[bsp][stm32]添加SDMMC驱动,以区分SDIO与SDMMC

This commit is contained in:
wdfk-prog 2023-03-26 21:35:17 +08:00 committed by Bernard Xiong
parent 3ea1ce9e46
commit 25bcb84756
3 changed files with 813 additions and 1 deletions

View File

@ -100,7 +100,10 @@ if GetDepend(['BSP_USING_WDT']):
src += ['drv_wdt.c']
if GetDepend(['BSP_USING_SDIO']):
src += ['drv_sdio.c']
if GetDepend('SOC_SERIES_STM32H7') or GetDepend('SOC_SERIES_STM32F7') or GetDepend('SOC_SERIES_STM32L4') or GetDepend('SOC_SERIES_STM32L5'):
src += ['drv_sdmmc.c']
else:
src += ['drv_sdio.c']
if GetDepend(['BSP_USING_USBD']):
src += ['drv_usbd.c']

View File

@ -0,0 +1,727 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-05-23 liuduanfei first version
* 2020-08-25 wanghaijing add sdmmmc2
* 2023-03-26 wdfk-prog Distinguish between SDMMC and SDIO drivers
*/
#include "board.h"
#ifdef RT_USING_SDIO
#if !defined(BSP_USING_SDIO1) && !defined(BSP_USING_SDIO2)
#error "Please define at least one BSP_USING_SDIOx"
#endif
#include "drv_sdmmc.h"
#define DBG_TAG "drv.sdmmc"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
static struct stm32_sdio_class sdio_obj;
static struct rt_mmcsd_host *host1;
static struct rt_mmcsd_host *host2;
#define SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS (1000000)
#define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&_sdio->mutex, RT_WAITING_FOREVER)
#define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&_sdio->mutex);
struct sdio_pkg
{
struct rt_mmcsd_cmd *cmd;
void *buff;
rt_uint32_t flag;
};
struct rthw_sdio
{
struct rt_mmcsd_host *host;
struct stm32_sdio_des sdio_des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
};
rt_align(SDIO_ALIGN_LEN)
static rt_uint8_t cache_buf[SDIO_BUFF_SIZE];
/**
* @brief This function get order from sdio.
* @param data
* @retval sdio order
*/
static int get_order(rt_uint32_t data)
{
int order = 0;
switch (data)
{
case 1:
order = 0;
break;
case 2:
order = 1;
break;
case 4:
order = 2;
break;
case 8:
order = 3;
break;
case 16:
order = 4;
break;
case 32:
order = 5;
break;
case 64:
order = 6;
break;
case 128:
order = 7;
break;
case 256:
order = 8;
break;
case 512:
order = 9;
break;
case 1024:
order = 10;
break;
case 2048:
order = 11;
break;
case 4096:
order = 12;
break;
case 8192:
order = 13;
break;
case 16384:
order = 14;
break;
default :
order = 0;
break;
}
return order;
}
/**
* @brief This function wait sdio cmd completed.
* @param sdio rthw_sdio
* @retval None
*/
static void rthw_sdio_wait_completed(struct rthw_sdio *sdio)
{
rt_uint32_t status;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
SD_TypeDef *hsd = sdio->sdio_des.hw_sdio.Instance;
if (rt_event_recv(&sdio->event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait cmd completed timeout");
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
/* Get Card Specific Data */
cmd->resp[0] = hsd->RESP1;
if (resp_type(cmd) == RESP_R2)
{
cmd->resp[1] = hsd->RESP2;
cmd->resp[2] = hsd->RESP3;
cmd->resp[3] = hsd->RESP4;
}
/* Check for error conditions */
if (status & SDIO_ERRORS)
{
if ((status & SDMMC_STA_CCRCFAIL) && (resp_type(cmd) & (RESP_R3 | RESP_R4)))
{
cmd->err = RT_EOK;
}
else
{
