Merge pull request #1407 from aozima/pulls

update enc28j60 driver: ensure enable PHY link changed interrupt.
This commit is contained in:
Bernard Xiong 2018-05-05 14:34:52 +08:00 committed by GitHub
commit 290b2fa98e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 230 additions and 222 deletions

View File

@ -5,40 +5,40 @@
#define ETH_TX_DUMP #define ETH_TX_DUMP
#ifdef NET_TRACE #ifdef NET_TRACE
#define NET_DEBUG rt_kprintf #define NET_DEBUG rt_kprintf
#else #else
#define NET_DEBUG(...) #define NET_DEBUG(...)
#endif /* #ifdef NET_TRACE */ #endif /* #ifdef NET_TRACE */
struct enc28j60_tx_list_typedef struct enc28j60_tx_list_typedef
{ {
struct enc28j60_tx_list_typedef * prev; struct enc28j60_tx_list_typedef *prev;
struct enc28j60_tx_list_typedef * next; struct enc28j60_tx_list_typedef *next;
rt_uint32_t addr; /* pkt addr in buffer */ rt_uint32_t addr; /* pkt addr in buffer */
rt_uint32_t len; /* pkt len */ rt_uint32_t len; /* pkt len */
volatile rt_bool_t free; /* 0:busy, 1:free */ volatile rt_bool_t free; /* 0:busy, 1:free */
}; };
static struct enc28j60_tx_list_typedef enc28j60_tx_list[2]; static struct enc28j60_tx_list_typedef enc28j60_tx_list[2];
static volatile struct enc28j60_tx_list_typedef * tx_current; static volatile struct enc28j60_tx_list_typedef *tx_current;
static volatile struct enc28j60_tx_list_typedef * tx_ack; static volatile struct enc28j60_tx_list_typedef *tx_ack;
static struct rt_event tx_event; static struct rt_event tx_event;
/* private enc28j60 define */ /* private enc28j60 define */
/* enc28j60 spi interface function */ /* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address); static uint8_t spi_read_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address);
static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data); static void spi_write_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address, uint8_t data);
static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address); static uint8_t spi_read(struct rt_spi_device *spi_device, uint8_t address);
static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data); static void spi_write(struct rt_spi_device *spi_device, rt_uint8_t address, rt_uint8_t data);
static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk); static void enc28j60_clkout(struct rt_spi_device *spi_device, rt_uint8_t clk);
static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address); static void enc28j60_set_bank(struct rt_spi_device *spi_device, uint8_t address);
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device); static uint32_t enc28j60_interrupt_disable(struct rt_spi_device *spi_device);
static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level); static void enc28j60_interrupt_enable(struct rt_spi_device *spi_device, uint32_t level);
static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address); static uint16_t enc28j60_phy_read(struct rt_spi_device *spi_device, rt_uint8_t address);
static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data); static void enc28j60_phy_write(struct rt_spi_device *spi_device, rt_uint8_t address, uint16_t data);
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device); static rt_bool_t enc28j60_check_link_status(struct rt_spi_device *spi_device);
#define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER); #define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER);
#define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock); #define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock);
@ -52,11 +52,11 @@ static void _delay_us(uint32_t us)
{ {
volatile uint32_t len; volatile uint32_t len;
for (; us > 0; us --) for (; us > 0; us --)
for (len = 0; len < 20; len++ ); for (len = 0; len < 20; len++);
} }
/* enc28j60 spi interface function */ /* enc28j60 spi interface function */
static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address) static uint8_t spi_read_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address)
{ {
uint8_t send_buffer[2]; uint8_t send_buffer[2];
uint8_t recv_buffer[1]; uint8_t recv_buffer[1];
@ -66,7 +66,7 @@ static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_
send_buffer[1] = 0xFF; send_buffer[1] = 0xFF;
/* do dummy read if needed (for mac and mii, see datasheet page 29). */ /* do dummy read if needed (for mac and mii, see datasheet page 29). */
if(address & 0x80) if (address & 0x80)
{ {
send_size = 2; send_size = 2;
} }
@ -75,7 +75,7 @@ static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_
