Merge pull request #3418 from bigmagic123/raspi-64-sdio

fix raspi3-64 sdio driver
This commit is contained in:
Bernard Xiong 2020-02-28 17:48:47 +08:00 committed by GitHub
commit 02722864d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 465 additions and 435 deletions

View File

@ -65,7 +65,7 @@ CONFIG_RT_USING_DEVICE=y
CONFIG_RT_USING_DEVICE_OPS=y CONFIG_RT_USING_DEVICE_OPS=y
# CONFIG_RT_USING_INTERRUPT_INFO is not set # CONFIG_RT_USING_INTERRUPT_INFO is not set
CONFIG_RT_USING_CONSOLE=y CONFIG_RT_USING_CONSOLE=y
CONFIG_RT_CONSOLEBUF_SIZE=128 CONFIG_RT_CONSOLEBUF_SIZE=512
CONFIG_RT_CONSOLE_DEVICE_NAME="uart1" CONFIG_RT_CONSOLE_DEVICE_NAME="uart1"
CONFIG_RT_VER_NUM=0x40003 CONFIG_RT_VER_NUM=0x40003
CONFIG_ARCH_CPU_64BIT=y CONFIG_ARCH_CPU_64BIT=y
@ -77,7 +77,7 @@ CONFIG_ARCH_CPU_64BIT=y
# #
CONFIG_RT_USING_COMPONENTS_INIT=y CONFIG_RT_USING_COMPONENTS_INIT=y
CONFIG_RT_USING_USER_MAIN=y CONFIG_RT_USING_USER_MAIN=y
CONFIG_RT_MAIN_THREAD_STACK_SIZE=2048 CONFIG_RT_MAIN_THREAD_STACK_SIZE=4096
CONFIG_RT_MAIN_THREAD_PRIORITY=10 CONFIG_RT_MAIN_THREAD_PRIORITY=10
# #
@ -113,7 +113,23 @@ CONFIG_DFS_FILESYSTEMS_MAX=2
CONFIG_DFS_FILESYSTEM_TYPES_MAX=2 CONFIG_DFS_FILESYSTEM_TYPES_MAX=2
CONFIG_DFS_FD_MAX=16 CONFIG_DFS_FD_MAX=16
# CONFIG_RT_USING_DFS_MNTTABLE is not set # CONFIG_RT_USING_DFS_MNTTABLE is not set
# CONFIG_RT_USING_DFS_ELMFAT is not set CONFIG_RT_USING_DFS_ELMFAT=y
#
# elm-chan's FatFs, Generic FAT Filesystem Module
#
CONFIG_RT_DFS_ELM_CODE_PAGE=437
CONFIG_RT_DFS_ELM_WORD_ACCESS=y
# CONFIG_RT_DFS_ELM_USE_LFN_0 is not set
# CONFIG_RT_DFS_ELM_USE_LFN_1 is not set
# CONFIG_RT_DFS_ELM_USE_LFN_2 is not set
CONFIG_RT_DFS_ELM_USE_LFN_3=y
CONFIG_RT_DFS_ELM_USE_LFN=3
CONFIG_RT_DFS_ELM_MAX_LFN=255
CONFIG_RT_DFS_ELM_DRIVES=2
CONFIG_RT_DFS_ELM_MAX_SECTOR_SIZE=512
# CONFIG_RT_DFS_ELM_USE_ERASE is not set
CONFIG_RT_DFS_ELM_REENTRANT=y
CONFIG_RT_USING_DFS_DEVFS=y CONFIG_RT_USING_DFS_DEVFS=y
# CONFIG_RT_USING_DFS_ROMFS is not set # CONFIG_RT_USING_DFS_ROMFS is not set
# CONFIG_RT_USING_DFS_RAMFS is not set # CONFIG_RT_USING_DFS_RAMFS is not set
@ -140,7 +156,13 @@ CONFIG_RT_USING_PIN=y
# CONFIG_RT_USING_MTD_NAND is not set # CONFIG_RT_USING_MTD_NAND is not set
# CONFIG_RT_USING_PM is not set # CONFIG_RT_USING_PM is not set
# CONFIG_RT_USING_RTC is not set # CONFIG_RT_USING_RTC is not set
# CONFIG_RT_USING_SDIO is not set CONFIG_RT_USING_SDIO=y
CONFIG_RT_SDIO_STACK_SIZE=2048
CONFIG_RT_SDIO_THREAD_PRIORITY=15
CONFIG_RT_MMCSD_STACK_SIZE=4096
CONFIG_RT_MMCSD_THREAD_PREORITY=22
CONFIG_RT_MMCSD_MAX_PARTITION=16
CONFIG_RT_SDIO_DEBUG=y
# CONFIG_RT_USING_SPI is not set # CONFIG_RT_USING_SPI is not set
# CONFIG_RT_USING_WDT is not set # CONFIG_RT_USING_WDT is not set
# CONFIG_RT_USING_AUDIO is not set # CONFIG_RT_USING_AUDIO is not set
@ -448,7 +470,8 @@ CONFIG_BSP_USING_CORETIMER=y
# CONFIG_BSP_USING_SPI is not set # CONFIG_BSP_USING_SPI is not set
# CONFIG_BSP_USING_WDT is not set # CONFIG_BSP_USING_WDT is not set
# CONFIG_BSP_USING_RTC is not set # CONFIG_BSP_USING_RTC is not set
# CONFIG_BSP_USING_SDIO is not set CONFIG_BSP_USING_SDIO=y
CONFIG_BSP_USING_SDIO0=y
# #
# Board Peripheral Drivers # Board Peripheral Drivers

View File

@ -10,7 +10,19 @@
#include <rtthread.h> #include <rtthread.h>
#ifdef BSP_USING_SDIO0
#include <dfs_fs.h>
int mnt_init(void) int mnt_init(void)
{ {
rt_thread_delay(RT_TICK_PER_SECOND);
if (dfs_mount("sd0", "/", "elm", 0, 0) == 0)
{
rt_kprintf("file system initialization done!\n");
}
return 0; return 0;
} }
INIT_ENV_EXPORT(mnt_init);
#endif

View File

@ -93,10 +93,11 @@ void idle_wfi(void)
void rt_hw_board_init(void) void rt_hw_board_init(void)
{ {
mmu_init(); mmu_init();
armv8_map(0, 0, 0x800000, MEM_ATTR_MEMORY); armv8_map(0, 0, 0x6400000, MEM_ATTR_MEMORY);
armv8_map(0x3f00B000, 0x3f00B000, 0x1000, MEM_ATTR_IO);//timer armv8_map(0x3f000000, 0x3f000000, 0x200000, MEM_ATTR_IO);//timer
armv8_map(0x3f200000, 0x3f200000, 0x16000, MEM_ATTR_IO);//uart armv8_map(0x3f200000, 0x3f200000, 0x16000, MEM_ATTR_IO);//uart
armv8_map(0x40000000, 0x40000000, 0x1000, MEM_ATTR_IO);//core timer armv8_map(0x40000000, 0x40000000, 0x1000, MEM_ATTR_IO);//core timer
armv8_map(0x3F300000, 0x3F300000, 0x1000, MEM_ATTR_IO);//sdio
mmu_enable(); mmu_enable();
/* initialize hardware interrupt */ /* initialize hardware interrupt */