cmd->err = -RT_ERROR;
}
}
else
{
cmd->err = RT_EOK;
}
if (status & SDMMC_IT_CTIMEOUT)
{
cmd->err = -RT_ETIMEOUT;
}
if (status & SDMMC_IT_DCRCFAIL)
{
data->err = -RT_ERROR;
}
if (status & SDMMC_IT_DTIMEOUT)
{
data->err = -RT_ETIMEOUT;
}
if (cmd->err == RT_EOK)
{
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
LOG_D("err:0x%08x, %s%s%s%s%s%s%s cmd:%d arg:0x%08x rw:%c len:%d blksize:%d",
status,
status & HW_SDIO_IT_CCRCFAIL ? "CCRCFAIL " : "",
status & HW_SDIO_IT_DCRCFAIL ? "DCRCFAIL " : "",
status & HW_SDIO_IT_CTIMEOUT ? "CTIMEOUT " : "",
status & HW_SDIO_IT_DTIMEOUT ? "DTIMEOUT " : "",
status & HW_SDIO_IT_TXUNDERR ? "TXUNDERR " : "",
status & HW_SDIO_IT_RXOVERR ? "RXOVERR " : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg,
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
}
}
/**
* @brief This function send command.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
SD_TypeDef *hsd = sdio->sdio_des.hw_sdio.Instance;
rt_uint32_t reg_cmd;
rt_event_control(&sdio->event, RT_IPC_CMD_RESET, RT_NULL);
/* save pkg */
sdio->pkg = pkg;
LOG_D("CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d\n",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
/* open irq */
__HAL_SD_ENABLE_IT(&sdio->sdio_des.hw_sdio, SDIO_MASKR_ALL);
reg_cmd = cmd->cmd_code | SDMMC_CMD_CPSMEN;
/* data pre configuration */
if (data != RT_NULL)
{
SCB_CleanInvalidateDCache();
reg_cmd |= SDMMC_CMD_CMDTRANS;
__HAL_SD_DISABLE_IT(&sdio->sdio_des.hw_sdio, SDMMC_MASK_CMDRENDIE | SDMMC_MASK_CMDSENTIE);
hsd->DTIMER = HW_SDIO_DATATIMEOUT;
hsd->DLEN = data->blks * data->blksize;
hsd->DCTRL = (get_order(data->blksize) << 4) | (data->flags & DATA_DIR_READ ? SDMMC_DCTRL_DTDIR : 0);
hsd->IDMABASE0 = (rt_uint32_t)cache_buf;
hsd->IDMACTRL = SDMMC_IDMA_IDMAEN;
}
/* config cmd reg */
if (resp_type(cmd) == RESP_NONE)
reg_cmd |= SDMMC_RESPONSE_NO;
else if (resp_type(cmd) == RESP_R2)
reg_cmd |= SDMMC_RESPONSE_LONG;
else
reg_cmd |= SDMMC_RESPONSE_SHORT;
hsd->ARG = cmd->arg;
hsd->CMD = reg_cmd;
/* wait completed */
rthw_sdio_wait_completed(sdio);
/* Waiting for data to be sent to completion */
if (data != RT_NULL)
{
volatile rt_uint32_t count = SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS;
while (count && (hsd->STA & SDMMC_STA_DPSMACT))
{
count--;
}
if ((count == 0) || (hsd->STA & SDIO_ERRORS))
{
cmd->err = -RT_ERROR;
}
}
/* data post configuration */
if (data != RT_NULL)
{
if (data->flags & DATA_DIR_READ)
{
rt_memcpy(data->buf, cache_buf, data->blks * data->blksize);
SCB_CleanInvalidateDCache();
}
}
}
/**
* @brief This function send sdio request.
* @param sdio rthw_sdio
* @param req request
* @retval None
*/
static void rthw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdio_pkg pkg;
struct rthw_sdio *sdio = host->private_data;
struct rt_mmcsd_data *data;
RTHW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
if (data->flags & DATA_DIR_WRITE)
{
rt_memcpy(cache_buf, data->buf, size);
}
}
rthw_sdio_send_command(sdio, &pkg);
}
if (req->stop != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
rthw_sdio_send_command(sdio, &pkg);
}
RTHW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief This function config sdio.