return (recv_buffer[0]); return (recv_buffer[0]);
} }
static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data) static void spi_write_op(struct rt_spi_device *spi_device, uint8_t op, uint8_t address, uint8_t data)
{ {
uint32_t level; uint32_t level;
uint8_t buffer[2]; uint8_t buffer[2];
@ -90,25 +90,25 @@ static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t
} }
/* enc28j60 function */ /* enc28j60 function */
static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk) static void enc28j60_clkout(struct rt_spi_device *spi_device, rt_uint8_t clk)
{ {
/* setup clkout: 2 is 12.5MHz: */ /* setup clkout: 2 is 12.5MHz: */
spi_write(spi_device, ECOCON, clk & 0x7); spi_write(spi_device, ECOCON, clk & 0x7);
} }
static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address) static void enc28j60_set_bank(struct rt_spi_device *spi_device, uint8_t address)
{ {
/* set the bank (if needed) .*/ /* set the bank (if needed) .*/
if((address & BANK_MASK) != Enc28j60Bank) if ((address & BANK_MASK) != Enc28j60Bank)
{ {
/* set the bank. */ /* set the bank. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0)); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1 | ECON1_BSEL0));
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK) >> 5);
Enc28j60Bank = (address & BANK_MASK); Enc28j60Bank = (address & BANK_MASK);
} }
} }
static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address) static uint8_t spi_read(struct rt_spi_device *spi_device, uint8_t address)
{ {
/* set the bank. */ /* set the bank. */
enc28j60_set_bank(spi_device, address); enc28j60_set_bank(spi_device, address);
@ -116,7 +116,7 @@ static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address)
return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address); return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address);
} }
static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data) static void spi_write(struct rt_spi_device *spi_device, rt_uint8_t address, rt_uint8_t data)
{ {
/* set the bank. */ /* set the bank. */
enc28j60_set_bank(spi_device, address); enc28j60_set_bank(spi_device, address);
@ -124,7 +124,7 @@ static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_
spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data); spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data);
} }
static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address) static uint16_t enc28j60_phy_read(struct rt_spi_device *spi_device, rt_uint8_t address)
{ {
uint16_t value; uint16_t value;
@ -135,33 +135,33 @@ static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t
_delay_us(15); _delay_us(15);
/* wait until the PHY read completes. */ /* wait until the PHY read completes. */
while(spi_read(spi_device, MISTAT) & MISTAT_BUSY); while (spi_read(spi_device, MISTAT) & MISTAT_BUSY);
/* reset reading bit */ /* reset reading bit */
spi_write(spi_device, MICMD, 0x00); spi_write(spi_device, MICMD, 0x00);
value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH)<<8; value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH) << 8;
return (value); return (value);
} }
static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data) static void enc28j60_phy_write(struct rt_spi_device *spi_device, rt_uint8_t address, uint16_t data)
{ {
/* set the PHY register address. */ /* set the PHY register address. */
spi_write(spi_device, MIREGADR, address); spi_write(spi_device, MIREGADR, address);
/* write the PHY data. */ /* write the PHY data. */
spi_write(spi_device, MIWRL, data); spi_write(spi_device, MIWRL, data);
spi_write(spi_device, MIWRH, data>>8); spi_write(spi_device, MIWRH, data >> 8);
/* wait until the PHY write completes. */ /* wait until the PHY write completes. */
while(spi_read(spi_device, MISTAT) & MISTAT_BUSY) while (spi_read(spi_device, MISTAT) & MISTAT_BUSY)
{ {
_delay_us(15); _delay_us(15);
} }
} }
static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device) static uint32_t enc28j60_interrupt_disable(struct rt_spi_device *spi_device)
{ {
uint32_t level; uint32_t level;
@ -176,7 +176,7 @@ static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device)
return level; return level;
} }
static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level) static void enc28j60_interrupt_enable(struct rt_spi_device *spi_device, uint32_t level)
{ {
/* switch to bank 0 */ /* switch to bank 0 */
enc28j60_set_bank(spi_device, EIE); enc28j60_set_bank(spi_device, EIE);