View File

@ -21,7 +21,7 @@ extern unsigned char __bss_start;
extern unsigned char __bss_end; extern unsigned char __bss_end;
#define RT_HW_HEAP_BEGIN (void*)&__bss_end #define RT_HW_HEAP_BEGIN (void*)&__bss_end
#define RT_HW_HEAP_END (void*)(RT_HW_HEAP_BEGIN + 4 * 1024 * 1024) #define RT_HW_HEAP_END (void*)(RT_HW_HEAP_BEGIN + 64 * 1024 * 1024)
void rt_hw_board_init(void); void rt_hw_board_init(void);

View File

@ -9,263 +9,305 @@
* 2019-07-29 zdzn first version * 2019-07-29 zdzn first version
*/ */
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <string.h>
#include "drv_sdio.h" #include "drv_sdio.h"
#include "interrupt.h" #include "raspi.h"
#include "drv_gpio.h"
#include "bcm283x.h" static rt_uint32_t sdCommandTable[] = {
#include <drivers/mmcsd_core.h> SD_CMD_INDEX(0),
#include "bcm283x.h" SD_CMD_RESERVED(1),
SD_CMD_INDEX(2) | SD_RESP_R2,
SD_CMD_INDEX(3) | SD_RESP_R1,
#include <rtdbg.h> SD_CMD_INDEX(4),
SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
#ifdef RT_USING_SDIO SD_CMD_INDEX(6) | SD_RESP_R1,
#define CONFIG_MMC_USE_DMA SD_CMD_INDEX(7) | SD_RESP_R1b,
#define DMA_ALIGN (32U) SD_CMD_INDEX(8) | SD_RESP_R1,
SD_CMD_INDEX(9) | SD_RESP_R2,
typedef struct EMMCCommand SD_CMD_INDEX(10) | SD_RESP_R2,
{ SD_CMD_INDEX(11) | SD_RESP_R1,
const char* name; SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
unsigned int code; SD_CMD_INDEX(13) | SD_RESP_R1,
unsigned char resp; SD_CMD_RESERVED(14),
unsigned char rca; SD_CMD_INDEX(15),
int delay; SD_CMD_INDEX(16) | SD_RESP_R1,
} EMMCCommand; SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
static EMMCCommand sdCommandTable[] = SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
{ SD_CMD_INDEX(20) | SD_RESP_R1b,
{"GO_IDLE_STATE", 0x00000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,0}, SD_CMD_RESERVED(21),
{"ALL_SEND_CID" , 0x02000000 | CMD_RSPNS_136 , RESP_R2I, RCA_NO ,0}, SD_CMD_RESERVED(22),
{"SEND_REL_ADDR", 0x03000000 | CMD_RSPNS_48 , RESP_R6 , RCA_NO ,0}, SD_CMD_INDEX(23) | SD_RESP_R1,
{"SET_DSR" , 0x04000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,0}, SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
{"SWITCH_FUNC" , 0x06000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
{"CARD_SELECT" , 0x07000000 | CMD_RSPNS_48B , RESP_R1b, RCA_YES ,0}, SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, //add
{"SEND_IF_COND" , 0x08000000 | CMD_RSPNS_48 , RESP_R7 , RCA_NO ,100}, SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
{"SEND_CSD" , 0x09000000 | CMD_RSPNS_136 , RESP_R2S, RCA_YES ,0}, SD_CMD_INDEX(28) | SD_RESP_R1b,
{"SEND_CID" , 0x0A000000 | CMD_RSPNS_136 , RESP_R2I, RCA_YES ,0}, SD_CMD_INDEX(29) | SD_RESP_R1b,
{"VOLT_SWITCH" , 0x0B000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
{"STOP_TRANS" , 0x0C000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0}, SD_CMD_RESERVED(31),
{"SEND_STATUS" , 0x0D000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0}, SD_CMD_INDEX(32) | SD_RESP_R1,
{"GO_INACTIVE" , 0x0F000000 | CMD_RSPNS_NO , RESP_NO , RCA_YES ,0}, SD_CMD_INDEX(33) | SD_RESP_R1,
{"SET_BLOCKLEN" , 0x10000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(34),
{"READ_SINGLE" , 0x11000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_CH, RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(35) | SD_RESP_R1, //add
{"READ_MULTI" , 0x12000000 | CMD_RSPNS_48 | TM_MULTI_DATA | TM_DAT_DIR_CH, RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(36) | SD_RESP_R1, //add
{"SEND_TUNING" , 0x13000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(37),
{"SPEED_CLASS" , 0x14000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0}, SD_CMD_INDEX(38) | SD_RESP_R1b,
{"SET_BLOCKCNT" , 0x17000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(39) | SD_RESP_R4, //add
{"WRITE_SINGLE" , 0x18000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_HC, RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(40) | SD_RESP_R5, //add
{"WRITE_MULTI" , 0x19000000 | CMD_RSPNS_48 | TM_MULTI_DATA | TM_DAT_DIR_HC, RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(41) | SD_RESP_R3, //add, mov from harbote
{"PROGRAM_CSD" , 0x1B000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(42) | SD_RESP_R1,
{"SET_WRITE_PR" , 0x1C000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0}, SD_CMD_RESERVED(43),
{"CLR_WRITE_PR" , 0x1D000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0}, SD_CMD_RESERVED(44),
{"SND_WRITE_PR" , 0x1E000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(45),
{"ERASE_WR_ST" , 0x20000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(46),
{"ERASE_WR_END" , 0x21000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(47),
{"ERASE" , 0x26000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0}, SD_CMD_RESERVED(48),
{"LOCK_UNLOCK" , 0x2A000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(49),
{"APP_CMD" , 0x37000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,100}, SD_CMD_RESERVED(50),
{"APP_CMD" , 0x37000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0}, SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
{"GEN_CMD" , 0x38000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(52),
SD_CMD_RESERVED(53),
// APP commands must be prefixed by an APP_CMD. SD_CMD_RESERVED(54),
{"SET_BUS_WIDTH", 0x06000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_INDEX(55) | SD_RESP_R3,
{"SD_STATUS" , 0x0D000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0}, // RCA??? SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
{"SEND_NUM_WRBL", 0x16000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(57),
{"SEND_NUM_ERS" , 0x17000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(58),
{"SD_SENDOPCOND", 0x29000000 | CMD_RSPNS_48 , RESP_R3 , RCA_NO ,1000}, SD_CMD_RESERVED(59),
{"SET_CLR_DET" , 0x2A000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(60),
{"SEND_SCR" , 0x33000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_CH , RESP_R1 , RCA_NO ,0}, SD_CMD_RESERVED(61),
SD_CMD_RESERVED(62),
SD_CMD_RESERVED(63)
}; };
static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width);
static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock);
static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat);
