4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 20:03:48 +08:00

add dm9000 driver.

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@66 bbd45198-f89e-11dd-88c7-29a3b14d5316
This commit is contained in:
bernard.xiong 2009-10-02 01:13:00 +00:00
parent 0e512fd834
commit 1d08491cbf
2 changed files with 652 additions and 0 deletions

516
bsp/stm32_radio/dm9000.c Normal file
View File

@ -0,0 +1,516 @@
#include <rtthread.h>
#include "dm9000.h"
#include <netif/ethernetif.h>
#include "lwipopts.h"
/*
* DM9000 interrupt line is connected to PF7
*/
//--------------------------------------------------------
#define MAX_ADDR_LEN 6
enum DM9000_PHY_mode
{
DM9000_10MHD = 0, DM9000_100MHD = 1,
DM9000_10MFD = 4, DM9000_100MFD = 5,
DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
};
enum DM9000_TYPE
{
TYPE_DM9000E,
TYPE_DM9000A,
TYPE_DM9000B
};
struct dm9000_rxhdr
{
rt_uint8_t RxPktReady;
rt_uint8_t RxStatus;
rt_uint16_t RxLen;
} __attribute__((__packed__));
struct rt_dm9000_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enum DM9000_TYPE type;
rt_uint8_t imr_all;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_dm9000_eth dm9000_device;
void delay_ms(rt_uint32_t dt)
{
}
/* Read a byte from I/O port */
rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
{
ETH_ADDR = reg;
return (rt_uint8_t) ETH_DATA;
}
/* Write a byte to I/O port */
rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
{
ETH_ADDR = reg;
ETH_DATA = data;
}
/* Read a word from phyxcer */
rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
{
rt_uint16_t val;
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
delay_ms(100); /* Wait read complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
return val;
}
/* Write a word to phyxcer */
rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
{
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
dm9000_io_write(DM9000_EPDRL, (value & 0xff));
dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
delay_ms(500); /* Wait write complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
}
/* Set PHY operationg mode */
rt_inline void phy_mode_set(rt_uint32_t media_mode)
{
rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
if (!(media_mode & DM9000_AUTO))
{
switch (media_mode)
{
case DM9000_10MHD:
phy_reg4 = 0x21;
phy_reg0 = 0x0000;
break;
case DM9000_10MFD:
phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9000_100MHD:
phy_reg4 = 0x81;
phy_reg0 = 0x2000;
break;
case DM9000_100MFD:
phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
}
phy_write(4, phy_reg4); /* Set PHY media mode */
phy_write(0, phy_reg0); /* Tmp */
}
dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
}
/* interrupt service routine */
void rt_dm9000_isr(int irqno)
{
rt_uint32_t int_status;
/* Disable all interrupts */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = ior(DM9000_ISR); /* Got ISR */
dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
/* Received the coming packet */
if (int_status & ISR_PRS)
{
rt_err_t result;
/* a frame has been received */
result = eth_device_ready(&(dm9000_device.parent));
RT_ASSERT(result == RT_EOK);
}
/* Transmit Interrupt check */
if (int_status & ISR_PTS)
{
/* transmit done */
int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END))
{
/* One packet sent complete */
}
}
/* Re-enable interrupt mask */
dm9000_io_write(DM9000_IMR, db->imr_all);
}
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9000_init(rt_device_t dev)
{
int i, oft, lnk;
rt_uint32_t value;
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
delay_ms(1000); /* delay 1ms */
/* identfy DM9000 */
value = dm9000_io_read(DM9000_VIDL);
value |= dm9000_io_read(DM9000_VIDH) << 8;
value |= dm9000_io_read(DM9000_PIDL) << 16;
value |= dm9000_io_read(DM9000_PIDH) << 24;
if (value == DM9000_ID)
{
rt_kprintf("dm9000 id: 0x%x\n", value);
}
else
{
return -RT_ERROR;
}
/* GPIO0 on pre-activate PHY */
dm9000_io_write(DM9000_GPR, 0x00); /*REG_1F bit0 activate phyxcer */
dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0); /* Enable PHY */
/* Set PHY */
phy_mode_set(DM9000_AUTO);
/* Program operating register */
dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
/* set mac address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
dm9000_io_write(oft, dm9000_device->dev_addr[i]);
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_io_write(oft, 0xff);
/* Activate DM9000 */
dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
i = 0;
while (!(phy_read(1) & 0x20))
{
/* autonegation complete bit */
delay_ms(1000);
i++;
if (i == 10000)
{
rt_kprintf("could not establish link\n");
return 0;
}
}
/* see what we've got */
lnk = phy_read(17) >> 12;
rt_kprintf("operating at ");
switch (lnk) {
case 1:
rt_kprintf("10M half duplex ");