@ -186,7 +186,7 @@ static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_
/* /*
* Access the PHY to determine link status * Access the PHY to determine link status
*/ */
static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device) static rt_bool_t enc28j60_check_link_status(struct rt_spi_device *spi_device)
{ {
uint16_t reg; uint16_t reg;
int duplex; int duplex;
@ -235,8 +235,8 @@ static void _tx_chain_init(void)
/* initialize the interface */ /* initialize the interface */
static rt_err_t enc28j60_init(rt_device_t dev) static rt_err_t enc28j60_init(rt_device_t dev)
{ {
struct net_device * enc28j60 = (struct net_device *)dev; struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device; struct rt_spi_device *spi_device = enc28j60->spi_device;
enc28j60_lock(dev); enc28j60_lock(dev);
@ -244,29 +244,29 @@ static rt_err_t enc28j60_init(rt_device_t dev)
// perform system reset // perform system reset
spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */ rt_thread_delay(RT_TICK_PER_SECOND / 50); /* delay 20ms */
NextPacketPtr = RXSTART_INIT; NextPacketPtr = RXSTART_INIT;
// Rx start // Rx start
spi_write(spi_device, ERXSTL, RXSTART_INIT&0xFF); spi_write(spi_device, ERXSTL, RXSTART_INIT & 0xFF);
spi_write(spi_device, ERXSTH, RXSTART_INIT>>8); spi_write(spi_device, ERXSTH, RXSTART_INIT >> 8);
// set receive pointer address // set receive pointer address
spi_write(spi_device, ERXRDPTL, RXSTOP_INIT&0xFF); spi_write(spi_device, ERXRDPTL, RXSTOP_INIT & 0xFF);
spi_write(spi_device, ERXRDPTH, RXSTOP_INIT>>8); spi_write(spi_device, ERXRDPTH, RXSTOP_INIT >> 8);
// RX end // RX end
spi_write(spi_device, ERXNDL, RXSTOP_INIT&0xFF); spi_write(spi_device, ERXNDL, RXSTOP_INIT & 0xFF);
spi_write(spi_device, ERXNDH, RXSTOP_INIT>>8); spi_write(spi_device, ERXNDH, RXSTOP_INIT >> 8);
// TX start // TX start
spi_write(spi_device, ETXSTL, TXSTART_INIT&0xFF); spi_write(spi_device, ETXSTL, TXSTART_INIT & 0xFF);
spi_write(spi_device, ETXSTH, TXSTART_INIT>>8); spi_write(spi_device, ETXSTH, TXSTART_INIT >> 8);
// set transmission pointer address // set transmission pointer address
spi_write(spi_device, EWRPTL, TXSTART_INIT&0xFF); spi_write(spi_device, EWRPTL, TXSTART_INIT & 0xFF);
spi_write(spi_device, EWRPTH, TXSTART_INIT>>8); spi_write(spi_device, EWRPTH, TXSTART_INIT >> 8);
// TX end // TX end
spi_write(spi_device, ETXNDL, TXSTOP_INIT&0xFF); spi_write(spi_device, ETXNDL, TXSTOP_INIT & 0xFF);
spi_write(spi_device, ETXNDH, TXSTOP_INIT>>8); spi_write(spi_device, ETXNDH, TXSTOP_INIT >> 8);
// do bank 1 stuff, packet filter: // do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets // For broadcast packets we allow only ARP packtets
@ -278,11 +278,11 @@ static rt_err_t enc28j60_init(rt_device_t dev)
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9 // 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111 // in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30 // This is hex 303F->EPMM0=0x3f,EPMM1=0x30
spi_write(spi_device, ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN); spi_write(spi_device, ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
// do bank 2 stuff // do bank 2 stuff
// enable MAC receive // enable MAC receive
spi_write(spi_device, MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS); spi_write(spi_device, MACON1, MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
// enable automatic padding to 60bytes and CRC operations // enable automatic padding to 60bytes and CRC operations
// spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN); // spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
@ -301,8 +301,8 @@ static rt_err_t enc28j60_init(rt_device_t dev)
// Set the maximum packet size which the controller will accept // Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN: // Do not send packets longer than MAX_FRAMELEN:
spi_write(spi_device, MAMXFLL, MAX_FRAMELEN&0xFF); spi_write(spi_device, MAMXFLL, MAX_FRAMELEN & 0xFF);
spi_write(spi_device, MAMXFLH, MAX_FRAMELEN>>8); spi_write(spi_device, MAMXFLH, MAX_FRAMELEN >> 8);
// do bank 3 stuff // do bank 3 stuff
// write MAC address // write MAC address
@ -321,6 +321,8 @@ static rt_err_t enc28j60_init(rt_device_t dev)
enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex
// no loopback of transmitted frames // no loopback of transmitted frames
enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS); enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS);
/* enable PHY link changed interrupt. */