static inline rt_uint32_t read32(rt_uint32_t addr) static inline rt_uint32_t read32(rt_uint32_t addr)
{ {
return( *((volatile rt_uint32_t *)(addr)) ); return (*((volatile unsigned int*)((rt_uint64_t)addr)));
//return (*((volatile rt_uint64_t *)(((long))addr)));
} }
static inline void write32(rt_uint32_t addr, rt_uint32_t value) static inline void write32(rt_uint32_t addr, rt_uint32_t value)
{ {
*((volatile rt_uint32_t *)(addr)) = value; (*((volatile unsigned int*)((rt_uint64_t)addr))) = value;
//*((volatile rt_uint64_t *)(((long))addr)) = value;
}
rt_err_t sd_int(struct sdhci_pdata_t * pdat, unsigned int mask)
{
unsigned int r;
unsigned int m = mask | INT_ERROR_MASK;
int cnt = 1000000;
while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
DELAY_MICROS(1);
r = read32(pdat->virt + EMMC_INTERRUPT);
if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
{
write32(pdat->virt + EMMC_INTERRUPT, r);
//qemu maybe can not use sdcard
//rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n",mask, r, read32(pdat->virt + EMMC_STATUS));
//return -RT_ETIMEOUT;
}
else if (r & INT_ERROR_MASK)
{
write32(pdat->virt + EMMC_INTERRUPT, r);
rt_kprintf("send cmd/data error %x -> %x\n",r, read32(pdat->virt + EMMC_INTERRUPT));
return -RT_ERROR;
}
write32(pdat->virt + EMMC_INTERRUPT, mask);
return RT_EOK;
}
rt_err_t sd_status(struct sdhci_pdata_t * pdat, unsigned int mask)
{
int cnt = 500000;
while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
DELAY_MICROS(1);
if (cnt <= 0)
{
return -RT_ETIMEOUT;
}
else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
{
return -RT_ERROR;
}
return RT_EOK;
} }
static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd) static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd)
{ {
rt_uint32_t cmdidx; rt_uint32_t cmdidx;
rt_uint32_t status;
rt_err_t ret = RT_EOK; rt_err_t ret = RT_EOK;
ret = sd_status(pdat, SR_CMD_INHIBIT);
if (ret)
{
rt_kprintf("ERROR: EMMC busy %d\n", ret);
return ret;
}
if(read32(pdat->virt + EMMC_STATUS) & SR_CMD_INHIBIT) cmdidx = sdCommandTable[cmd->cmdidx];
write32(pdat->virt + EMMC_CMDTM, 0x0); if (cmdidx == 0xFFFFFFFF)
return -RT_EINVAL;
EMMCCommand* cmdtab = &sdCommandTable[cmd->cmdidx]; if (cmd->datarw == DATA_READ)
cmdidx |= SD_DATA_READ;
cmdidx = cmdtab->code; if (cmd->datarw == DATA_WRITE)
cmdidx |= SD_DATA_WRITE;
mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
write32(pdat->virt + EMMC_INTERRUPT,read32(pdat->virt + EMMC_INTERRUPT));
write32(pdat->virt + EMMC_ARG1, cmd->cmdarg); write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
write32(pdat->virt + EMMC_CMDTM, cmdidx); write32(pdat->virt + EMMC_CMDTM, cmdidx);
if (cmd->cmdidx == SD_APP_OP_COND)
do { DELAY_MICROS(1000);
status = read32(pdat->virt + EMMC_STATUS); else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
} while(!(status & SR_CMD_INHIBIT)); DELAY_MICROS(100);
ret = sd_int(pdat, INT_CMD_DONE);
if (ret)
{
return ret;
}
if (cmd->resptype & RESP_MASK) if (cmd->resptype & RESP_MASK)
{ {
cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
if (cmd->resptype & RESP_R2) if (cmd->resptype & RESP_R2)
{ {
cmd->response[1] = read32(pdat->virt + EMMC_RESP1); rt_uint32_t resp[4];
cmd->response[2] = read32(pdat->virt + EMMC_RESP2); resp[0] = read32(pdat->virt + EMMC_RESP0);
cmd->response[3] = read32(pdat->virt + EMMC_RESP3); resp[1] = read32(pdat->virt + EMMC_RESP1);
resp[2] = read32(pdat->virt + EMMC_RESP2);
resp[3] = read32(pdat->virt + EMMC_RESP3);
if (cmd->resptype == RESP_R2)
{
cmd->response[0] = resp[3]<<8 |((resp[2]>>24)&0xff);
cmd->response[1] = resp[2]<<8 |((resp[1]>>24)&0xff);
cmd->response[2] = resp[1]<<8 |((resp[0]>>24)&0xff);
cmd->response[3] = resp[0]<<8 ;
}
else
{
cmd->response[0] = resp[0];
cmd->response[1] = resp[1];
cmd->response[2] = resp[2];
cmd->response[3] = resp[3];
} }
} }
else
cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
}
mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS),read32(pdat->virt + EMMC_INTERRUPT));
return ret; return ret;
} }
static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize) static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{ {
rt_uint32_t * tmp = buf; int c = 0;
rt_uint32_t count = blkcount * blksize; rt_err_t ret;
rt_uint32_t status, err; int d;
while (c < blkcount)
// status = read32(pdat->virt + PL180_STATUS); {
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN); if ((ret = sd_int(pdat, INT_READ_RDY)))
// while((!err) && (count >= sizeof(rt_uint32_t))) {
// { rt_kprintf("timeout happens when reading block %d\n",c);
// if(status & PL180_STAT_RX_FIFO_AVL) return ret;
// { }
// *(tmp) = read32(pdat->virt + PL180_FIFO); for (d=0; d < blksize / 4; d++)
// tmp++; if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
// count -= sizeof(rt_uint32_t); buf[d] = read32(pdat->virt + EMMC_DATA);
// } c++;
// status = read32(pdat->virt + PL180_STATUS); buf += blksize / 4;
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN); }
// }
//
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
// while(!err)
// {
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
// }
//
// if(status & PL180_STAT_DAT_TIME_OUT)
// return -RT_ERROR;
// else if (status & PL180_STAT_DAT_CRC_FAIL)
// return -RT_ERROR;
// else if (status & PL180_STAT_RX_OVERRUN)
// return -RT_ERROR;
// write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
//
// if(count)
// return -RT_ERROR;
return RT_EOK; return RT_EOK;
} }
static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize) static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{ {
rt_uint32_t * tmp = buf; int c = 0;
rt_uint32_t count = blkcount * blksize; rt_err_t ret;
rt_uint32_t status, err; int d;
int i; while (c < blkcount)
{
// status = read32(pdat->virt + PL180_STATUS); if ((ret = sd_int(pdat, INT_WRITE_RDY)))
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT); {
// while(!err && count) return ret;
// { }
// if(status & PL180_STAT_TX_FIFO_HALF) for (d=0; d < blksize / 4; d++)
// { write32(pdat->virt + EMMC_DATA, buf[d]);
// if(count >= 8 * sizeof(rt_uint32_t)) c++;
// { buf += blksize / 4;
// for(i = 0; i < 8; i++) }
// write32(pdat->virt + PL180_FIFO, *(tmp + i)); if ((ret = sd_int(pdat, INT_DATA_DONE)))
// tmp += 8; {
// count -= 8 * sizeof(rt_uint32_t); return ret;
// } }
// else