break;
case 2:
rt_kprintf("10M full duplex ");
break;
case 4:
rt_kprintf("100M half duplex ");
break;
case 8:
rt_kprintf("100M full duplex ");
break;
default:
rt_kprintf("unknown: %d ", lnk);
break;
}
rt_kprintf("mode\n");
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
return RT_EOK;
}
static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_dm9000_close(rt_device_t dev)
{
/* RESET devie */
phy_write(0, 0x8000); /* PHY RESET */
dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
return RT_EOK;
}
static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, dm9000_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
{
struct pbuf* q;
rt_uint32_t len;
rt_uint16_t* ptr;
/* Move data to DM9000 TX RAM */
dm9000_io_write(DM9000_MWCMD, DM9000_IO);
for (q = p; q != NULL; q = q->next)
{
len = q->len;
ptr = q->payload;
/* use 16bit mode to write data to DM9000 RAM */
while (len)
{
dm9000_io_write(*ptr, DM9000_DATA);
ptr ++; len -= 2;
}
}
if (p->tot_len < 64) /* add pading */
{
}
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_dm9000_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t len;
/* init p pointer */
p = RT_NULL;
/* Check packet ready or not */
dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
len = dm9000_io_read(DM9000_DATA); /* Got most updated data */
if (len)
{
rt_uint16_t rx_status, rx_len;
rt_uint16_t* data;
dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_MRCMD, DM9000_IO);
rx_status = dm9000_io_write(DM9000_DATA);
rx_len = dm9000_io_write(DM9000_DATA);
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
for (q = p; q != RT_NULL; q= q->next)
{
data = (rt_uint16_t*)q->payload;
len = q->len;
while (len)
{
*data = dm9000_io_write(DM9000_DATA);
data ++; len -= 2;
}
}
}
else
{
rt_uint16_t dummy;
/* no pbuf, discard data from DM9000 */
data = &dummy;
while (rx_len)
{
*data = dm9000_io_write(DM9000_DATA);
rx_len -= 2;
}
}
if ((rx_status & 0xbf00) || (rx_len < 0x40)
|| (rx_len > DM9000_PKT_MAX))
{
if (rx_status & 0x100)
{
rt_printf("rx fifo error\n");
}
if (rx_status & 0x200) {
rt_printf("rx crc error\n");
}
if (rx_status & 0x8000)
{
rt_printf("rx length error\n");
}
if (rx_len > DM9000_PKT_MAX)
{
rt_printf("rx length too big\n");
dm9000_reset();
}
/* it issues an error, release pbuf */
pbuf_free(p);
p = RT_NULL;
}
}
else
{
/* restore interrupt */
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
}
return p;
}
{
u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0];
u16 RxStatus, RxLen = 0;
u32 tmplen, i;
/* Status check: this byte must be 0 or 1 */
if (rxbyte > 1) {
DM9000_iow(DM9000_RCR, 0x00); /* Stop Device */
DM9000_iow(DM9000_ISR, 0x80); /* Stop INT request */
DM9000_DBG("rx status check: %d\n", rxbyte);
}
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_MRCMD, DM9000_IO);
RxStatus = DM9000_inw(DM9000_DATA);
RxLen = DM9000_inw(DM9000_DATA);
/* Read received packet from RX SRAM */
tmplen = (RxLen + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *) rdptr)[i] = DM9000_inw(DM9000_DATA);
if ((RxStatus & 0xbf00) || (RxLen < 0x40)
|| (RxLen > DM9000_PKT_MAX))
{
if (RxStatus & 0x100)
{
rt_printf("rx fifo error\n");
}
if (RxStatus & 0x200) {
rt_printf("rx crc error\n");
}
if (RxStatus & 0x8000)
{
rt_printf("rx length error\n");
}
if (RxLen > DM9000_PKT_MAX)
{
rt_printf("rx length too big\n");
dm9000_reset();
}
}
else
{
/* Pass to upper layer */
DM9000_DBG("passing packet to upper layer\n");
NetReceive(NetRxPackets[0], RxLen);
return RxLen;
}
}
void rt_hw_dm9000_init()
{
dm9000_device.type = TYPE_DM9000A;
dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9000_device.parent.parent.init = rt_dm9000_init;
dm9000_device.parent.parent.open = rt_dm9000_open;
dm9000_device.parent.parent.close = rt_dm9000_close;
dm9000_device.parent.parent.read = rt_dm9000_read;
dm9000_device.parent.parent.write = rt_dm9000_write;
dm9000_device.parent.parent.control = rt_dm9000_control;
dm9000_device.parent.parent.private = RT_NULL;
dm9000_device.parent.eth_rx = rt_dm9000_rx;
dm9000_device.parent.eth_tx = rt_dm9000_tx;
rt_device_register((rt_device_t)&dm9000_device,
"E0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX);
}
#ifdef RT_USING_FINSH
#include <finsh.h>
void dm9000(void)
{
rt_kprintf("\n");
rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(0));
rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(1));
rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(2));
rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(3));
rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(4));
rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(5));
rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(6));
rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(ISR));
rt_kprintf("\n");
}
#endif

