rt-thread-official/bsp/lpc5410x/Libraries/Device/startup/cr_startup_lpc5410x.c

483 lines
19 KiB
C
Raw Normal View History

2014-12-16 19:54:29 +08:00
//*****************************************************************************
// LPC5410x Microcontroller Startup code for use with LPCXpresso IDE
//
// Version : 141022
//*****************************************************************************
//
// Copyright(C) NXP Semiconductors, 2014
// All rights reserved.
//
// Software that is described herein is for illustrative purposes only
// which provides customers with programming information regarding the
// LPC products. This software is supplied "AS IS" without any warranties of
// any kind, and NXP Semiconductors and its licensor disclaim any and
// all warranties, express or implied, including all implied warranties of
// merchantability, fitness for a particular purpose and non-infringement of
// intellectual property rights. NXP Semiconductors assumes no responsibility
// or liability for the use of the software, conveys no license or rights under any
// patent, copyright, mask work right, or any other intellectual property rights in
// or to any products. NXP Semiconductors reserves the right to make changes
// in the software without notification. NXP Semiconductors also makes no
// representation or warranty that such application will be suitable for the
// specified use without further testing or modification.
//
// Permission to use, copy, modify, and distribute this software and its
// documentation is hereby granted, under NXP Semiconductors' and its
// licensor's relevant copyrights in the software, without fee, provided that it
// is used in conjunction with NXP Semiconductors microcontrollers. This
// copyright, permission, and disclaimer notice must appear in all copies of
// this code.
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
extern void __libc_init_array(void);
}
#endif
#endif
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif
//*****************************************************************************
#if defined (__USE_CMSIS) || defined (__USE_LPCOPEN)
// Declaration of external SystemInit function
extern void SystemInit(void);
#endif
//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will
// automatically take precedence over these weak definitions
//
//*****************************************************************************
void ResetISR(void);
#if defined (__MULTICORE_MASTER)
void ResetISR2(void);
#endif
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void MemManage_Handler(void);
WEAK void BusFault_Handler(void);
WEAK void UsageFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void DebugMon_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);
//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take
// precedence over these weak definitions
//
//*****************************************************************************
// External Interrupts - Available on M0/M4
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void BOD_IRQHandler(void) ALIAS(IntDefaultHandler);
void Reserved_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void GINT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT2_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT3_IRQHandler(void) ALIAS(IntDefaultHandler);
void UTICK_IRQHandler(void) ALIAS(IntDefaultHandler);
void MRT_IRQHandler(void) ALIAS(IntDefaultHandler);
void CT32B0_IRQHandler(void) ALIAS(IntDefaultHandler);
void CT32B1_IRQHandler(void) ALIAS(IntDefaultHandler);
void CT32B2_IRQHandler(void) ALIAS(IntDefaultHandler);
void CT32B3_IRQHandler(void) ALIAS(IntDefaultHandler);
void CT32B4_IRQHandler(void) ALIAS(IntDefaultHandler);
void SCT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART3_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C2_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI1_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_SEQA_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_SEQB_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_THCMP_IRQHandler(void) ALIAS(IntDefaultHandler);
void RTC_IRQHandler(void) ALIAS(IntDefaultHandler);
void MAILBOX_IRQHandler(void) ALIAS(IntDefaultHandler);
// External Interrupts - For M4 only
void GINT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT4_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT5_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT6_IRQHandler(void) ALIAS(IntDefaultHandler);
void PIN_INT7_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI2_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI3_IRQHandler(void) ALIAS(IntDefaultHandler);
void RIT_IRQHandler(void) ALIAS(IntDefaultHandler);
void Reserved41_IRQHandler(void) ALIAS(IntDefaultHandler);
void Reserved42_IRQHandler(void) ALIAS(IntDefaultHandler);
void Reserved43_IRQHandler(void) ALIAS(IntDefaultHandler);
void Reserved44_IRQHandler(void) ALIAS(IntDefaultHandler);
//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);
//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
// Core Level - CM3