enc28j60_phy_write(spi_device, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
enc28j60_set_bank(spi_device, ECON2); enc28j60_set_bank(spi_device, ECON2);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC);
@ -335,8 +337,8 @@ static rt_err_t enc28j60_init(rt_device_t dev)
/* clock out */ /* clock out */
enc28j60_clkout(spi_device, 2); enc28j60_clkout(spi_device, 2);
enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476 enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476
rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */ rt_thread_delay(RT_TICK_PER_SECOND / 50); /* delay 20ms */
enc28j60_unlock(dev); enc28j60_unlock(dev);
return RT_EOK; return RT_EOK;
@ -345,12 +347,12 @@ static rt_err_t enc28j60_init(rt_device_t dev)
/* control the interface */ /* control the interface */
static rt_err_t enc28j60_control(rt_device_t dev, int cmd, void *args) static rt_err_t enc28j60_control(rt_device_t dev, int cmd, void *args)
{ {
struct net_device * enc28j60 = (struct net_device *)dev; struct net_device *enc28j60 = (struct net_device *)dev;
switch(cmd) switch (cmd)
{ {
case NIOCTL_GADDR: case NIOCTL_GADDR:
/* get mac address */ /* get mac address */
if(args) rt_memcpy(args, enc28j60->dev_addr, 6); if (args) rt_memcpy(args, enc28j60->dev_addr, 6);
else return -RT_ERROR; else return -RT_ERROR;
break; break;
@ -374,14 +376,14 @@ static rt_err_t enc28j60_close(rt_device_t dev)
} }
/* Read */ /* Read */
static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{ {
rt_set_errno(-RT_ENOSYS); rt_set_errno(-RT_ENOSYS);
return RT_EOK; return RT_EOK;
} }
/* Write */ /* Write */
static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{ {
rt_set_errno(-RT_ENOSYS); rt_set_errno(-RT_ENOSYS);
return 0; return 0;
@ -389,22 +391,22 @@ static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffe
/* ethernet device interface */ /* ethernet device interface */
/* Transmit packet. */ /* Transmit packet. */
static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p) static rt_err_t enc28j60_tx(rt_device_t dev, struct pbuf *p)
{ {
struct net_device * enc28j60 = (struct net_device *)dev; struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device; struct rt_spi_device *spi_device = enc28j60->spi_device;
struct pbuf* q; struct pbuf *q;
rt_uint32_t level; rt_uint32_t level;
#ifdef ETH_TX_DUMP #ifdef ETH_TX_DUMP
rt_size_t dump_count = 0; rt_size_t dump_count = 0;
rt_uint8_t * dump_ptr; rt_uint8_t *dump_ptr;
rt_size_t dump_i; rt_size_t dump_i;
#endif #endif
if(tx_current->free == RT_FALSE) if (tx_current->free == RT_FALSE)
{ {
NET_DEBUG("[Tx] no empty buffer!\r\n"); NET_DEBUG("[Tx] no empty buffer!\r\n");
while(tx_current->free == RT_FALSE) while (tx_current->free == RT_FALSE)
{ {
rt_err_t result; rt_err_t result;
rt_uint32_t recved; rt_uint32_t recved;
@ -426,8 +428,8 @@ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
// Set the write pointer to start of transmit buffer area // Set the write pointer to start of transmit buffer area
// spi_write(EWRPTL, TXSTART_INIT&0xFF); // spi_write(EWRPTL, TXSTART_INIT&0xFF);
// spi_write(EWRPTH, TXSTART_INIT>>8); // spi_write(EWRPTH, TXSTART_INIT>>8);
spi_write(spi_device, EWRPTL, (tx_current->addr)&0xFF); spi_write(spi_device, EWRPTL, (tx_current->addr) & 0xFF);
spi_write(spi_device, EWRPTH, (tx_current->addr)>>8); spi_write(spi_device, EWRPTH, (tx_current->addr) >> 8);
// Set the TXND pointer to correspond to the packet size given // Set the TXND pointer to correspond to the packet size given
tx_current->len = p->tot_len; tx_current->len = p->tot_len;
// spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF); // spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
@ -445,14 +447,14 @@ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len); rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP #ifdef ETH_RX_DUMP
dump_ptr = q->payload; dump_ptr = q->payload;
for(dump_i=0; dump_i<q->len; dump_i++) for (dump_i = 0; dump_i < q->len; dump_i++)
{ {
NET_DEBUG("%02x ", *dump_ptr); NET_DEBUG("%02x ", *dump_ptr);
if( ((dump_count+1)%8) == 0 ) if (((dump_count + 1) % 8) == 0)
{ {
NET_DEBUG(" "); NET_DEBUG(" ");
} }
if( ((dump_count+1)%16) == 0 ) if (((dump_count + 1) % 16) == 0)
{ {
NET_DEBUG("\r\n"); NET_DEBUG("\r\n");
} }
@ -466,15 +468,15 @@ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
#endif #endif
// send the contents of the transmit buffer onto the network // send the contents of the transmit buffer onto the network
