef __BOARD_H__
#define __BOARD_H__
#include <zynqmp.h>
extern unsigned char __bss_end;
#define HEAP_BEGIN ((void*)&__bss_end)
#ifdef RT_USING_SMART
#define HEAP_END ((size_t)KERNEL_VADDR_START + 64 * 1024 * 1024)
#define PAGE_START HEAP_END
#define PAGE_END ((size_t)KERNEL_VADDR_START + 128 * 1024 * 1024)
#else
#define KERNEL_VADDR_START 0x0
#define HEAP_END (KERNEL_VADDR_START + 64 * 1024 * 1024)
#define PAGE_START HEAP_END
#define PAGE_END ((size_t)PAGE_START + 64 * 1024 * 1024)
#endif
void rt_hw_board_init(void);
int rt_hw_uart_init(void);
#endif /* __BOARD_H__ */

View File

@ -0,0 +1,346 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-11 liYony the first version
*/
#include <rthw.h>
#include <rtdevice.h>
#include <drv_uart.h>
#include "board.h"
#include "zynqmp_uart.h"
#define ZYNQMP_UART_DEVICE_DEFAULT(base, irq, clk) {{ \
.ops = &_zynqmp_ops, \
.config = RT_SERIAL_CONFIG_DEFAULT \
}, \
.hw_base = base, \
.irqno = irq, \
.in_clk = clk \
}
struct zynqmp_uart_device
{
struct rt_serial_device device;
rt_ubase_t hw_base;
rt_uint32_t irqno;
rt_uint32_t in_clk;
};
static void _uart_set_fifo_threshold(rt_ubase_t base, rt_uint8_t trigger_level)
{
rt_uint32_t reg_triger;
/* Assert validates the input arguments */
RT_ASSERT(base != RT_NULL);
RT_ASSERT(trigger_level <= (rt_uint8_t)XUARTPS_RXWM_MASK);
reg_triger = ((rt_uint32_t)trigger_level) & (rt_uint32_t)XUARTPS_RXWM_MASK;
/*
* Write the new value for the FIFO control register to it such that the
* threshold is changed
*/
writel(reg_triger, base + XUARTPS_RXWM_OFFSET);
}
static void _uart_set_interrupt_mask(rt_ubase_t base, rt_uint32_t mask)
{
rt_uint32_t temp_mask = mask;
RT_ASSERT(base != RT_NULL);
temp_mask &= (rt_uint32_t)XUARTPS_IXR_MASK;
writel(temp_mask, base + XUARTPS_IER_OFFSET);
writel((~temp_mask), base + XUARTPS_IDR_OFFSET);
}
static rt_err_t _uart_baudrate_init(rt_ubase_t base, struct serial_configure *cfg, rt_uint32_t in_clk)
{
rt_uint32_t iter_baud_div; /* Iterator for available baud divisor values */
rt_uint32_t brgr_value; /* Calculated value for baud rate generator */
rt_uint32_t calc_baudrate; /* Calculated baud rate */
rt_uint32_t baud_error; /* Diff between calculated and requested baud rate */
rt_uint32_t best_brgr = 0U; /* Best value for baud rate generator */
rt_uint8_t best_baud_div = 0U; /* Best value for baud divisor */
rt_uint32_t best_error = 0xFFFFFFFFU;
rt_uint32_t percent_error;
rt_uint32_t mode_reg;
rt_uint32_t input_clk;
rt_uint32_t temp_reg;
/* Asserts validate the input arguments */
RT_ASSERT(base != RT_NULL);
RT_ASSERT(cfg->baud_rate <= (rt_uint32_t)XUARTPS_MAX_RATE);
RT_ASSERT(cfg->baud_rate >= (rt_uint32_t)XUARTPS_MIN_RATE);
/*
* Make sure the baud rate is not impossilby large.
* Fastest possible baud rate is Input Clock / 2.
*/
if ((cfg->baud_rate * 2) > in_clk)
{
return -RT_EINVAL;
}
/* Check whether the input clock is divided by 8 */
mode_reg = readl(base + XUARTPS_MR_OFFSET);
input_clk = in_clk;
if (mode_reg & XUARTPS_MR_CLKSEL)
{
input_clk = in_clk / 8;
}
/*
* Determine the Baud divider. It can be 4to 254.
* Loop through all possible combinations
*/
for (iter_baud_div = 4; iter_baud_div < 255; iter_baud_div++)
{
/* Calculate the value for BRGR register */
brgr_value = input_clk / (cfg->baud_rate * (iter_baud_div + 1));
/* Calculate the baud rate from the BRGR value */
calc_baudrate = input_clk / (brgr_value * (iter_baud_div + 1));
/* Avoid unsigned integer underflow */
if (cfg->baud_rate > calc_baudrate)
{
baud_error = cfg->baud_rate - calc_baudrate;
}
else
{
baud_error = calc_baudrate - cfg->baud_rate;
}
/* Find the calculated baud rate closest to requested baud rate. */
if (best_error > baud_error)
{
best_brgr = brgr_value;
best_baud_div = iter_baud_div;
best_error = baud_error;
}
}
/* Make sure the best error is not too large. */
percent_error = (best_error * 100) / cfg->baud_rate;
if (XUARTPS_MAX_BAUD_ERROR_RATE < percent_error)
{
return -RT_EINVAL;
}
/* Disable TX and RX to avoid glitches when setting the baud rate. */
temp_reg = (((readl(base + XUARTPS_CR_OFFSET)) & ((rt_uint32_t)(~XUARTPS_CR_EN_DIS_MASK))) |
((rt_uint32_t)XUARTPS_CR_RX_DIS | (rt_uint32_t)XUARTPS_CR_TX_DIS));
writel(temp_reg, base + XUARTPS_CR_OFFSET);
/* Set the baud rate divisor */
writel(best_brgr, base + XUARTPS_BAUDGEN_OFFSET);
writel(best_baud_div, base + XUARTPS_BAUDDIV_OFFSET);
/* RX and TX SW reset */
writel(XUARTPS_CR_TXRST | XUARTPS_CR_RXRST, base + XUARTPS_CR_OFFSET);
/* Enable device */
temp_reg = (((readl(base + XUARTPS_CR_OFFSET)) & ((rt_uint32_t)(~XUARTPS_CR_EN_DIS_MASK))) |