* @param host rt_mmcsd_host
* @param io_cfg rt_mmcsd_io_cfg
* @retval None
*/
static void rthw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t temp, clk_src;
rt_uint32_t clk = io_cfg->clock;
struct rthw_sdio *sdio = host->private_data;
SD_HandleTypeDef *hsd = &sdio->sdio_des.hw_sdio;
SDMMC_InitTypeDef Init = {0};
rt_uint32_t sdmmc_clk = sdio->sdio_des.clk_get();
if (sdmmc_clk < 400 * 1000)
{
LOG_E("The clock rate is too low! rata:%d", sdmmc_clk);
return;
}
if (clk > host->freq_max)
clk = host->freq_max;
if (clk > sdmmc_clk)
{
LOG_W("Setting rate is greater than clock source rate.");
clk = sdmmc_clk;
}
LOG_D("clk:%dK width:%s%s%s power:%s%s%s",
clk / 1000,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
if (sdmmc_clk != 0U)
{
hsd->Init.ClockDiv = sdmmc_clk / (2U * SD_INIT_FREQ);
/* Configure the SDMMC peripheral */
Init.ClockEdge = hsd->Init.ClockEdge;
Init.ClockPowerSave = hsd->Init.ClockPowerSave;
if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
{
Init.BusWide = SDMMC_BUS_WIDE_4B;
}
else if (io_cfg->bus_width == MMCSD_BUS_WIDTH_8)
{
Init.BusWide = SDMMC_BUS_WIDE_8B;
}
else
{
Init.BusWide = SDMMC_BUS_WIDE_1B;
}
Init.HardwareFlowControl = hsd->Init.HardwareFlowControl;
/* Check if user Clock div < Normal speed 25Mhz, no change in Clockdiv */
if (hsd->Init.ClockDiv >= (sdmmc_clk / (2U * SD_NORMAL_SPEED_FREQ)))
{
Init.ClockDiv = hsd->Init.ClockDiv;
}
//CARD_ULTRA_HIGH_SPEED :UHS-I SD Card <50Mo/s for SDR50, DDR5 Cards and <104Mo/s for SDR104, Spec version 3.01
else if (MMCSD_TIMING_UHS_SDR50 <= io_cfg->timing && io_cfg->timing <= MMCSD_TIMING_UHS_DDR50)
{
/* UltraHigh speed SD card,user Clock div */
Init.ClockDiv = hsd->Init.ClockDiv;
}
//CARD_HIGH_SPEED: High Speed Card <25Mo/s , Spec version 2.00
else if (io_cfg->timing == MMCSD_TIMING_SD_HS)
{
/* High speed SD card, Max Frequency = 50Mhz */
if (hsd->Init.ClockDiv == 0U)
{
if (sdmmc_clk > SD_HIGH_SPEED_FREQ)
{
Init.ClockDiv = sdmmc_clk / (2U * SD_HIGH_SPEED_FREQ);
}
else
{
Init.ClockDiv = hsd->Init.ClockDiv;
}
}
else
{
if ((sdmmc_clk/(2U * hsd->Init.ClockDiv)) > SD_HIGH_SPEED_FREQ)
{
Init.ClockDiv = sdmmc_clk / (2U * SD_HIGH_SPEED_FREQ);
}
else
{
Init.ClockDiv = hsd->Init.ClockDiv;
}
}
}
//CARD_NORMAL_SPEED: Normal Speed Card <12.5Mo/s , Spec Version 1.01
else if (io_cfg->timing == MMCSD_TIMING_LEGACY)
{
/* No High speed SD card, Max Frequency = 25Mhz */
if (hsd->Init.ClockDiv == 0U)
{
if (sdmmc_clk > SD_NORMAL_SPEED_FREQ)
{
Init.ClockDiv = sdmmc_clk / (2U * SD_NORMAL_SPEED_FREQ);
}
else
{
Init.ClockDiv = hsd->Init.ClockDiv;
}
}
else
{
if ((sdmmc_clk/(2U * hsd->Init.ClockDiv)) > SD_NORMAL_SPEED_FREQ)
{
Init.ClockDiv = sdmmc_clk / (2U * SD_NORMAL_SPEED_FREQ);
}
else
{
Init.ClockDiv = hsd->Init.ClockDiv;
}
}
}
(void)SDMMC_Init(hsd->Instance, Init);
}
switch ((io_cfg->power_mode)&0X03)
{
case MMCSD_POWER_OFF:
/* Set Power State to OFF */
(void)SDMMC_PowerState_OFF(hsd->Instance);
break;
case MMCSD_POWER_UP:
/* In F4 series chips, 0X01 is reserved bit and has no practical effect.