if(tx_current == tx_ack) if (tx_current == tx_ack)
{ {
NET_DEBUG("[Tx] stop, restart!\r\n"); NET_DEBUG("[Tx] stop, restart!\r\n");
// TX start // TX start
spi_write(spi_device, ETXSTL, (tx_current->addr)&0xFF); spi_write(spi_device, ETXSTL, (tx_current->addr) & 0xFF);
spi_write(spi_device, ETXSTH, (tx_current->addr)>>8); spi_write(spi_device, ETXSTH, (tx_current->addr) >> 8);
// TX end // TX end
spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len)&0xFF); spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len) & 0xFF);
spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len)>>8); spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len) >> 8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
} }
@ -487,7 +489,7 @@ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
tx_current = tx_current->next; tx_current = tx_current->next;
/* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */ /* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */
if( (spi_read(spi_device, EIR) & EIR_TXERIF) ) if ((spi_read(spi_device, EIR) & EIR_TXERIF))
{ {
spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
} }
@ -503,9 +505,9 @@ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
/* recv packet. */ /* recv packet. */
static struct pbuf *enc28j60_rx(rt_device_t dev) static struct pbuf *enc28j60_rx(rt_device_t dev)
{ {
struct net_device * enc28j60 = (struct net_device *)dev; struct net_device *enc28j60 = (struct net_device *)dev;
struct rt_spi_device * spi_device = enc28j60->spi_device; struct rt_spi_device *spi_device = enc28j60->spi_device;
struct pbuf* p = RT_NULL; struct pbuf *p = RT_NULL;
uint8_t eir, eir_clr; uint8_t eir, eir_clr;
uint32_t pk_counter; uint32_t pk_counter;
@ -521,7 +523,7 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
/* get EIR */ /* get EIR */
eir = spi_read(spi_device, EIR); eir = spi_read(spi_device, EIR);
while(eir & ~EIR_PKTIF) while (eir & ~EIR_PKTIF)
{ {
eir_clr = 0; eir_clr = 0;
@ -549,7 +551,7 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
} }
/* LINK changed handler */ /* LINK changed handler */
if ( eir & EIR_LINKIF) if (eir & EIR_LINKIF)
{ {
rt_bool_t link_status; rt_bool_t link_status;
@ -573,15 +575,15 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
tx_ack->free = RT_TRUE; tx_ack->free = RT_TRUE;
tx_ack = tx_ack->next; tx_ack = tx_ack->next;
if(tx_ack->free == RT_FALSE) if (tx_ack->free == RT_FALSE)
{ {
NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n"); NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n");
// TX start // TX start
spi_write(spi_device, ETXSTL, (tx_ack->addr)&0xFF); spi_write(spi_device, ETXSTL, (tx_ack->addr) & 0xFF);
spi_write(spi_device, ETXSTH, (tx_ack->addr)>>8); spi_write(spi_device, ETXSTH, (tx_ack->addr) >> 8);
// TX end // TX end
spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len)&0xFF); spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len) & 0xFF);
spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len)>>8); spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len) >> 8);
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
} }
@ -595,7 +597,7 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
} }
/* wake up handler */ /* wake up handler */
if ( eir & EIR_WOLIF) if (eir & EIR_WOLIF)
{ {
NET_DEBUG("EIR_WOLIF\r\n"); NET_DEBUG("EIR_WOLIF\r\n");
eir_clr |= EIR_WOLIF; eir_clr |= EIR_WOLIF;
@ -644,33 +646,33 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
/* read pkt */ /* read pkt */
pk_counter = spi_read(spi_device, EPKTCNT); pk_counter = spi_read(spi_device, EPKTCNT);
if(pk_counter) if (pk_counter)
{ {
/* Set the read pointer to the start of the received packet. */ /* Set the read pointer to the start of the received packet. */
spi_write(spi_device, ERDPTL, (NextPacketPtr)); spi_write(spi_device, ERDPTL, (NextPacketPtr));
spi_write(spi_device, ERDPTH, (NextPacketPtr)>>8); spi_write(spi_device, ERDPTH, (NextPacketPtr) >> 8);
/* read the next packet pointer. */ /* read the next packet pointer. */
NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0) << 8;
/* read the packet length (see datasheet page 43). */ /* read the packet length (see datasheet page 43). */
len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54 len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54
len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; //5554 len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0) << 8; //5554
len-=4; //remove the CRC count len -= 4; //remove the CRC count