// {
// while(count >= sizeof(rt_uint32_t))
// {
// write32(pdat->virt + PL180_FIFO, *tmp);
// tmp++;
// count -= sizeof(rt_uint32_t);
// }
// }
// }
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT);
// }
//
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
// while(!err)
// {
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
// }
//
// if(status & PL180_STAT_DAT_TIME_OUT)
// return -RT_ERROR;
// else if (status & PL180_STAT_DAT_CRC_FAIL)
// return -RT_ERROR;
// write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
//
// if(count)
// return -RT_ERROR;
return RT_EOK; return RT_EOK;
} }
static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat) static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{ {
rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz); rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
rt_uint32_t blksz_bits = dat->blksz - 1; rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
rt_err_t ret = -RT_ERROR; if (ret)
{
write32(pdat->virt + EMMC_BLKSIZECNT, dlen); rt_kprintf("ERROR: EMMC busy\n");
return ret;
}
if (dat->blkcnt > 1)
{
struct sdhci_cmd_t newcmd;
newcmd.cmdidx = SET_BLOCK_COUNT;
newcmd.cmdarg = dat->blkcnt;
newcmd.resptype = RESP_R1;
ret = raspi_transfer_command(pdat, &newcmd);
if (ret) return ret;
}
if(dlen < 512)
{
write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
}
else
{
write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16);
}
if (dat->flag & DATA_DIR_READ) if (dat->flag & DATA_DIR_READ)
{ {
write32(pdat->virt + EMMC_STATUS, SR_READ_TRANSFER); cmd->datarw = DATA_READ;
ret = raspi_transfer_command(pdat, cmd); ret = raspi_transfer_command(pdat, cmd);
if (ret < 0) return ret; if (ret) return ret;
mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz );
ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz); ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
} }
else if (dat->flag & DATA_DIR_WRITE) else if (dat->flag & DATA_DIR_WRITE)
{ {
cmd->datarw = DATA_WRITE;
ret = raspi_transfer_command(pdat, cmd); ret = raspi_transfer_command(pdat, cmd);
if (ret < 0) return ret; if (ret) return ret;
write32(pdat->virt + EMMC_STATUS, SR_WRITE_TRANSFER); mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz );
ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz); ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
} }
return ret; return ret;
} }
static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
if (!dat)
return raspi_transfer_command(pdat, cmd);
return raspi_transfer_data(pdat, cmd, dat);
}
static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req) static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{ {
struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data; struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
struct sdhci_cmd_t cmd; struct sdhci_cmd_t cmd;
struct sdhci_cmd_t stop; struct sdhci_cmd_t stop;
struct sdhci_data_t dat; struct sdhci_data_t dat;
rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t)); rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t)); rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&dat, 0, sizeof(struct sdhci_data_t)); rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
cmd.cmdidx = req->cmd->cmd_code; cmd.cmdidx = req->cmd->cmd_code;
EMMCCommand* cmdtab = &sdCommandTable[cmd.cmdidx];
cmd.cmdarg = req->cmd->arg; cmd.cmdarg = req->cmd->arg;
cmd.resptype = cmdtab->resp; cmd.resptype =resp_type(req->cmd);
if (req->data) if (req->data)
{ {
dat.buf = (rt_uint8_t *)req->data->buf; dat.buf = (rt_uint8_t *)req->data->buf;
@ -288,43 +330,14 @@ static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *re
if (req->stop) if (req->stop)
{ {
stop.cmdidx = req->stop->cmd_code; stop.cmdidx = req->stop->cmd_code;
cmdtab = &sdCommandTable[cmd.cmdidx];
stop.cmdarg = req->stop->arg; stop.cmdarg = req->stop->arg;
cmd.resptype = cmdtab->resp; cmd.resptype =resp_type(req->stop);
req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL); req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
} }
mmcsd_req_complete(host); mmcsd_req_complete(host);
} }
static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
if(!dat)
return raspi_transfer_command(pdat, cmd);
return raspi_transfer_data(pdat, cmd, dat);
}
//#ifdef CONFIG_MMC_USE_DMA
//#ifdef BSP_USING_SDIO0
////ALIGN(32) static rt_uint8_t dma_buffer[64 * 1024];
//static rt_uint8_t dma_buffer[64 * 1024];
//#endif
//#endif
static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
sdhci_setclock(sdhci, io_cfg->clock);
sdhci_setwidth(sdhci, io_cfg->bus_width);
}
rt_int32_t mmc_card_status(struct rt_mmcsd_host *host) rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
{ {
return 0; return 0;
@ -344,11 +357,13 @@ static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
{ {
rt_uint32_t temp = 0; rt_uint32_t temp = 0;
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv; struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
if (width == MMCSD_BUS_WIDTH_4)
{
temp = read32((pdat->virt + EMMC_CONTROL0)); temp = read32((pdat->virt + EMMC_CONTROL0));
temp |= C0_HCTL_HS_EN; temp |= C0_HCTL_HS_EN;
temp |= C0_HCTL_DWITDH; // always use 4 data lines: temp |= C0_HCTL_DWITDH; // always use 4 data lines:
write32((pdat->virt + EMMC_CONTROL0), temp); write32((pdat->virt + EMMC_CONTROL0), temp);
}
return RT_EOK; return RT_EOK;
} }
@ -366,7 +381,8 @@ static rt_uint32_t sdhci_getdivider( rt_uint32_t sdHostVer, rt_uint32_t freq )
else else
divisor = (1 << shiftcount); divisor = (1 << shiftcount);
if (divisor <= 2) { if (divisor <= 2)
{
divisor = 2; divisor = 2;
shiftcount = 0; shiftcount = 0;
} }
@ -384,56 +400,55 @@ static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
rt_uint32_t temp = 0; rt_uint32_t temp = 0;
rt_uint32_t sdHostVer = 0; rt_uint32_t sdHostVer = 0;
int count = 100000; int count = 100000;
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv; struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)(sdhci->priv);
temp = read32(pdat->virt + EMMC_STATUS);
while((temp & (SR_CMD_INHIBIT | SR_DAT_INHIBIT))&&(--count))
bcm283x_clo_delayMicros(1);
while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
DELAY_MICROS(1);
if (count <= 0) if (count <= 0)
{ {
rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n", temp); rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n",read32(pdat->virt + EMMC_STATUS));
return RT_ERROR; return RT_ERROR;
} }
// Switch clock off. // Switch clock off.
temp = read32((pdat->virt + EMMC_CONTROL1)); temp = read32((pdat->virt + EMMC_CONTROL1));
temp |= ~C1_CLK_EN; temp &= ~C1_CLK_EN;
write32((pdat->virt + EMMC_CONTROL1),temp); write32((pdat->virt + EMMC_CONTROL1),temp);
DELAY_MICROS(10);
bcm283x_clo_delayMicros(10);
// Request the new clock setting and enable the clock // Request the new clock setting and enable the clock
temp = read32(pdat->virt + EMMC_SLOTISR_VER); temp = read32(pdat->virt + EMMC_SLOTISR_VER);
sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT; sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
int cdiv = sdhci_getdivider(sdHostVer, clock); int cdiv = sdhci_getdivider(sdHostVer, clock);
temp = read32((pdat->virt + EMMC_CONTROL1)); temp = read32((pdat->virt + EMMC_CONTROL1));
temp = (temp & 0xffff003f) | cdiv; temp = (temp & 0xffff003f) | cdiv;
write32((pdat->virt + EMMC_CONTROL1),temp); write32((pdat->virt + EMMC_CONTROL1),temp);
bcm283x_clo_delayMicros(10); DELAY_MICROS(10);
// Enable the clock. // Enable the clock.
temp = read32(pdat->virt + EMMC_CONTROL1); temp = read32(pdat->virt + EMMC_CONTROL1);
temp |= C1_CLK_EN; temp |= C1_CLK_EN;
write32((pdat->virt + EMMC_CONTROL1),temp); write32((pdat->virt + EMMC_CONTROL1),temp);
bcm283x_clo_delayMicros(10); DELAY_MICROS(10);
// Wait for clock to be stable. // Wait for clock to be stable.
count = 10000; count = 10000;
temp = read32(pdat->virt + EMMC_CONTROL1); while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
while( !(temp & C1_CLK_STABLE) && count-- ) DELAY_MICROS(10);
bcm283x_clo_delayMicros(10);
if (count <= 0) if (count <= 0)
{ {
rt_kprintf("EMMC: ERROR: failed to get stable clock.\n"); rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
return RT_ERROR; return RT_ERROR;
} }
mmcsd_dbg("set stable clock %d.\n", clock);
return RT_EOK; return RT_EOK;
} }
static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
sdhci_setclock(sdhci, io_cfg->clock);
sdhci_setwidth(sdhci, io_cfg->bus_width);
}
static const struct rt_mmcsd_host_ops ops = static const struct rt_mmcsd_host_ops ops =
{ {
mmc_request_send, mmc_request_send,
@ -444,27 +459,67 @@ static const struct rt_mmcsd_host_ops ops =
static void sdmmc_gpio_init() static void sdmmc_gpio_init()
{ {
int pin; // int pin;
// bcm283x_gpio_fsel(47,BCM283X_GPIO_FSEL_INPT);
// bcm283x_gpio_set_pud(47, BCM283X_GPIO_PUD_UP);
// bcm283x_peri_set_bits(BCM283X_GPIO_BASE + BCM283X_GPIO_GPHEN1, 1<<15, 1<<15);
// for (pin = 53; pin >= 48; pin--)
// {
// bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_ALT3);
// bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP);
// }
}
for (pin = BCM_GPIO_PIN_48; pin <= BCM_GPIO_PIN_53; pin++) static rt_err_t reset_emmc(struct sdhci_pdata_t * pdat){
rt_uint32_t temp;
int cnt;
write32((pdat->virt + EMMC_CONTROL0),0);
temp = read32((pdat->virt + EMMC_CONTROL1));
temp |= C1_SRST_HC;
write32((pdat->virt + EMMC_CONTROL1),temp);
cnt = 10000;
do
{ {
bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP); DELAY_MICROS(10);
bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_ALT3);
} }
bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP); while ((read32((pdat->virt + EMMC_CONTROL1)) & C1_SRST_HC) && cnt--);
bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_INPT); if (cnt <= 0)
{
rt_kprintf("ERROR: failed to reset EMMC\n");
return RT_ERROR;
} }
temp = read32((pdat->virt + EMMC_CONTROL1));
temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX;
write32((pdat->virt + EMMC_CONTROL1),temp);
DELAY_MICROS(10);
return RT_EOK;
}
#ifdef RT_MMCSD_DBG
void dump_registers(struct sdhci_pdata_t * pdat){
rt_kprintf("EMMC registers:");
int i = EMMC_ARG2;
for (; i <= EMMC_CONTROL2; i += 4)
rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
}
#endif
int raspi_sdmmc_init(void) int raspi_sdmmc_init(void)
{ {
rt_uint32_t virt; rt_uint32_t virt;
rt_uint32_t id;
struct rt_mmcsd_host * host = RT_NULL; struct rt_mmcsd_host * host = RT_NULL;
struct sdhci_pdata_t * pdat = RT_NULL; struct sdhci_pdata_t * pdat = RT_NULL;
struct sdhci_t * sdhci = RT_NULL; struct sdhci_t * sdhci = RT_NULL;
rt_kprintf("raspi_sdmmc_init start\n");
#ifdef BSP_USING_SDIO0 #ifdef BSP_USING_SDIO0
host = mmcsd_alloc_host(); host = mmcsd_alloc_host();
if (!host) if (!host)
@ -481,21 +536,19 @@ int raspi_sdmmc_init(void)
} }
rt_memset(sdhci, 0, sizeof(struct sdhci_t)); rt_memset(sdhci, 0, sizeof(struct sdhci_t));
rt_kprintf(">> sdmmc_gpio_init\n");
sdmmc_gpio_init(); sdmmc_gpio_init();
rt_kprintf("<< sdmmc_gpio_init\n");
virt = MMC0_BASE_ADDR; virt = MMC0_BASE_ADDR;
pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t)); pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
RT_ASSERT(pdat != RT_NULL); RT_ASSERT(pdat != RT_NULL);
pdat->virt = (rt_uint32_t)virt; pdat->virt = (rt_uint32_t)virt;
reset_emmc(pdat);
sdhci->name = "sd0"; sdhci->name = "sd0";
sdhci->voltages = VDD_33_34; sdhci->voltages = VDD_33_34;
sdhci->width = MMCSD_BUSWIDTH_4; sdhci->width = MMCSD_BUSWIDTH_4;
sdhci->clock = 26 * 1000 * 1000; sdhci->clock = 200 * 1000 * 1000;
sdhci->removeable = RT_TRUE; sdhci->removeable = RT_TRUE;
sdhci->detect = sdhci_detect; sdhci->detect = sdhci_detect;
@ -503,7 +556,6 @@ int raspi_sdmmc_init(void)
sdhci->setclock = sdhci_setclock; sdhci->setclock = sdhci_setclock;
sdhci->transfer = sdhci_transfer; sdhci->transfer = sdhci_transfer;
sdhci->priv = pdat; sdhci->priv = pdat;
//write32(pdat->virt + PL180_POWER, 0xbf);
host->ops = &ops; host->ops = &ops;
host->freq_min = 400000; host->freq_min = 400000;
@ -517,8 +569,13 @@ int raspi_sdmmc_init(void)
host->private_data = sdhci; host->private_data = sdhci;
write32((pdat->virt + EMMC_IRPT_EN),0xffffffff);
write32((pdat->virt + EMMC_IRPT_MASK),0xffffffff);
#ifdef RT_MMCSD_DBG
dump_registers(pdat);
#endif
mmcsd_change(host); mmcsd_change(host);
#endif
return RT_EOK; return RT_EOK;
err: err:
@ -526,7 +583,6 @@ err:
if (sdhci) rt_free(sdhci); if (sdhci) rt_free(sdhci);
return -RT_EIO; return -RT_EIO;
#endif
} }
INIT_APP_EXPORT(raspi_sdmmc_init);
#endif INIT_DEVICE_EXPORT(raspi_sdmmc_init);