((rt_uint32_t)XUARTPS_CR_RX_EN | (rt_uint32_t)XUARTPS_CR_TX_EN));
writel(temp_reg, base + XUARTPS_CR_OFFSET);
return RT_EOK;
}
static rt_err_t zynqmp_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct zynqmp_uart_device *uart = (struct zynqmp_uart_device *)serial;
RT_ASSERT(uart != RT_NULL);
if (_uart_baudrate_init(uart->hw_base, cfg, uart->in_clk) != RT_EOK)
{
return -RT_ERROR;
}
rt_uint32_t mode_reg = 0U;
/* Set the parity mode */
mode_reg = readl(uart->hw_base + XUARTPS_MR_OFFSET);
/* Mask off what's already there */
mode_reg &= (~((rt_uint32_t)XUARTPS_MR_CHARLEN_MASK |
(rt_uint32_t)XUARTPS_MR_STOPMODE_MASK |
(rt_uint32_t)XUARTPS_MR_PARITY_MASK));
switch (cfg->data_bits)
{
case DATA_BITS_6:
mode_reg |= (rt_uint32_t)XUARTPS_MR_CHARLEN_6_BIT;
break;
case DATA_BITS_7:
mode_reg |= (rt_uint32_t)XUARTPS_MR_CHARLEN_7_BIT;
break;
case DATA_BITS_8:
mode_reg |= (rt_uint32_t)XUARTPS_MR_CHARLEN_8_BIT;
break;
default:
mode_reg |= (rt_uint32_t)XUARTPS_MR_CHARLEN_8_BIT;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
mode_reg |= (rt_uint32_t)XUARTPS_MR_STOPMODE_1_BIT;
break;
case STOP_BITS_2:
mode_reg |= (rt_uint32_t)XUARTPS_MR_STOPMODE_2_BIT;
break;
default:
mode_reg |= (rt_uint32_t)XUARTPS_MR_STOPMODE_1_BIT;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
mode_reg |= (rt_uint32_t)XUARTPS_MR_PARITY_NONE;
break;
case PARITY_ODD:
mode_reg |= (rt_uint32_t)XUARTPS_MR_PARITY_ODD;
break;
case PARITY_EVEN:
mode_reg |= (rt_uint32_t)XUARTPS_MR_PARITY_EVEN;
break;
default:
mode_reg |= (rt_uint32_t)XUARTPS_MR_PARITY_NONE;
break;
}
/* Write the mode register out */
writel(mode_reg, uart->hw_base + XUARTPS_MR_OFFSET);
/* Set the RX FIFO trigger at 8 data bytes. */
writel(0x08U, uart->hw_base + XUARTPS_RXWM_OFFSET);
/* Set the RX timeout to 1, which will be 4 character time */
writel(0x01U, uart->hw_base + XUARTPS_RXTOUT_OFFSET);
/* Disable all interrupts, polled mode is the default */
writel(XUARTPS_IXR_MASK, uart->hw_base + XUARTPS_IDR_OFFSET);
return RT_EOK;
}
static rt_err_t zynqmp_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct zynqmp_uart_device *uart = (struct zynqmp_uart_device *)serial;
RT_ASSERT(uart != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
/* Disable the UART Interrupt */
rt_hw_interrupt_mask(uart->irqno);
_uart_set_interrupt_mask(uart->hw_base, 0U);
break;
case RT_DEVICE_CTRL_SET_INT:
/* Enable the UART Interrupt */
_uart_set_fifo_threshold(uart->hw_base, 1);
rt_hw_interrupt_umask(uart->irqno);
_uart_set_interrupt_mask(uart->hw_base, XUARTPS_IXR_RXOVR);
break;
}
return RT_EOK;
}
static int zynqmp_uart_putc(struct rt_serial_device *serial, char c)
{
struct zynqmp_uart_device *uart = (struct zynqmp_uart_device *)serial;
RT_ASSERT(uart != RT_NULL);
/* Wait until there is space in TX FIFO */
while ((readl(uart->hw_base + XUARTPS_SR_OFFSET) &
XUARTPS_SR_TXFULL) == XUARTPS_SR_TXFULL)
{
;
}
/* Write the byte into the TX FIFO */
writel((rt_uint32_t)c, uart->hw_base + XUARTPS_FIFO_OFFSET);
return 1;
}
static int zynqmp_uart_getc(struct rt_serial_device *serial)
{
struct zynqmp_uart_device *uart = (struct zynqmp_uart_device *)serial;
RT_ASSERT(uart != RT_NULL);
/* Wait until there is data */
if ((readl(uart->hw_base + XUARTPS_SR_OFFSET) &
XUARTPS_SR_RXEMPTY) == XUARTPS_SR_RXEMPTY)
{
return -1;
}
int ch = readl(uart->hw_base + XUARTPS_FIFO_OFFSET);
return ch;
}
static const struct rt_uart_ops _zynqmp_ops =
{
zynqmp_uart_configure,
zynqmp_uart_control,
zynqmp_uart_putc,
zynqmp_uart_getc,
};
#ifdef BSP_USING_UART0
static struct zynqmp_uart_device _uart0_device =
ZYNQMP_UART_DEVICE_DEFAULT(ZYNQMP_UART0_BASE, ZYNQMP_UART0_IRQNUM, ZYNQMP_UART0_CLK_FREQ_HZ);
#endif
static void rt_hw_uart_isr(int irqno, void *param)
{
struct zynqmp_uart_device *uart = (struct zynqmp_uart_device *)param;
RT_ASSERT(uart != RT_NULL);
struct rt_serial_device *serial = &(uart->device);
rt_uint32_t isr_status;
isr_status = readl(uart->hw_base + XUARTPS_IMR_OFFSET);
isr_status &= readl(uart->hw_base + XUARTPS_ISR_OFFSET);
if (isr_status & (rt_uint32_t)XUARTPS_IXR_RXOVR)
{
writel(XUARTPS_IXR_RXOVR, uart->hw_base + XUARTPS_ISR_OFFSET);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
}
int rt_hw_uart_init(void)
{
struct zynqmp_uart_device *uart = RT_NULL;
#ifdef BSP_USING_UART0
uart = &_uart0_device;
_uart0_device.hw_base = (rt_size_t)rt_ioremap((void*)_uart0_device.hw_base, ZYNQMP_UART0_SIZE);
/* register UART0 device */
rt_hw_serial_register(&uart->device, "uart0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
rt_hw_interrupt_install(uart->irqno, rt_hw_uart_isr, uart, "uart0");
#endif
return 0;
}