// read the receive status (see datasheet page 43) // read the receive status (see datasheet page 43)
rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0);
rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0))<<8; rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)) << 8;
// check CRC and symbol errors (see datasheet page 44, table 7-3): // check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not // The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this. // need to check this.
if ((rxstat & 0x80)==0) if ((rxstat & 0x80) == 0)
{ {
// invalid // invalid
len=0; len = 0;
} }
else else
{ {
@ -678,27 +680,27 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
p = pbuf_alloc(PBUF_LINK, len, PBUF_POOL); p = pbuf_alloc(PBUF_LINK, len, PBUF_POOL);
if (p != RT_NULL) if (p != RT_NULL)
{ {
struct pbuf* q; struct pbuf *q;
#ifdef ETH_RX_DUMP #ifdef ETH_RX_DUMP
rt_size_t dump_count = 0; rt_size_t dump_count = 0;
rt_uint8_t * dump_ptr; rt_uint8_t *dump_ptr;
rt_size_t dump_i; rt_size_t dump_i;
NET_DEBUG("rx_dump, size:%d\r\n", len); NET_DEBUG("rx_dump, size:%d\r\n", len);
#endif #endif
for (q = p; q != RT_NULL; q= q->next) for (q = p; q != RT_NULL; q = q->next)
{ {
uint8_t cmd = ENC28J60_READ_BUF_MEM; uint8_t cmd = ENC28J60_READ_BUF_MEM;
rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len); rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len);
#ifdef ETH_RX_DUMP #ifdef ETH_RX_DUMP
dump_ptr = q->payload; dump_ptr = q->payload;
for(dump_i=0; dump_i<q->len; dump_i++) for (dump_i = 0; dump_i < q->len; dump_i++)
{ {
NET_DEBUG("%02x ", *dump_ptr); NET_DEBUG("%02x ", *dump_ptr);
if( ((dump_count+1)%8) == 0 ) if (((dump_count + 1) % 8) == 0)
{ {
NET_DEBUG(" "); NET_DEBUG(" ");
} }
if( ((dump_count+1)%16) == 0 ) if (((dump_count + 1) % 16) == 0)
{ {
NET_DEBUG("\r\n"); NET_DEBUG("\r\n");
} }
@ -716,7 +718,7 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
/* Move the RX read pointer to the start of the next received packet. */ /* Move the RX read pointer to the start of the next received packet. */
/* This frees the memory we just read out. */ /* This frees the memory we just read out. */
spi_write(spi_device, ERXRDPTL, (NextPacketPtr)); spi_write(spi_device, ERXRDPTL, (NextPacketPtr));
spi_write(spi_device, ERXRDPTH, (NextPacketPtr)>>8); spi_write(spi_device, ERXRDPTH, (NextPacketPtr) >> 8);
/* decrement the packet counter indicate we are done with this packet. */ /* decrement the packet counter indicate we are done with this packet. */
spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
@ -739,12 +741,12 @@ static struct pbuf *enc28j60_rx(rt_device_t dev)
return p; return p;
} }
rt_err_t enc28j60_attach(const char * spi_device_name) rt_err_t enc28j60_attach(const char *spi_device_name)
{ {
struct rt_spi_device * spi_device; struct rt_spi_device *spi_device;
spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name); spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if(spi_device == RT_NULL) if (spi_device == RT_NULL)
{ {
NET_DEBUG("spi device %s not found!\r\n", spi_device_name); NET_DEBUG("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS; return -RT_ENOSYS;
@ -774,11 +776,11 @@ rt_err_t enc28j60_attach(const char * spi_device_name)
enc28j60_dev.emac_rev = spi_read(spi_device, EREVID); enc28j60_dev.emac_rev = spi_read(spi_device, EREVID);
value = enc28j60_phy_read(spi_device, PHHID2); value = enc28j60_phy_read(spi_device, PHHID2);
enc28j60_dev.phy_rev = value&0x0F; enc28j60_dev.phy_rev = value & 0x0F;
enc28j60_dev.phy_pn = (value>>4)&0x3F; enc28j60_dev.phy_pn = (value >> 4) & 0x3F;
enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value>>10)<<16))<<3; enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value >> 10) << 16)) << 3;
if(enc28j60_dev.phy_id != 0x00280418) if (enc28j60_dev.phy_id != 0x00280418)
{ {
NET_DEBUG("ENC28J60 PHY ID not correct!\r\n"); NET_DEBUG("ENC28J60 PHY ID not correct!\r\n");
NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev); NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev);
@ -825,7 +827,7 @@ rt_err_t enc28j60_attach(const char * spi_device_name)
*/ */
static void enc28j60(void) static void enc28j60(void)
{ {
struct rt_spi_device * spi_device = enc28j60_dev.spi_device; struct rt_spi_device *spi_device = enc28j60_dev.spi_device;
enc28j60_lock(&enc28j60_dev); enc28j60_lock(&enc28j60_dev);
rt_kprintf("-- enc28j60 registers:\n"); rt_kprintf("-- enc28j60 registers:\n");

View File

@ -121,112 +121,118 @@