View File

@ -13,50 +13,12 @@
#define __DRV_SDIO_H__ #define __DRV_SDIO_H__
#include <rtthread.h> #include <rtthread.h>
#include <rtdevice.h>
#include <drivers/mmcsd_core.h>
#define MMC0_BASE_ADDR 0x20300000 #include "board.h"
struct raspi_mmc #define MMC0_BASE_ADDR 0x3F300000
{
volatile rt_uint32_t arg2_reg; /* (0x000) */
volatile rt_uint32_t blksizecnt_reg; /* (0x004) */
volatile rt_uint32_t arg1_reg; /* (0x008) */
volatile rt_uint32_t cmdtm_reg; /* (0x00C) */
volatile rt_uint32_t resp0_reg; /* (0x010) */
volatile rt_uint32_t resp1_reg; /* (0x014) */
volatile rt_uint32_t resp2_reg; /* (0x018) */
volatile rt_uint32_t resp3_reg; /* (0x01C) */
volatile rt_uint32_t data_reg; /* (0x020) */
volatile rt_uint32_t status_reg; /* (0x024) */
volatile rt_uint32_t control0_reg; /* (0x028) */
volatile rt_uint32_t control1_reg; /* (0x02C) */
volatile rt_uint32_t interrupt_reg; /* (0x030) */
volatile rt_uint32_t irpt_mask_reg; /* (0x034) */
volatile rt_uint32_t irpt_en_reg; /* (0x038) */
volatile rt_uint32_t control2_reg; /* (0x03C) */
volatile rt_uint32_t reserved1[4]; /* (0x040) */
volatile rt_uint32_t force_irpt_reg; /* (0x050) */
volatile rt_uint32_t reserved2[7]; /* (0x054) */
volatile rt_uint32_t boot_timeout_reg; /* (0x070) */
volatile rt_uint32_t deg_sel_reg; /* (0x074) */
volatile rt_uint32_t reserved3[2]; /* (0x078) */
volatile rt_uint32_t exrdfifo_cfg_reg; /* (0x080) */
volatile rt_uint32_t exrdfifo_cn_reg; /* (0x084) */
volatile rt_uint32_t tune_step_reg; /* (0x088) */
volatile rt_uint32_t tune_step_std_reg; /* (0x08C) */
volatile rt_uint32_t tune_step_ddr_reg; /* (0x090) */
volatile rt_uint32_t reserved4[23]; /* (0x094) */
volatile rt_uint32_t spi_int_reg; /* (0x0f0) */
volatile rt_uint32_t reserved5[2]; /* (0x0f4) */
volatile rt_uint32_t slotisr_ver_reg; /* (0x0fC) */
};
typedef struct raspi_mmc *raspi_mmc_t;
#define MMC0 ((tina_mmc_t)MMC0_BASE_ADDR)
#define BIT(x) (1<<(x))
/* Struct for Intrrrupt Information */ /* Struct for Intrrrupt Information */
#define SDXC_CmdDone BIT(0) #define SDXC_CmdDone BIT(0)
@ -78,25 +40,6 @@ typedef struct raspi_mmc *raspi_mmc_t;
#define SDXC_DENDErr BIT(22) #define SDXC_DENDErr BIT(22)
#define SDXC_ACMDErr BIT(24) #define SDXC_ACMDErr BIT(24)
/*
SD CMD reg
REG[0-5] : Cmd ID
REG[6] : Has response
REG[7] : Long response
REG[8] : Check response CRC
REG[9] : Has data
REG[10] : Write
REG[11] : Steam mode
REG[12] : Auto stop
REG[13] : Wait previous over
REG[14] : About cmd
REG[15] : Send initialization
REG[21] : Update clock
REG[31] : Load cmd
*/
#define SDXC_BLKCNT_EN BIT(1) #define SDXC_BLKCNT_EN BIT(1)
#define SDXC_AUTO_CMD12_EN BIT(2) #define SDXC_AUTO_CMD12_EN BIT(2)
#define SDXC_AUTO_CMD23_EN BIT(3) #define SDXC_AUTO_CMD23_EN BIT(3)
@ -112,82 +55,20 @@ REG[31] : Load cmd
#define SDXC_CMD_RESUME BIT(23) #define SDXC_CMD_RESUME BIT(23)
#define SDXC_CMD_ABORT BIT(23)|BIT(22) #define SDXC_CMD_ABORT BIT(23)|BIT(22)
//#define SDXC_CHECK_CRC_CMD BIT(19)
//
//#define SDXC_RESPONSE_CMD BIT(6)
//#define SDXC_LONG_RESPONSE_CMD BIT(7)
//#define SDXC_CHECK_CRC_CMD BIT(8)
//#define SDXC_HAS_DATA_CMD BIT(9)
//#define SDXC_WRITE_CMD BIT(10)
//#define SDXC_STEAM_CMD BIT(11)
//#define SDXC_AUTO_STOP_CMD BIT(12)
//#define SDXC_WAIT_OVER_CMD BIT(13)
//#define SDXC_ABOUT_CMD BIT(14)
//#define SDXC_SEND_INIT_CMD BIT(15)
//#define SDXC_UPDATE_CLOCK_CMD BIT(21)
//#define SDXC_LOAD_CMD BIT(31)
/*
SD status reg
REG[0] : FIFO_RX_LEVEL
REG[1] : FIFO_TX_LEVEL
REG[2] : FIFO_EMPTY
REG[3] : FIFO_FULL
REG[4-7] : FSM_STA
REG[8] : CARD_PRESENT
REG[9] : CARD_BUSY
REG[10] : FSM_BUSY
REG[11-16]: RESP_IDX
REG[17-21]: FIFO_LEVEL
REG[31] : DMA_REQ
*/
#define SDXC_CMD_INHIBIT BIT(0) #define SDXC_CMD_INHIBIT BIT(0)
#define SDXC_DAT_INHIBIT BIT(1) #define SDXC_DAT_INHIBIT BIT(1)
#define SDXC_DAT_ACTIVE BIT(2) #define SDXC_DAT_ACTIVE BIT(2)
#define SDXC_WRITE_TRANSFER BIT(8) #define SDXC_WRITE_TRANSFER BIT(8)
#define SDXC_READ_TRANSFER BIT(9) #define SDXC_READ_TRANSFER BIT(9)
//
//
//#define SDXC_FIFO_RX_LEVEL BIT(0)
//#define SDXC_FIFO_TX_LEVEL BIT(1)
//#define SDXC_FIFO_EMPTY BIT(2)
//#define SDXC_FIFO_FULL BIT(3)
//#define SDXC_CARD_PRESENT BIT(8)