View File

@ -0,0 +1,18 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-11 liYony the first version
*/
#ifndef __DRV_UART_H__
#define __DRV_UART_H__
#include <rtthread.h>
int rt_hw_uart_init(void);
#endif /* __DRV_UART_H__ */

View File

@ -0,0 +1,52 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-04-11 liYony the first version
*/
#ifndef __ZYNQMP_H__
#define __ZYNQMP_H__
#include <rtdef.h>
#include <ioremap.h>
#ifdef RT_USING_SMART
#include <mmu.h>
#endif
#define __REG32(x) (*((volatile unsigned int *)(x)))
#define __REG16(x) (*((volatile unsigned short *)(x)))
/* UART */
#define ZYNQMP_UART0_BASE 0xFF000000
#define ZYNQMP_UART0_SIZE 0x00010000
#define ZYNQMP_UART0_IRQNUM (32 + 21)
#define ZYNQMP_UART0_CLK_FREQ_HZ (99999001)
/* GIC */
#define MAX_HANDLERS 195
#define GIC_IRQ_START 0
#define ARM_GIC_NR_IRQS 195
#define ARM_GIC_MAX_NR 1
/* GICv2 */
#define GIC400_DISTRIBUTOR_PPTR 0xF9010000U
#define GIC400_CONTROLLER_PPTR 0xF9020000U
#define GIC400_SIZE 0x00001000U
/* the basic constants and interfaces needed by gic */
rt_inline rt_ubase_t platform_get_gic_dist_base(void)
{
return GIC400_DISTRIBUTOR_PPTR;
}
rt_inline rt_ubase_t platform_get_gic_cpu_base(void)
{
return GIC400_CONTROLLER_PPTR;
}
#endif /* __ZYNQMP_H__ */

View File

@ -0,0 +1,38 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __ZYNQMP_REG_H__
#define __ZYNQMP_REG_H__
/* bit field helpers. */
#define __M(n) (~(~0<<(n)))
#define __RBF(number, n) ((number)&__M(n))
#define __BF(number, n, m) __RBF((number>>m), (n-m+1))
#define REG_BF(number, n, m) (m<n ? __BF(number, n, m) : __BF(number, m, n))
#define readb(reg) (*((volatile unsigned char *)(reg)))
#define readw(reg) (*((volatile unsigned short *)(reg)))
#define readl(reg) (*((volatile unsigned int *)(reg)))
#define readq(reg) (*((volatile unsigned long long *)(reg)))
#define writeb(data, reg) ((*((volatile unsigned char *)(reg))) = (unsigned char)(data))
#define writew(data, reg) ((*((volatile unsigned short *)(reg))) = (unsigned short)(data))
#define writel(data, reg) ((*((volatile unsigned int *)(reg))) = (unsigned int)(data))
#define writeq(data, reg) ((*((volatile unsigned long long *)(reg))) = (unsigned long long)(data))
#define clrsetreg(addr, clr, set) writel(((clr) | (set)) << 16 | (set), addr)
#define clrreg(addr, clr) writel((clr) << 16, addr)
#define setreg(addr, set) writel((set) << 16 | (set), addr)
#define DUMP_REG(base, reg) \
do { \
rt_uint32_t status = 0x00000000; \
status = readl(base + reg); \
rt_kprintf(#reg ":\n"); \
rt_kprintf("\t%p 0x%.8x\n", base + reg, status); \
} while(0);
#endif /* __ZYNQMP_REG_H__ */