#define PHLCON 0x14 #define PHLCON 0x14
// ENC28J60 ERXFCON Register Bit Definitions // ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80 #define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40 #define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20 #define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10 #define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08 #define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04 #define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02 #define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01 #define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions // ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80 #define EIE_INTIE 0x80
#define EIE_PKTIE 0x40 #define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20 #define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10 #define EIE_LINKIE 0x10
#define EIE_TXIE 0x08 #define EIE_TXIE 0x08
#define EIE_WOLIE 0x04 #define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02 #define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01 #define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions // ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40 #define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20 #define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10 #define EIR_LINKIF 0x10
#define EIR_TXIF 0x08 #define EIR_TXIF 0x08
#define EIR_WOLIF 0x04 #define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02 #define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01 #define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions // ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80 #define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10 #define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04 #define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02 #define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01 #define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions // ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80 #define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40 #define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20 #define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08 #define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions // ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80 #define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40 #define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20 #define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10 #define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08 #define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04 #define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02 #define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01 #define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions // ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10 #define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08 #define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04 #define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02 #define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01 #define MACON1_MARXEN 0x01
// ENC28J60 MACON2 Register Bit Definitions // ENC28J60 MACON2 Register Bit Definitions
#define MACON2_MARST 0x80 #define MACON2_MARST 0x80
#define MACON2_RNDRST 0x40 #define MACON2_RNDRST 0x40
#define MACON2_MARXRST 0x08 #define MACON2_MARXRST 0x08
#define MACON2_RFUNRST 0x04 #define MACON2_RFUNRST 0x04
#define MACON2_MATXRST 0x02 #define MACON2_MATXRST 0x02
#define MACON2_TFUNRST 0x01 #define MACON2_TFUNRST 0x01
// ENC28J60 MACON3 Register Bit Definitions // ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80 #define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40 #define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20 #define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10 #define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08 #define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04 #define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02 #define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01 #define MACON3_FULDPX 0x01
// ENC28J60 MACON4 Register Bit Definitions // ENC28J60 MACON4 Register Bit Definitions
#define MACON4_DEFER (1<<6) #define MACON4_DEFER (1<<6)
#define MACON4_BPEN (1<<5) #define MACON4_BPEN (1<<5)
#define MACON4_NOBKOFF (1<<4) #define MACON4_NOBKOFF (1<<4)