For F7 series chips, 0X01 is power-on after power-off,The SDMMC disables the function and the card clock stops.
For H7 series chips, 0X03 is the power-on function.
*/
case MMCSD_POWER_ON:
/* Set Power State to ON */
(void)SDMMC_PowerState_ON(hsd->Instance);
break;
default:
LOG_W("unknown power mode %d", io_cfg->power_mode);
break;
}
}
/**
* @brief This function update sdio interrupt.
* @param host rt_mmcsd_host
* @param enable
* @retval None
*/
void rthw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
if (enable)
{
LOG_D("enable sdio irq");
__HAL_SD_ENABLE_IT(&sdio->sdio_des.hw_sdio, SDMMC_IT_SDIOIT);
}
else
{
LOG_D("disable sdio irq");
__HAL_SD_ENABLE_IT(&sdio->sdio_des.hw_sdio, SDMMC_IT_SDIOIT);
}
}
/**
* @brief This function detect sdcard.
* @param host rt_mmcsd_host
* @retval 0x01
*/
static rt_int32_t rthw_sd_detect(struct rt_mmcsd_host *host)
{
LOG_D("try to detect device");
return 0x01;
}
/**
* @brief This function interrupt process function.
* @param host rt_mmcsd_host
* @retval None
*/
void rthw_sdio_irq_process(struct rt_mmcsd_host *host)
{
struct rthw_sdio *sdio = host->private_data;
rt_uint32_t intstatus = sdio->sdio_des.hw_sdio.Instance->STA;
/* clear irq flag*/
__HAL_SD_CLEAR_FLAG(&sdio->sdio_des.hw_sdio, intstatus);
rt_event_send(&sdio->event, intstatus);
}
static const struct rt_mmcsd_host_ops ops =
{
rthw_sdio_request,
rthw_sdio_iocfg,
rthw_sd_detect,
rthw_sdio_irq_update,
};
/**
* @brief This function create mmcsd host.
* @param sdio_des stm32_sdio_des
* @retval rt_mmcsd_host
*/
struct rt_mmcsd_host *sdio_host_create(struct stm32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rthw_sdio *sdio = RT_NULL;
if (sdio_des == RT_NULL)
{
LOG_E("L:%d F:%s",(sdio_des == RT_NULL ? "sdio_des is NULL" : ""));
return RT_NULL;
}
sdio = rt_malloc(sizeof(struct rthw_sdio));
if (sdio == RT_NULL)
{
LOG_E("L:%d F:%s malloc rthw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rthw_sdio));
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("L:%d F:%s mmcsd alloc host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct stm32_sdio_des));
#ifdef BSP_USING_SDIO1
if(sdio_des->hw_sdio.Instance == SDMMC1)
{
rt_event_init(&sdio->event, "sdio1", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio1", RT_IPC_FLAG_PRIO);
}
#endif /* BSP_USING_SDIO1 */
#ifdef BSP_USING_SDIO2
if(sdio_des->hw_sdio.Instance == SDMMC2)
{
rt_event_init(&sdio->event, "sdio2", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio2", RT_IPC_FLAG_PRIO);
}
#endif /* BSP_USING_SDIO2 */
/* set host default attributes */
host->ops = &ops;
host->freq_min = 400 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = 0X00FFFF80;/* The voltage range supported is 1.65v-3.6v */
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
sdio->host = host;
host->private_data = sdio;
rthw_sdio_irq_update(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
/**
* @brief This function get stm32 sdio clock.