&_vStackTop, // The initial stack pointer
ResetISR, // The reset handler
NMI_Handler, // The NMI handler
HardFault_Handler, // The hard fault handler
MemManage_Handler, // The MPU fault handler
BusFault_Handler, // The bus fault handler
UsageFault_Handler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
SVC_Handler, // SVCall handler
DebugMon_Handler, // Debug monitor handler
0, // Reserved
PendSV_Handler, // The PendSV handler
SysTick_Handler, // The SysTick handler
// External Interrupts - Available on M0/M4
WDT_IRQHandler, // Watchdog
BOD_IRQHandler, // Brown Out Detect
Reserved_IRQHandler, // Reserved
DMA_IRQHandler, // DMA Controller
GINT0_IRQHandler, // GPIO Group0 Interrupt
PIN_INT0_IRQHandler, // PIO INT0
PIN_INT1_IRQHandler, // PIO INT1
PIN_INT2_IRQHandler, // PIO INT2
PIN_INT3_IRQHandler, // PIO INT3
UTICK_IRQHandler, // UTICK timer
MRT_IRQHandler, // Multi-Rate Timer
CT32B0_IRQHandler, // Counter Timer 0
CT32B1_IRQHandler, // Counter Timer 1
CT32B2_IRQHandler, // Counter Timer 2
CT32B3_IRQHandler, // Counter Timer 3
CT32B4_IRQHandler, // Counter Timer 4
SCT0_IRQHandler, // Smart Counter Timer
UART0_IRQHandler, // UART0
UART1_IRQHandler, // UART1
UART2_IRQHandler, // UART2
UART3_IRQHandler, // UART3
I2C0_IRQHandler, // I2C0 controller
I2C1_IRQHandler, // I2C1 controller
I2C2_IRQHandler, // I2C2 controller
SPI0_IRQHandler, // SPI0 controller
SPI1_IRQHandler, // SPI1 controller
ADC_SEQA_IRQHandler, // ADC SEQA
ADC_SEQB_IRQHandler, // ADC SEQB
ADC_THCMP_IRQHandler, // ADC THCMP and OVERRUN ORed
RTC_IRQHandler, // RTC Timer
Reserved_IRQHandler, // Reserved
MAILBOX_IRQHandler, // Mailbox
// External Interrupts - For M4 only
GINT1_IRQHandler, // GPIO Group1 Interrupt
PIN_INT4_IRQHandler, // PIO INT4
PIN_INT5_IRQHandler, // PIO INT5
PIN_INT6_IRQHandler, // PIO INT6
PIN_INT7_IRQHandler, // PIO INT7
SPI2_IRQHandler, // SPI2 controller
SPI3_IRQHandler, // SPI3 controller
0, // Reserved
RIT_IRQHandler, // RIT Timer
Reserved41_IRQHandler, // Reserved
Reserved42_IRQHandler, // Reserved
Reserved43_IRQHandler, // Reserved
Reserved44_IRQHandler, // Reserved
}; /* End of g_pfnVectors */
//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int *pulSrc = (unsigned int*) romstart;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = *pulSrc++;
}
__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
unsigned int *pulDest = (unsigned int*) start;
unsigned int loop;
for (loop = 0; loop < len; loop = loop + 4)
*pulDest++ = 0;
}
//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;
//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//*****************************************************************************
#if defined (__MULTICORE_MASTER)
//#define cpu_ctrl 0x40000300
//#define coproc_boot 0x40000304
//#define set coproc_stack 0x40000308
__attribute__ ((naked, section(".after_vectors.reset")))
void ResetISR(void) {
asm volatile(
".set cpu_ctrl, 0x40000300\t\n"
".set coproc_boot, 0x40000304\t\n"
".set coproc_stack, 0x40000308\t\n"
"MOVS R5, #1\t\n"
"LDR R0, =0xE000ED00\t\n"
"LDR R1, [R0]\t\n" // READ CPUID register
"LDR R2,=0x410CC601\t\n" // CM0 R0p1 identifier
"EORS R1,R1,R2\t\n" // XOR to see if we are C0
"LDR R3, =cpu_ctrl\t\n" // get address of CPU_CTRL
"LDR R1,[R3]\t\n" // read cpu_ctrl reg into R1
"BEQ.N cm0_boot\t\n"
"cm4_boot:\t\n"
"LDR R0,=coproc_boot\t\n" // coproc boot address
"LDR R0,[R0]\t\n" // get address to branch to
"MOVS R0,R0\t\n" // Check if 0
"BEQ.N check_master_m4\t\n" // if zero in boot reg, we just branch to real reset
"BX R0\t\n" // otherwise, we branch to boot address
"commonboot:\t\n"
"LDR R0, =ResetISR2\t\n" // Jump to 'real' reset handler
"BX R0\t\n"
"cm0_boot:\t\n"
"LDR R0,=coproc_boot\t\n" // coproc boot address
"LDR R0,[R0]\t\n" // get address to branch to
"MOVS R0,R0\t\n" // Check if 0
"BEQ.N check_master_m0\t\n" // if zero in boot reg, we just branch to real reset
"LDR R1,=coproc_stack\t\n" // pickup coprocesor stackpointer (from syscon CPSTACK)
"LDR R1,[R1]\t\n"
"MOV SP,R1\t\n"
"BX R0\t\n" // goto boot address
"check_master_m0:\t\n"
"ANDS R1,R1,R5\t\n" // bit test bit0
"BEQ.N commonboot\t\n" // if we get 0, that means we are masters
"B.N goto_sleep_pending_reset\t\n" // Otherwise, there is no startup vector for slave, so we go to sleep
"check_master_m4:\t\n"
"ANDS R1,R1,R5\t\n" // bit test bit0
"BNE.N commonboot\t\n" // if we get 1, that means we are masters
"goto_sleep_pending_reset:\t\n"
"MOV SP,R5\t\n" // load 0x1 into SP so that any stacking (eg on NMI) will not cause us to wakeup
// and write to uninitialised Stack area (instead it will LOCK us up before we cause damage)
// this code should only be reached if debugger bypassed ROM or we changed master without giving
// correct start address, the only way out of this is through a debugger change of SP and PC
"sleepo:\t\n"
"WFI\t\n" // go to sleep
"B.N sleepo\t\n"
);
}
__attribute__ ((section(".after_vectors.reset")))
void ResetISR2(void) {
#else
__attribute__ ((section(".after_vectors.reset")))
void ResetISR(void) {
#endif
// If this is not the CM0+ core...