View File

@ -0,0 +1,300 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __ZYNQMP_UART_H__
#define __ZYNQMP_UART_H__
#include <zynqmp_reg.h>
/* The following constant defines the amount of error that is allowed for
* a specified baud rate. This error is the difference between the actual
* baud rate that will be generated using the specified clock and the
* desired baud rate.
*/
#define XUARTPS_MAX_BAUD_ERROR_RATE 3U /* max % error allowed */
/*
* The following constants indicate the max and min baud rates and these
* numbers are based only on the testing that has been done. The hardware
* is capable of other baud rates.
*/
#define XUARTPS_MAX_RATE 6240000U
#define XUARTPS_MIN_RATE 110U
/** @name Register Map
*
* Register offsets for the UART.
* @{
*/
#define XUARTPS_CR_OFFSET 0x0000U /**< Control Register [8:0] */
#define XUARTPS_MR_OFFSET 0x0004U /**< Mode Register [9:0] */
#define XUARTPS_IER_OFFSET 0x0008U /**< Interrupt Enable [12:0] */
#define XUARTPS_IDR_OFFSET 0x000CU /**< Interrupt Disable [12:0] */
#define XUARTPS_IMR_OFFSET 0x0010U /**< Interrupt Mask [12:0] */
#define XUARTPS_ISR_OFFSET 0x0014U /**< Interrupt Status [12:0]*/
#define XUARTPS_BAUDGEN_OFFSET 0x0018U /**< Baud Rate Generator [15:0] */
#define XUARTPS_RXTOUT_OFFSET 0x001CU /**< RX Timeout [7:0] */
#define XUARTPS_RXWM_OFFSET 0x0020U /**< RX FIFO Trigger Level [5:0] */
#define XUARTPS_MODEMCR_OFFSET 0x0024U /**< Modem Control [5:0] */
#define XUARTPS_MODEMSR_OFFSET 0x0028U /**< Modem Status [8:0] */
#define XUARTPS_SR_OFFSET 0x002CU /**< Channel Status [14:0] */
#define XUARTPS_FIFO_OFFSET 0x0030U /**< FIFO [7:0] */
#define XUARTPS_BAUDDIV_OFFSET 0x0034U /**< Baud Rate Divider [7:0] */
#define XUARTPS_FLOWDEL_OFFSET 0x0038U /**< Flow Delay [5:0] */
#define XUARTPS_TXWM_OFFSET 0x0044U /**< TX FIFO Trigger Level [5:0] */
#define XUARTPS_RXBS_OFFSET 0x0048U /**< RX FIFO Byte Status [11:0] */
/* @} */
/** @name Control Register
*
* The Control register (CR) controls the major functions of the device.
*
* Control Register Bit Definition
*/
#define XUARTPS_CR_STOPBRK 0x00000100U /**< Stop transmission of break */
#define XUARTPS_CR_STARTBRK 0x00000080U /**< Set break */
#define XUARTPS_CR_TORST 0x00000040U /**< RX timeout counter restart */
#define XUARTPS_CR_TX_DIS 0x00000020U /**< TX disabled. */
#define XUARTPS_CR_TX_EN 0x00000010U /**< TX enabled */
#define XUARTPS_CR_RX_DIS 0x00000008U /**< RX disabled. */
#define XUARTPS_CR_RX_EN 0x00000004U /**< RX enabled */
#define XUARTPS_CR_EN_DIS_MASK 0x0000003CU /**< Enable/disable Mask */
#define XUARTPS_CR_TXRST 0x00000002U /**< TX logic reset */
#define XUARTPS_CR_RXRST 0x00000001U /**< RX logic reset */
/* @}*/
/** @name Mode Register
*
* The mode register (MR) defines the mode of transfer as well as the data
* format. If this register is modified during transmission or reception,
* data validity cannot be guaranteed.
*
* Mode Register Bit Definition
* @{
*/
#define XUARTPS_MR_CCLK 0x00000400U /**< Input clock selection */
#define XUARTPS_MR_CHMODE_R_LOOP 0x00000300U /**< Remote loopback mode */
#define XUARTPS_MR_CHMODE_L_LOOP 0x00000200U /**< Local loopback mode */
#define XUARTPS_MR_CHMODE_ECHO 0x00000100U /**< Auto echo mode */
#define XUARTPS_MR_CHMODE_NORM 0x00000000U /**< Normal mode */
#define XUARTPS_MR_CHMODE_SHIFT 8U /**< Mode shift */
#define XUARTPS_MR_CHMODE_MASK 0x00000300U /**< Mode mask */
#define XUARTPS_MR_STOPMODE_2_BIT 0x00000080U /**< 2 stop bits */
#define XUARTPS_MR_STOPMODE_1_5_BIT 0x00000040U /**< 1.5 stop bits */
#define XUARTPS_MR_STOPMODE_1_BIT 0x00000000U /**< 1 stop bit */
#define XUARTPS_MR_STOPMODE_SHIFT 6U /**< Stop bits shift */
#define XUARTPS_MR_STOPMODE_MASK 0x000000A0U /**< Stop bits mask */
#define XUARTPS_MR_PARITY_NONE 0x00000020U /**< No parity mode */
#define XUARTPS_MR_PARITY_MARK 0x00000018U /**< Mark parity mode */
#define XUARTPS_MR_PARITY_SPACE 0x00000010U /**< Space parity mode */
#define XUARTPS_MR_PARITY_ODD 0x00000008U /**< Odd parity mode */
#define XUARTPS_MR_PARITY_EVEN 0x00000000U /**< Even parity mode */
#define XUARTPS_MR_PARITY_SHIFT 3U /**< Parity setting shift */
#define XUARTPS_MR_PARITY_MASK 0x00000038U /**< Parity mask */
#define XUARTPS_MR_CHARLEN_6_BIT 0x00000006U /**< 6 bits data */
#define XUARTPS_MR_CHARLEN_7_BIT 0x00000004U /**< 7 bits data */