136
bsp/stm32_radio/dm9000.h Normal file
View File

@ -0,0 +1,136 @@
#ifndef __DM9000_H__
#define __DM9000_H__
#define ETH_ADDR (*((volatile unsigned short *) 0x6C000000)) // CMD = 0
#define ETH_DATA (*((volatile unsigned short *) 0x6C000008)) // CMD = 1
#define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6)
#define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6)
#define DM9000_ID 0x90000A46 /* DM9000 ID */
#define DM9000_PKT_MAX 1536 /* Received packet max size */
#define DM9000_PKT_RDY 0x01 /* Packet ready to receive */
#define DM9000_NCR 0x00
#define DM9000_NSR 0x01
#define DM9000_TCR 0x02
#define DM9000_TSR1 0x03
#define DM9000_TSR2 0x04
#define DM9000_RCR 0x05
#define DM9000_RSR 0x06
#define DM9000_ROCR 0x07
#define DM9000_BPTR 0x08
#define DM9000_FCTR 0x09
#define DM9000_FCR 0x0A
#define DM9000_EPCR 0x0B
#define DM9000_EPAR 0x0C
#define DM9000_EPDRL 0x0D
#define DM9000_EPDRH 0x0E
#define DM9000_WCR 0x0F
#define DM9000_PAR 0x10
#define DM9000_MAR 0x16
#define DM9000_GPCR 0x1e
#define DM9000_GPR 0x1f
#define DM9000_TRPAL 0x22
#define DM9000_TRPAH 0x23
#define DM9000_RWPAL 0x24
#define DM9000_RWPAH 0x25
#define DM9000_VIDL 0x28
#define DM9000_VIDH 0x29
#define DM9000_PIDL 0x2A
#define DM9000_PIDH 0x2B
#define DM9000_CHIPR 0x2C
#define DM9000_SMCR 0x2F
#define CHIPR_DM9000A 0x19
#define CHIPR_DM9000B 0x1B
#define DM9000_MRCMDX 0xF0
#define DM9000_MRCMD 0xF2
#define DM9000_MRRL 0xF4
#define DM9000_MRRH 0xF5
#define DM9000_MWCMDX 0xF6
#define DM9000_MWCMD 0xF8
#define DM9000_MWRL 0xFA
#define DM9000_MWRH 0xFB
#define DM9000_TXPLL 0xFC
#define DM9000_TXPLH 0xFD
#define DM9000_ISR 0xFE
#define DM9000_IMR 0xFF
#define NCR_EXT_PHY (1<<7)
#define NCR_WAKEEN (1<<6)
#define NCR_FCOL (1<<4)
#define NCR_FDX (1<<3)
#define NCR_LBK (3<<1)
#define NCR_RST (1<<0)
#define NSR_SPEED (1<<7)
#define NSR_LINKST (1<<6)
#define NSR_WAKEST (1<<5)
#define NSR_TX2END (1<<3)
#define NSR_TX1END (1<<2)
#define NSR_RXOV (1<<1)
#define TCR_TJDIS (1<<6)
#define TCR_EXCECM (1<<5)
#define TCR_PAD_DIS2 (1<<4)
#define TCR_CRC_DIS2 (1<<3)
#define TCR_PAD_DIS1 (1<<2)
#define TCR_CRC_DIS1 (1<<1)
#define TCR_TXREQ (1<<0)
#define TSR_TJTO (1<<7)
#define TSR_LC (1<<6)
#define TSR_NC (1<<5)
#define TSR_LCOL (1<<4)
#define TSR_COL (1<<3)
#define TSR_EC (1<<2)
#define RCR_WTDIS (1<<6)
#define RCR_DIS_LONG (1<<5)
#define RCR_DIS_CRC (1<<4)
#define RCR_ALL (1<<3)
#define RCR_RUNT (1<<2)
#define RCR_PRMSC (1<<1)
#define RCR_RXEN (1<<0)
#define RSR_RF (1<<7)
#define RSR_MF (1<<6)
#define RSR_LCS (1<<5)
#define RSR_RWTO (1<<4)
#define RSR_PLE (1<<3)
#define RSR_AE (1<<2)
#define RSR_CE (1<<1)
#define RSR_FOE (1<<0)
#define FCTR_HWOT(ot) (( ot & 0xf ) << 4 )
#define FCTR_LWOT(ot) ( ot & 0xf )
#define IMR_PAR (1<<7)
#define IMR_ROOM (1<<3)
#define IMR_ROM (1<<2)
#define IMR_PTM (1<<1)
#define IMR_PRM (1<<0)
#define ISR_ROOS (1<<3)
#define ISR_ROS (1<<2)
#define ISR_PTS (1<<1)
#define ISR_PRS (1<<0)
#define ISR_CLR_STATUS (ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS)
#define EPCR_REEP (1<<5)
#define EPCR_WEP (1<<4)
#define EPCR_EPOS (1<<3)
#define EPCR_ERPRR (1<<2)
#define EPCR_ERPRW (1<<1)
#define EPCR_ERRE (1<<0)
#define GPCR_GEP_CNTL (1<<0)
void rt_hw_dm9000_init(void);
#endif