#if !defined (CORE_M0PLUS)
// If this is not a slave project...
#if !defined (__MULTICORE_M0SLAVE) && \
!defined (__MULTICORE_M4SLAVE)
// Optionally enable RAM banks that may be off by default at reset
#if !defined (DONT_ENABLE_DISABLED_RAMBANKS)
volatile unsigned int *SYSCON_SYSAHBCLKCTRL0 = (unsigned int *) 0x400000c0;
// Ensure that SRAM2(4) bit in SYSAHBCLKCTRL0 are set
*SYSCON_SYSAHBCLKCTRL0 |= (1 << 4);
#endif
#endif
#endif
//
// Copy the data sections from flash to SRAM.
//
unsigned int LoadAddr, ExeAddr, SectionLen;
unsigned int *SectionTableAddr;
// Load base address of Global Section Table
SectionTableAddr = &__data_section_table;
// Copy the data sections from flash to SRAM.
while (SectionTableAddr < &__data_section_table_end) {
LoadAddr = *SectionTableAddr++;
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
data_init(LoadAddr, ExeAddr, SectionLen);
}
// At this point, SectionTableAddr = &__bss_section_table;
// Zero fill the bss segment
while (SectionTableAddr < &__bss_section_table_end) {
ExeAddr = *SectionTableAddr++;
SectionLen = *SectionTableAddr++;
bss_init(ExeAddr, SectionLen);
}
#if !defined (__USE_LPCOPEN)
// LPCOpen init code deals with FP and VTOR initialisation
#if defined (__VFP_FP__) && !defined (__SOFTFP__)
/*
* Code to enable the Cortex-M4 FPU only included
* if appropriate build options have been selected.
* Code taken from Section 7.1, Cortex-M4 TRM (DDI0439C)
*/
// CPACR is located at address 0xE000ED88
asm("LDR.W R0, =0xE000ED88");
// Read CPACR
asm("LDR R1, [R0]");
// Set bits 20-23 to enable CP10 and CP11 coprocessors
asm(" ORR R1, R1, #(0xF << 20)");
// Write back the modified value to the CPACR
asm("STR R1, [R0]");
#endif // (__VFP_FP__) && !(__SOFTFP__)
// ******************************
// Check to see if we are running the code from a non-zero
// address (eg RAM, external flash), in which case we need
// to modify the VTOR register to tell the CPU that the
// vector table is located at a non-0x0 address.
// Note that we do not use the CMSIS register access mechanism,
// as there is no guarantee that the project has been configured
// to use CMSIS.
unsigned int * pSCB_VTOR = (unsigned int *) 0xE000ED08;
if ((unsigned int *) g_pfnVectors != (unsigned int *) 0x00000000) {
// CMSIS : SCB->VTOR = <address of vector table>
*pSCB_VTOR = (unsigned int) g_pfnVectors;
}
#endif
#if defined (__USE_CMSIS) || defined (__USE_LPCOPEN)
SystemInit();
#endif
#if defined (__cplusplus)
//
// Call C++ library initialisation
//
__libc_init_array();
#endif
#if defined (__REDLIB__)
// Call the Redlib library, which in turn calls main()
__main();
#else
main();
#endif
//
// main() shouldn't return, but if it does, we'll just enter an infinite loop
//
while (1) {
;
}
}
//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void) {
while (1) {
}
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void) {
while (1) {
}
}
__attribute__ ((section(".after_vectors")))
void SVC_Handler(void) {
while (1) {
}
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void) {
while (1) {
}
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void) {
while (1) {
}
}
//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void) {
while (1) {
}
}