#define XUARTPS_MR_CHARLEN_8_BIT 0x00000000U /**< 8 bits data */
#define XUARTPS_MR_CHARLEN_SHIFT 1U /**< Data Length shift */
#define XUARTPS_MR_CHARLEN_MASK 0x00000006U /**< Data length mask */
#define XUARTPS_MR_CLKSEL 0x00000001U /**< Input clock selection */
/* @} */
/** @name Interrupt Registers
*
* Interrupt control logic uses the interrupt enable register (IER) and the
* interrupt disable register (IDR) to set the value of the bits in the
* interrupt mask register (IMR). The IMR determines whether to pass an
* interrupt to the interrupt status register (ISR).
* Writing a 1 to IER Enbables an interrupt, writing a 1 to IDR disables an
* interrupt. IMR and ISR are read only, and IER and IDR are write only.
* Reading either IER or IDR returns 0x00.
*
* All four registers have the same bit definitions.
*
* @{
*/
#define XUARTPS_IXR_RBRK 0x00002000U /**< Rx FIFO break detect interrupt */
#define XUARTPS_IXR_TOVR 0x00001000U /**< Tx FIFO Overflow interrupt */
#define XUARTPS_IXR_TNFUL 0x00000800U /**< Tx FIFO Nearly Full interrupt */
#define XUARTPS_IXR_TTRIG 0x00000400U /**< Tx Trig interrupt */
#define XUARTPS_IXR_DMS 0x00000200U /**< Modem status change interrupt */
#define XUARTPS_IXR_TOUT 0x00000100U /**< Timeout error interrupt */
#define XUARTPS_IXR_PARITY 0x00000080U /**< Parity error interrupt */
#define XUARTPS_IXR_FRAMING 0x00000040U /**< Framing error interrupt */
#define XUARTPS_IXR_OVER 0x00000020U /**< Overrun error interrupt */
#define XUARTPS_IXR_TXFULL 0x00000010U /**< TX FIFO full interrupt. */
#define XUARTPS_IXR_TXEMPTY 0x00000008U /**< TX FIFO empty interrupt. */
#define XUARTPS_IXR_RXFULL 0x00000004U /**< RX FIFO full interrupt. */
#define XUARTPS_IXR_RXEMPTY 0x00000002U /**< RX FIFO empty interrupt. */
#define XUARTPS_IXR_RXOVR 0x00000001U /**< RX FIFO trigger interrupt. */
#define XUARTPS_IXR_MASK 0x00003FFFU /**< Valid bit mask */
/* @} */
/** @name Baud Rate Generator Register
*
* The baud rate generator control register (BRGR) is a 16 bit register that
* controls the receiver bit sample clock and baud rate.
* Valid values are 1 - 65535.
*
* Bit Sample Rate = CCLK / BRGR, where the CCLK is selected by the MR_CCLK bit
* in the MR register.
* @{
*/
#define XUARTPS_BAUDGEN_DISABLE 0x00000000U /**< Disable clock */
#define XUARTPS_BAUDGEN_MASK 0x0000FFFFU /**< Valid bits mask */
#define XUARTPS_BAUDGEN_RESET_VAL 0x0000028BU /**< Reset value */
/** @name Baud Divisor Rate register
*
* The baud rate divider register (BDIV) controls how much the bit sample
* rate is divided by. It sets the baud rate.
* Valid values are 0x04 to 0xFF. Writing a value less than 4 will be ignored.
*
* Baud rate = CCLK / ((BAUDDIV + 1) x BRGR), where the CCLK is selected by
* the MR_CCLK bit in the MR register.
* @{
*/
#define XUARTPS_BAUDDIV_MASK 0x000000FFU /**< 8 bit baud divider mask */
#define XUARTPS_BAUDDIV_RESET_VAL 0x0000000FU /**< Reset value */
/* @} */
/** @name Receiver Timeout Register
*
* Use the receiver timeout register (RTR) to detect an idle condition on
* the receiver data line.
*
* @{
*/
#define XUARTPS_RXTOUT_DISABLE 0x00000000U /**< Disable time out */
#define XUARTPS_RXTOUT_MASK 0x000000FFU /**< Valid bits mask */
/** @name Receiver FIFO Trigger Level Register
*
* Use the Receiver FIFO Trigger Level Register (RTRIG) to set the value at
* which the RX FIFO triggers an interrupt event.
* @{
*/
#define XUARTPS_RXWM_DISABLE 0x00000000U /**< Disable RX trigger interrupt */
#define XUARTPS_RXWM_MASK 0x0000003FU /**< Valid bits mask */
#define XUARTPS_RXWM_RESET_VAL 0x00000020U /**< Reset value */
/* @} */
/** @name Transmit FIFO Trigger Level Register
*
* Use the Transmit FIFO Trigger Level Register (TTRIG) to set the value at
* which the TX FIFO triggers an interrupt event.
* @{
*/
#define XUARTPS_TXWM_MASK 0x0000003FU /**< Valid bits mask */
#define XUARTPS_TXWM_RESET_VAL 0x00000020U /**< Reset value */
/* @} */
/** @name Modem Control Register
*
* This register (MODEMCR) controls the interface with the modem or data set,
* or a peripheral device emulating a modem.
*
* @{
*/
#define XUARTPS_MODEMCR_FCM 0x00000020U /**< Flow control mode */
#define XUARTPS_MODEMCR_RTS 0x00000002U /**< Request to send */
#define XUARTPS_MODEMCR_DTR 0x00000001U /**< Data terminal ready */
/* @} */
/** @name Modem Status Register
*