//#define SDXC_CARD_BUSY BIT(9)
//#define SDXC_FSM_BUSY BIT(10)
//#define SDXC_DMA_REQ BIT(31)
struct mmc_des_v4p1
{
rt_uint32_t : 1,
dic : 1, /* disable interrupt on completion */
last_des : 1, /* 1-this data buffer is the last buffer */
first_des : 1, /* 1-data buffer is the first buffer,0-data buffer contained in the next descriptor is 1st buffer */
des_chain : 1, /* 1-the 2nd address in the descriptor is the next descriptor address */
end_of_ring : 1, /* 1-last descriptor flag when using dual data buffer in descriptor */
: 24,
card_err_sum : 1, /* transfer error flag */
own : 1; /* des owner:1-idma owns it, 0-host owns it */
#define SDXC_DES_NUM_SHIFT 12 /* smhc2!! */
#define SDXC_DES_BUFFER_MAX_LEN (1 << SDXC_DES_NUM_SHIFT)
rt_uint32_t data_buf1_sz : 16,
data_buf2_sz : 16;
rt_uint32_t buf_addr_ptr1;
rt_uint32_t buf_addr_ptr2;
};
struct sdhci_cmd_t struct sdhci_cmd_t
{ {
rt_uint32_t cmdidx; rt_uint32_t cmdidx;
rt_uint32_t cmdarg; rt_uint32_t cmdarg;
//const char* name;
// rt_uint32_t code;
rt_uint32_t resptype; rt_uint32_t resptype;
// rt_uint8_t rca; rt_uint32_t datarw;
// rt_uint32_t delay; #define DATA_READ 1
#define DATA_WRITE 2
rt_uint32_t response[4]; rt_uint32_t response[4];
}; };
@ -240,17 +121,6 @@ struct sdhci_pdata_t
#define TM_BLKCNT_EN 0x00000002 #define TM_BLKCNT_EN 0x00000002
#define TM_MULTI_DATA (CMD_IS_DATA|TM_MULTI_BLOCK|TM_BLKCNT_EN) #define TM_MULTI_DATA (CMD_IS_DATA|TM_MULTI_BLOCK|TM_BLKCNT_EN)
// Response types.
// Note that on the PI, the index and CRC are dropped, leaving 32 bits in RESP0.
#define RESP_NO 0 // No response
//#define RESP_R1 1 // 48 RESP0 contains card status
#define RESP_R1b 11 // 48 RESP0 contains card status, data line indicates busy
#define RESP_R2I 2 // 136 RESP0..3 contains 128 bit CID shifted down by 8 bits as no CRC
#define RESP_R2S 12 // 136 RESP0..3 contains 128 bit CSD shifted down by 8 bits as no CRC
//#define RESP_R3 3 // 48 RESP0 contains OCR register
//#define RESP_R6 6 // 48 RESP0 contains RCA and status bits 23,22,19,12:0
//#define RESP_R7 7 // 48 RESP0 contains voltage acceptance and check pattern
#define RCA_NO 1 #define RCA_NO 1
#define RCA_YES 2 #define RCA_YES 2
@ -341,5 +211,43 @@ struct sdhci_pdata_t
#define SR_DAT_INHIBIT 0x00000002 #define SR_DAT_INHIBIT 0x00000002
#define SR_CMD_INHIBIT 0x00000001 #define SR_CMD_INHIBIT 0x00000001
#define CONFIG_MMC_USE_DMA
#define DMA_ALIGN (32U)
#define SD_CMD_INDEX(a) ((a) << 24)
#define SD_CMD_RESERVED(a) 0xffffffff
#define SD_CMD_INDEX(a) ((a) << 24)
#define SD_CMD_TYPE_NORMAL 0x0
#define SD_CMD_TYPE_SUSPEND (1 << 22)
#define SD_CMD_TYPE_RESUME (2 << 22)
#define SD_CMD_TYPE_ABORT (3 << 22)
#define SD_CMD_TYPE_MASK (3 << 22)
#define SD_CMD_ISDATA (1 << 21)
#define SD_CMD_IXCHK_EN (1 << 20)
#define SD_CMD_CRCCHK_EN (1 << 19)
#define SD_CMD_RSPNS_TYPE_NONE 0 // For no response
#define SD_CMD_RSPNS_TYPE_136 (1 << 16) // For response R2 (with CRC), R3,4 (no CRC)
#define SD_CMD_RSPNS_TYPE_48 (2 << 16) // For responses R1, R5, R6, R7 (with CRC)
#define SD_CMD_RSPNS_TYPE_48B (3 << 16) // For responses R1b, R5b (with CRC)
#define SD_CMD_RSPNS_TYPE_MASK (3 << 16)
#define SD_CMD_MULTI_BLOCK (1 << 5)
#define SD_CMD_DAT_DIR_HC 0
#define SD_CMD_DAT_DIR_CH (1 << 4)
#define SD_CMD_AUTO_CMD_EN_NONE 0
#define SD_CMD_AUTO_CMD_EN_CMD12 (1 << 2)
#define SD_CMD_AUTO_CMD_EN_CMD23 (2 << 2)
#define SD_CMD_BLKCNT_EN (1 << 1)
#define SD_CMD_DMA 1
#define SD_RESP_NONE SD_CMD_RSPNS_TYPE_NONE
#define SD_RESP_R1 (SD_CMD_RSPNS_TYPE_48) // | SD_CMD_CRCCHK_EN)
#define SD_RESP_R1b (SD_CMD_RSPNS_TYPE_48B) // | SD_CMD_CRCCHK_EN)
#define SD_RESP_R2 (SD_CMD_RSPNS_TYPE_136) //| SD_CMD_CRCCHK_EN)
#define SD_RESP_R3 SD_CMD_RSPNS_TYPE_48
#define SD_RESP_R4 SD_CMD_RSPNS_TYPE_136
#define SD_RESP_R5 (SD_CMD_RSPNS_TYPE_48 | SD_CMD_CRCCHK_EN)
#define SD_RESP_R5b (SD_CMD_RSPNS_TYPE_48B | SD_CMD_CRCCHK_EN)
#define SD_RESP_R6 (SD_CMD_RSPNS_TYPE_48 | SD_CMD_CRCCHK_EN)
#define SD_RESP_R7 (SD_CMD_RSPNS_TYPE_48 | SD_CMD_CRCCHK_EN)
#define SD_DATA_READ (SD_CMD_ISDATA | SD_CMD_DAT_DIR_CH)
#define SD_DATA_WRITE (SD_CMD_ISDATA | SD_CMD_DAT_DIR_HC)
#endif #endif