// ENC28J60 MICMD Register Bit Definitions // ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02 #define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01 #define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions // ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04 #define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02 #define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01 #define MISTAT_BUSY 0x01
// ENC28J60 PHY PHCON1 Register Bit Definitions // ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000 #define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000 #define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800 #define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100 #define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions // ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000 #define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800 #define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004 #define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002 #define PHSTAT1_JBSTAT 0x0002
/* ENC28J60 PHY PHSTAT2 Register Bit Definitions */ /* ENC28J60 PHY PHSTAT2 Register Bit Definitions */
#define PHSTAT2_TXSTAT (1 << 13) #define PHSTAT2_TXSTAT (1 << 13)
#define PHSTAT2_RXSTAT (1 << 12) #define PHSTAT2_RXSTAT (1 << 12)
#define PHSTAT2_COLSTAT (1 << 11) #define PHSTAT2_COLSTAT (1 << 11)
#define PHSTAT2_LSTAT (1 << 10) #define PHSTAT2_LSTAT (1 << 10)
#define PHSTAT2_DPXSTAT (1 << 9) #define PHSTAT2_DPXSTAT (1 << 9)
#define PHSTAT2_PLRITY (1 << 5) #define PHSTAT2_PLRITY (1 << 5)
// ENC28J60 PHY PHCON2 Register Bit Definitions // ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000 #define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000 #define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400 #define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100 #define PHCON2_HDLDIS 0x0100
/* ENC28J60 PHY PHIE Register Bit Definitions */
#define PHIE_PLNKIE (1 << 4)
#define PHIE_PGEIE (1 << 1)
/* ENC28J60 PHY PHIR Register Bit Definitions */
#define PHIR_PLNKIF (1 << 4)
#define PHIR_PGEIF (1 << 1)
// ENC28J60 Packet Control Byte Bit Definitions // ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08 #define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04 #define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02 #define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01 #define PKTCTRL_POVERRIDE 0x01
/* ENC28J60 Transmit Status Vector */ /* ENC28J60 Transmit Status Vector */
#define TSV_TXBYTECNT 0 #define TSV_TXBYTECNT 0
@ -290,40 +296,40 @@
#define MAX_TX_PACKAGE_SIZE (1536) #define MAX_TX_PACKAGE_SIZE (1536)
// start with recbuf at 0/ // start with recbuf at 0/
#define RXSTART_INIT 0x0 #define RXSTART_INIT 0x0
// receive buffer end // receive buffer end
#define RXSTOP_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2) - 1 #define RXSTOP_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2) - 1
// start TX buffer at 0x1FFF-0x0600, pace for one full ethernet frame (~1500 bytes) // start TX buffer at 0x1FFF-0x0600, pace for one full ethernet frame (~1500 bytes)
#define TXSTART_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2) #define TXSTART_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2)
// stp TX buffer at end of mem // stp TX buffer at end of mem
#define TXSTOP_INIT 0x1FFF #define TXSTOP_INIT 0x1FFF
// max frame length which the conroller will accept: // max frame length which the conroller will accept:
#define MAX_FRAMELEN 1518 #define MAX_FRAMELEN 1518
#define MAX_ADDR_LEN 6 #define MAX_ADDR_LEN 6
struct net_device struct net_device
{ {
/* inherit from ethernet device */ /* inherit from ethernet device */
struct eth_device parent; struct eth_device parent;
/* interface address info. */ /* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_uint8_t emac_rev; rt_uint8_t emac_rev;
rt_uint8_t phy_rev; rt_uint8_t phy_rev;
rt_uint8_t phy_pn; rt_uint8_t phy_pn;
rt_uint32_t phy_id; rt_uint32_t phy_id;
/* spi device */ /* spi device */
struct rt_spi_device * spi_device; struct rt_spi_device *spi_device;
struct rt_mutex lock; struct rt_mutex lock;
}; };
/* export function */ /* export function */
extern rt_err_t enc28j60_attach(const char * spi_device_name); extern rt_err_t enc28j60_attach(const char *spi_device_name);
extern void enc28j60_isr(void); extern void enc28j60_isr(void);
#endif // EN28J60_H_INCLUDED #endif // EN28J60_H_INCLUDED