* This register (MODEMSR) indicates the current state of the control lines
* from a modem, or another peripheral device, to the CPU. In addition, four
* bits of the modem status register provide change information. These bits
* are set to a logic 1 whenever a control input from the modem changes state.
*
* Note: Whenever the DCTS, DDSR, TERI, or DDCD bit is set to logic 1, a modem
* status interrupt is generated and this is reflected in the modem status
* register.
*
* @{
*/
#define XUARTPS_MODEMSR_FCMS 0x00000100U /**< Flow control mode (FCMS) */
#define XUARTPS_MODEMSR_DCD 0x00000080U /**< Complement of DCD input */
#define XUARTPS_MODEMSR_RI 0x00000040U /**< Complement of RI input */
#define XUARTPS_MODEMSR_DSR 0x00000020U /**< Complement of DSR input */
#define XUARTPS_MODEMSR_CTS 0x00000010U /**< Complement of CTS input */
#define XUARTPS_MODEMSR_DDCD 0x00000008U /**< Delta DCD indicator */
#define XUARTPS_MODEMSR_TERI 0x00000004U /**< Trailing Edge Ring Indicator */
#define XUARTPS_MODEMSR_DDSR 0x00000002U /**< Change of DSR */
#define XUARTPS_MODEMSR_DCTS 0x00000001U /**< Change of CTS */
/* @} */
/** @name Channel Status Register
*
* The channel status register (CSR) is provided to enable the control logic
* to monitor the status of bits in the channel interrupt status register,
* even if these are masked out by the interrupt mask register.
*
* @{
*/
#define XUARTPS_SR_TNFUL 0x00004000U /**< TX FIFO Nearly Full Status */
#define XUARTPS_SR_TTRIG 0x00002000U /**< TX FIFO Trigger Status */
#define XUARTPS_SR_FLOWDEL 0x00001000U /**< RX FIFO fill over flow delay */
#define XUARTPS_SR_TACTIVE 0x00000800U /**< TX active */
#define XUARTPS_SR_RACTIVE 0x00000400U /**< RX active */
#define XUARTPS_SR_TXFULL 0x00000010U /**< TX FIFO full */
#define XUARTPS_SR_TXEMPTY 0x00000008U /**< TX FIFO empty */
#define XUARTPS_SR_RXFULL 0x00000004U /**< RX FIFO full */
#define XUARTPS_SR_RXEMPTY 0x00000002U /**< RX FIFO empty */
#define XUARTPS_SR_RXOVR 0x00000001U /**< RX FIFO fill over trigger */
/* @} */
/** @name Flow Delay Register
*
* Operation of the flow delay register (FLOWDEL) is very similar to the
* receive FIFO trigger register. An internal trigger signal activates when the
* FIFO is filled to the level set by this register. This trigger will not
* cause an interrupt, although it can be read through the channel status
* register. In hardware flow control mode, RTS is deactivated when the trigger
* becomes active. RTS only resets when the FIFO level is four less than the
* level of the flow delay trigger and the flow delay trigger is not activated.
* A value less than 4 disables the flow delay.
* @{
*/
#define XUARTPS_FLOWDEL_MASK XUARTPS_RXWM_MASK /**< Valid bit mask */
/* @} */
/** @name Receiver FIFO Byte Status Register
*
* The Receiver FIFO Status register is used to have a continuous
* monitoring of the raw unmasked byte status information. The register
* contains frame, parity and break status information for the top
* four bytes in the RX FIFO.
*
* Receiver FIFO Byte Status Register Bit Definition
* @{
*/
#define XUARTPS_RXBS_BYTE3_BRKE 0x00000800U /**< Byte3 Break Error */
#define XUARTPS_RXBS_BYTE3_FRME 0x00000400U /**< Byte3 Frame Error */
#define XUARTPS_RXBS_BYTE3_PARE 0x00000200U /**< Byte3 Parity Error */
#define XUARTPS_RXBS_BYTE2_BRKE 0x00000100U /**< Byte2 Break Error */
#define XUARTPS_RXBS_BYTE2_FRME 0x00000080U /**< Byte2 Frame Error */
#define XUARTPS_RXBS_BYTE2_PARE 0x00000040U /**< Byte2 Parity Error */
#define XUARTPS_RXBS_BYTE1_BRKE 0x00000020U /**< Byte1 Break Error */
#define XUARTPS_RXBS_BYTE1_FRME 0x00000010U /**< Byte1 Frame Error */
#define XUARTPS_RXBS_BYTE1_PARE 0x00000008U /**< Byte1 Parity Error */
#define XUARTPS_RXBS_BYTE0_BRKE 0x00000004U /**< Byte0 Break Error */
#define XUARTPS_RXBS_BYTE0_FRME 0x00000002U /**< Byte0 Frame Error */
#define XUARTPS_RXBS_BYTE0_PARE 0x00000001U /**< Byte0 Parity Error */
#define XUARTPS_RXBS_MASK 0x00000007U /**< 3 bit RX byte status mask */
/* @} */
/*
* Defines for backwards compatibility, will be removed
* in the next version of the driver
*/
#define XUARTPS_MEDEMSR_DCDX XUARTPS_MODEMSR_DDCD
#define XUARTPS_MEDEMSR_RIX XUARTPS_MODEMSR_TERI
#define XUARTPS_MEDEMSR_DSRX XUARTPS_MODEMSR_DDSR
#define XUARTPS_MEDEMSR_CTSX XUARTPS_MODEMSR_DCTS
#endif /* __ZYNQMP_UART_H__ */