View File

@ -67,4 +67,10 @@ enum rpi_pin_name
RPI_GPIO_PIN_NUM, RPI_GPIO_PIN_NUM,
}; };
#define DELAY_MICROS(micros) \
do{ \
rt_uint32_t compare = STIMER_CLO + micros * 25; \
while (STIMER_CLO < compare); \
} while (0) \
#endif #endif

5
bsp/raspberry-pi/raspi3-64/qemu-64.bat Normal file → Executable file
View File

@ -1 +1,4 @@
qemu-system-aarch64 -M raspi3 -kernel kernel8.img -serial null -serial stdio if [ ! -f "sd.bin" ]; then
dd if=/dev/zero of=sd.bin bs=1024 count=65536
fi
qemu-system-aarch64 -M raspi3 -kernel kernel8.img -serial null -serial stdio -sd sd.bin -nographic -monitor pty

View File

@ -43,7 +43,7 @@
#define RT_USING_DEVICE #define RT_USING_DEVICE
#define RT_USING_DEVICE_OPS #define RT_USING_DEVICE_OPS
#define RT_USING_CONSOLE #define RT_USING_CONSOLE
#define RT_CONSOLEBUF_SIZE 128 #define RT_CONSOLEBUF_SIZE 512
#define RT_CONSOLE_DEVICE_NAME "uart1" #define RT_CONSOLE_DEVICE_NAME "uart1"
#define RT_VER_NUM 0x40003 #define RT_VER_NUM 0x40003
#define ARCH_CPU_64BIT #define ARCH_CPU_64BIT
@ -52,7 +52,7 @@
#define RT_USING_COMPONENTS_INIT #define RT_USING_COMPONENTS_INIT
#define RT_USING_USER_MAIN #define RT_USING_USER_MAIN
#define RT_MAIN_THREAD_STACK_SIZE 2048 #define RT_MAIN_THREAD_STACK_SIZE 4096
#define RT_MAIN_THREAD_PRIORITY 10 #define RT_MAIN_THREAD_PRIORITY 10
/* C++ features */ /* C++ features */
@ -81,6 +81,18 @@
#define DFS_FILESYSTEMS_MAX 2 #define DFS_FILESYSTEMS_MAX 2
#define DFS_FILESYSTEM_TYPES_MAX 2 #define DFS_FILESYSTEM_TYPES_MAX 2
#define DFS_FD_MAX 16 #define DFS_FD_MAX 16
#define RT_USING_DFS_ELMFAT
/* elm-chan's FatFs, Generic FAT Filesystem Module */
#define RT_DFS_ELM_CODE_PAGE 437
#define RT_DFS_ELM_WORD_ACCESS
#define RT_DFS_ELM_USE_LFN_3
#define RT_DFS_ELM_USE_LFN 3
#define RT_DFS_ELM_MAX_LFN 255
#define RT_DFS_ELM_DRIVES 2
#define RT_DFS_ELM_MAX_SECTOR_SIZE 512
#define RT_DFS_ELM_REENTRANT
#define RT_USING_DFS_DEVFS #define RT_USING_DFS_DEVFS
/* Device Drivers */ /* Device Drivers */
@ -90,6 +102,13 @@
#define RT_USING_SERIAL #define RT_USING_SERIAL
#define RT_SERIAL_RB_BUFSZ 64 #define RT_SERIAL_RB_BUFSZ 64
#define RT_USING_PIN #define RT_USING_PIN
#define RT_USING_SDIO
#define RT_SDIO_STACK_SIZE 2048
#define RT_SDIO_THREAD_PRIORITY 15
#define RT_MMCSD_STACK_SIZE 4096
#define RT_MMCSD_THREAD_PREORITY 22
#define RT_MMCSD_MAX_PARTITION 16
#define RT_SDIO_DEBUG
/* Using USB */ /* Using USB */
@ -174,6 +193,8 @@
#define RT_USING_UART1 #define RT_USING_UART1
#define BSP_USING_PIN #define BSP_USING_PIN
#define BSP_USING_CORETIMER #define BSP_USING_CORETIMER
#define BSP_USING_SDIO
#define BSP_USING_SDIO0
/* Board Peripheral Drivers */ /* Board Peripheral Drivers */

View File

@ -610,7 +610,7 @@ RTM_EXPORT(mmcsd_wait_cd_changed);
void mmcsd_change(struct rt_mmcsd_host *host) void mmcsd_change(struct rt_mmcsd_host *host)
{ {
rt_mb_send(&mmcsd_detect_mb, (rt_uint32_t)host); rt_mb_send(&mmcsd_detect_mb, (rt_ubase_t)host);
} }
void mmcsd_detect(void *param) void mmcsd_detect(void *param)
@ -649,7 +649,7 @@ void mmcsd_detect(void *param)
if (init_sd(host, ocr)) if (init_sd(host, ocr))
mmcsd_power_off(host); mmcsd_power_off(host);
mmcsd_host_unlock(host); mmcsd_host_unlock(host);
rt_mb_send(&mmcsd_hotpluge_mb, (rt_uint32_t)host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host);
continue; continue;
} }
@ -662,7 +662,7 @@ void mmcsd_detect(void *param)
if (init_mmc(host, ocr)) if (init_mmc(host, ocr))
mmcsd_power_off(host); mmcsd_power_off(host);
mmcsd_host_unlock(host); mmcsd_host_unlock(host);
rt_mb_send(&mmcsd_hotpluge_mb, (rt_uint32_t)host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host);
continue; continue;
} }
mmcsd_host_unlock(host); mmcsd_host_unlock(host);
@ -683,7 +683,7 @@ void mmcsd_detect(void *param)
host->card = RT_NULL; host->card = RT_NULL;
} }
mmcsd_host_unlock(host); mmcsd_host_unlock(host);
rt_mb_send(&mmcsd_hotpluge_mb, (rt_uint32_t)host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host);
} }
} }
} }