* @param hw_sdio: stm32_sdio
* @retval PCLK2Freq
*/
static rt_uint32_t stm32_sdio_clock_get(void)
{
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC);
}
void SDMMC1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* Process All SDIO Interrupt Sources */
rthw_sdio_irq_process(host1);
/* leave interrupt */
rt_interrupt_leave();
}
void SDMMC2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* Process All SDIO Interrupt Sources */
rthw_sdio_irq_process(host2);
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_sdio_init(void)
{
#ifdef BSP_USING_SDIO1
struct stm32_sdio_des sdio_des1 = {0};
sdio_des1.hw_sdio.Instance = SDMMC1;
HAL_SD_MspInit(&sdio_des1.hw_sdio);
HAL_NVIC_SetPriority(SDMMC1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(SDMMC1_IRQn);
sdio_des1.clk_get = stm32_sdio_clock_get;
host1 = sdio_host_create(&sdio_des1);
if (host1 == RT_NULL)
{
LOG_E("host1 create fail");
return -RT_ERROR;
}
#endif /* BSP_USING_SDIO1 */
#ifdef BSP_USING_SDIO2
struct stm32_sdio_des sdio_des2 = {0};
sdio_des2.hw_sdio.Instance = SDMMC2;
HAL_SD_MspInit(&sdio_des2.hw_sdio);
HAL_NVIC_SetPriority(SDMMC2_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(SDMMC2_IRQn);
sdio_des2.clk_get = stm32_sdio_clock_get;
host2 = sdio_host_create(&sdio_des2);
if (host2 == RT_NULL)
{
LOG_E("host2 create fail");
return -RT_ERROR;
}
#endif /* BSP_USING_SDIO2 */
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
void stm32_mmcsd_change(void)
{
#ifdef BSP_USING_SDIO1
mmcsd_change(host1);
#endif /* BSP_USING_SDIO2 */
#ifdef BSP_USING_SDIO2
mmcsd_change(host2);
#endif /* BSP_USING_SDIO2 */
}
#endif /* RT_USING_SDIO */

View File

@ -0,0 +1,82 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-05-23 liuduanfei first version
* 2020-08-25 wanghaijing add sdmmmc2
* 2023-03-26 wdfk-prog Distinguish between SDMMC and SDIO drivers
*/
#ifndef __DRV_SDMMC_H__
#define __DRV_SDMMC_H__
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include <string.h>
#include <drivers/mmcsd_core.h>
#include <drivers/sdio.h>
#define SDIO_BUFF_SIZE 4096
#define SDIO_ALIGN_LEN 32
#define SDIO1_BASE_ADDRESS (SDMMC1_BASE)
#define SDIO2_BASE_ADDRESS (SDMMC2_BASE)
#ifndef SDIO_CLOCK_FREQ
#define SDIO_CLOCK_FREQ (200U * 1000 * 1000)
#endif
#ifndef SDIO_BUFF_SIZE
#define SDIO_BUFF_SIZE (4096)
#endif
#ifndef SDIO_ALIGN_LEN
#define SDIO_ALIGN_LEN (32)
#endif
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (25 * 1000 * 1000)
#endif
/* Frequencies used in the driver for clock divider calculation */
#define SD_INIT_FREQ 400000U /* Initalization phase : 400 kHz max */
#define SD_NORMAL_SPEED_FREQ 25000000U /* Normal speed phase : 25 MHz max */
#define SD_HIGH_SPEED_FREQ 50000000U /* High speed phase : 50 MHz max */
#define SDIO_ERRORS \
(SDMMC_STA_IDMATE | SDMMC_STA_ACKTIMEOUT | \
SDMMC_STA_RXOVERR | SDMMC_STA_TXUNDERR | \
SDMMC_STA_DTIMEOUT | SDMMC_STA_CTIMEOUT | \
SDMMC_STA_DCRCFAIL | SDMMC_STA_CCRCFAIL)
#define SDIO_MASKR_ALL \
(SDMMC_MASK_CCRCFAILIE | SDMMC_MASK_DCRCFAILIE | SDMMC_MASK_CTIMEOUTIE | \
SDMMC_MASK_TXUNDERRIE | SDMMC_MASK_RXOVERRIE | SDMMC_MASK_CMDRENDIE | \
SDMMC_MASK_CMDSENTIE | SDMMC_MASK_DATAENDIE | SDMMC_MASK_ACKTIMEOUTIE)
#define HW_SDIO_DATATIMEOUT (0xFFFFFFFFU)
typedef rt_uint32_t (*sdio_clk_get)(void);
struct stm32_sdio_des
{
SD_HandleTypeDef hw_sdio;
sdio_clk_get clk_get;
};
/* stm32 sdio dirver class */
struct stm32_sdio_class
{
struct stm32_sdio_des *des;
const struct stm32_sdio_config *cfg;
struct rt_mmcsd_host host;
};
extern void stm32_mmcsd_change(void);
#endif /* __DRV_SDMMC_H__ */