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 752 KiB

View File

@ -0,0 +1,337 @@
#ifndef RT_CONFIG_H__
#define RT_CONFIG_H__
/* Automatically generated file; DO NOT EDIT. */
/* RT-Thread Project Configuration */
/* RT-Thread Kernel */
#define RT_NAME_MAX 16
#define RT_CPUS_NR 4
#define RT_ALIGN_SIZE 8
#define RT_THREAD_PRIORITY_32
#define RT_THREAD_PRIORITY_MAX 32
#define RT_TICK_PER_SECOND 100
#define RT_USING_OVERFLOW_CHECK
#define RT_USING_HOOK
#define RT_HOOK_USING_FUNC_PTR
#define RT_USING_IDLE_HOOK
#define RT_IDLE_HOOK_LIST_SIZE 4
#define IDLE_THREAD_STACK_SIZE 8192
#define RT_USING_TIMER_SOFT
#define RT_TIMER_THREAD_PRIO 4
#define RT_TIMER_THREAD_STACK_SIZE 8192
/* kservice optimization */
#define RT_KSERVICE_USING_STDLIB
#define RT_KPRINTF_USING_LONGLONG
#define RT_USING_DEBUG
#define RT_DEBUGING_COLOR
#define RT_DEBUGING_CONTEXT
/* Inter-Thread communication */
#define RT_USING_SEMAPHORE
#define RT_USING_MUTEX
#define RT_USING_EVENT
#define RT_USING_MAILBOX
#define RT_USING_MESSAGEQUEUE
/* Memory Management */
#define RT_PAGE_MAX_ORDER 11
#define RT_USING_MEMPOOL
#define RT_USING_SMALL_MEM
#define RT_USING_MEMHEAP
#define RT_MEMHEAP_FAST_MODE
#define RT_USING_MEMHEAP_AS_HEAP
#define RT_USING_MEMHEAP_AUTO_BINDING
#define RT_USING_MEMTRACE
#define RT_USING_HEAP
#define RT_USING_DEVICE
#define RT_USING_DEVICE_OPS
#define RT_USING_INTERRUPT_INFO
#define RT_USING_SCHED_THREAD_CTX
#define RT_USING_CONSOLE
#define RT_CONSOLEBUF_SIZE 256
#define RT_CONSOLE_DEVICE_NAME "uart0"
#define RT_VER_NUM 0x50100
#define RT_USING_STDC_ATOMIC
#define RT_BACKTRACE_LEVEL_MAX_NR 32
/* AArch64 Architecture Configuration */
#define ARCH_TEXT_OFFSET 0x200000
#define ARCH_RAM_OFFSET 0x0
#define ARCH_SECONDARY_CPU_STACK_SIZE 4096
#define ARCH_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define ARCH_CPU_64BIT
#define RT_USING_CACHE
#define RT_USING_CPU_FFS
#define ARCH_MM_MMU
#define ARCH_ARM
#define ARCH_ARM_MMU
#define ARCH_ARMV8
/* RT-Thread Components */
#define RT_USING_COMPONENTS_INIT
#define RT_USING_USER_MAIN
#define RT_MAIN_THREAD_STACK_SIZE 8192
#define RT_MAIN_THREAD_PRIORITY 10
#define RT_USING_MSH
#define RT_USING_FINSH
#define FINSH_USING_MSH
#define FINSH_THREAD_NAME "tshell"
#define FINSH_THREAD_PRIORITY 20
#define FINSH_THREAD_STACK_SIZE 4096
#define FINSH_USING_HISTORY
#define FINSH_HISTORY_LINES 10
#define FINSH_USING_SYMTAB
#define FINSH_CMD_SIZE 256
#define MSH_USING_BUILT_IN_COMMANDS
#define FINSH_USING_DESCRIPTION
#define FINSH_ARG_MAX 10
#define FINSH_USING_OPTION_COMPLETION
/* DFS: device virtual file system */
#define RT_USING_DFS
#define DFS_USING_POSIX
#define DFS_USING_WORKDIR
#define DFS_FD_MAX 32
#define RT_USING_DFS_V2
#define RT_USING_DFS_ELMFAT
/* elm-chan's FatFs, Generic FAT Filesystem Module */
#define RT_DFS_ELM_CODE_PAGE 437
#define RT_DFS_ELM_WORD_ACCESS
#define RT_DFS_ELM_USE_LFN_3
#define RT_DFS_ELM_USE_LFN 3
#define RT_DFS_ELM_LFN_UNICODE_0
#define RT_DFS_ELM_LFN_UNICODE 0
#define RT_DFS_ELM_MAX_LFN 255
#define RT_DFS_ELM_DRIVES 2
#define RT_DFS_ELM_MAX_SECTOR_SIZE 512
#define RT_DFS_ELM_REENTRANT
#define RT_DFS_ELM_MUTEX_TIMEOUT 3000
#define RT_USING_DFS_DEVFS
#define RT_USING_DFS_ROMFS
/* Device Drivers */
#define RT_USING_DEVICE_IPC
#define RT_UNAMED_PIPE_NUMBER 64
#define RT_USING_SYSTEM_WORKQUEUE
#define RT_SYSTEM_WORKQUEUE_STACKSIZE 8192
#define RT_SYSTEM_WORKQUEUE_PRIORITY 23
#define RT_USING_SERIAL
#define RT_USING_SERIAL_V1
#define RT_SERIAL_USING_DMA
#define RT_SERIAL_RB_BUFSZ 256
#define RT_USING_NULL
#define RT_USING_ZERO
#define RT_USING_RANDOM
#define RT_USING_PM
#define PM_TICKLESS_THRESHOLD_TIME 2
#define RT_USING_RTC
#define RT_USING_SOFT_RTC
#define RT_USING_DEV_BUS
#define RT_USING_VIRTIO
#define RT_USING_VIRTIO10
#define RT_USING_VIRTIO_MMIO_ALIGN
#define RT_USING_VIRTIO_BLK
#define RT_USING_VIRTIO_CONSOLE
#define RT_USING_VIRTIO_CONSOLE_PORT_MAX_NR 4
#define RT_USING_VIRTIO_GPU
#define RT_USING_VIRTIO_INPUT
#define RT_USING_PIN
#define RT_USING_KTIME
/* Using USB */
/* C/C++ and POSIX layer */
/* ISO-ANSI C layer */
/* Timezone and Daylight Saving Time */
#define RT_LIBC_USING_LIGHT_TZ_DST
#define RT_LIBC_TZ_DEFAULT_HOUR 8
#define RT_LIBC_TZ_DEFAULT_MIN 0
#define RT_LIBC_TZ_DEFAULT_SEC 0
/* POSIX (Portable Operating System Interface) layer */
#define RT_USING_POSIX_FS
#define RT_USING_POSIX_DEVIO
#define RT_USING_POSIX_STDIO
#define RT_USING_POSIX_POLL
#define RT_USING_POSIX_SELECT
#define RT_USING_POSIX_TERMIOS
#define RT_USING_POSIX_DELAY
#define RT_USING_POSIX_CLOCK
#define RT_USING_POSIX_TIMER
/* Interprocess Communication (IPC) */
#define RT_USING_POSIX_PIPE
#define RT_USING_POSIX_PIPE_SIZE 512
/* Socket is in the 'Network' category */
/* Network */
/* Memory protection */
/* Utilities */
#define RT_USING_RESOURCE_ID
#define RT_USING_ADT
#define RT_USING_ADT_AVL
#define RT_USING_ADT_BITMAP
#define RT_USING_ADT_HASHMAP
#define RT_USING_ADT_REF
/* RT-Thread Utestcases */
/* RT-Thread online packages */
/* IoT - internet of things */
/* Wi-Fi */
/* Marvell WiFi */
/* Wiced WiFi */
/* CYW43012 WiFi */
/* BL808 WiFi */
/* CYW43439 WiFi */
/* IoT Cloud */
/* security packages */
/* language packages */
/* JSON: JavaScript Object Notation, a lightweight data-interchange format */
/* XML: Extensible Markup Language */
/* multimedia packages */
/* LVGL: powerful and easy-to-use embedded GUI library */
/* u8g2: a monochrome graphic library */
/* tools packages */
/* system packages */
/* enhanced kernel services */
/* acceleration: Assembly language or algorithmic acceleration packages */
/* CMSIS: ARM Cortex-M Microcontroller Software Interface Standard */
/* Micrium: Micrium software products porting for RT-Thread */
/* peripheral libraries and drivers */
/* sensors drivers */
/* touch drivers */
/* Kendryte SDK */
/* AI packages */
/* Signal Processing and Control Algorithm Packages */
/* miscellaneous packages */
/* project laboratory */
/* samples: kernel and components samples */
/* entertainment: terminal games and other interesting software packages */
/* Arduino libraries */
/* Projects and Demos */
/* Sensors */
/* Display */
/* Timing */
/* Data Processing */
/* Data Storage */
/* Communication */
/* Device Control */
/* Other */
/* Signal IO */
/* Uncategorized */
#define SOC_ZYNQMP_AARCH64
/* Hardware Drivers Config */
#define BSP_SUPPORT_FPU
#define BSP_USING_UART
#define BSP_USING_UART0
#define BSP_USING_GIC
#define BSP_USING_GICV2
#endif

View File

@ -0,0 +1,47 @@
import os
# toolchains options
ARCH ='aarch64'
CPU ='cortex-a'
CROSS_TOOL = 'gcc'
PLATFORM = 'gcc'
EXEC_PATH = os.getenv('RTT_EXEC_PATH') or '/usr/bin'
BUILD = 'debug'
if PLATFORM == 'gcc':
# toolchains
PREFIX = os.getenv('RTT_CC_PREFIX') or 'aarch64-none-elf-'
CC = PREFIX + 'gcc'
CXX = PREFIX + 'g++'
CPP = PREFIX + 'cpp'
AS = PREFIX + 'gcc'
AR = PREFIX + 'ar'
LINK = PREFIX + 'gcc'
TARGET_EXT = 'elf'
SIZE = PREFIX + 'size'
OBJDUMP = PREFIX + 'objdump'
OBJCPY = PREFIX + 'objcopy'
STRIP = PREFIX + 'strip'
CFPFLAGS = ' '
AFPFLAGS = ' '
DEVICE = ' -march=armv8-a -mtune=cortex-a53 -ftree-vectorize -ffast-math -funwind-tables -fno-strict-aliasing'
CPPFLAGS= ' -E -P -x assembler-with-cpp'
CXXFLAGS= DEVICE + CFPFLAGS + ' -Wall -fdiagnostics-color=always'
CFLAGS = DEVICE + CFPFLAGS + ' -Wall -Wno-cpp -std=gnu99 -fdiagnostics-color=always'
AFLAGS = ' -c' + AFPFLAGS + ' -x assembler-with-cpp'
LFLAGS = DEVICE + ' -Wl,--gc-sections,-Map=rtthread.map,-cref,-u,system_vectors -T link.lds' + ' -lsupc++ -lgcc -static'
CPATH = ''
LPATH = ''
if BUILD == 'debug':
CFLAGS += ' -O0 -gdwarf-2'
CXXFLAGS += ' -O0 -gdwarf-2'
AFLAGS += ' -gdwarf-2'
else:
CFLAGS += ' -Os'
CXXFLAGS += ' -Os'
CXXFLAGS += ' -Woverloaded-virtual -fno-exceptions -fno-rtti'
DUMP_ACTION = OBJDUMP + ' -D -S $TARGET > rtt.asm\n'
POST_ACTION = OBJCPY + ' -O binary $TARGET rtthread.bin\n' + SIZE + ' $TARGET \n'