rt-thread-official/components/drivers/sdio/sdio.c

1345 lines
29 KiB
C
Raw Normal View History

/*
* File : sdio.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2012-01-13 weety first version
*/
#include <drivers/mmcsd_core.h>
#include <drivers/sdio.h>
#ifndef RT_SDIO_STACK_SIZE
#define RT_SDIO_STACK_SIZE 512
#endif
#ifndef RT_SDIO_THREAD_PREORITY
#define RT_SDIO_THREAD_PREORITY 0x40
#endif
static rt_list_t sdio_cards;
static rt_list_t sdio_drivers;
struct sdio_card {
struct rt_mmcsd_card *card;
rt_list_t list;
};
struct sdio_driver {
struct rt_sdio_driver *drv;
rt_list_t list;
};
#define MIN(a, b) (a < b ? a : b)
static const rt_uint8_t speed_value[16] =
{ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 };
static const rt_uint32_t speed_unit[8] =
{ 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 };
rt_inline rt_int32_t sdio_match_card(struct rt_mmcsd_card *card,
const struct rt_sdio_device_id *id);
rt_int32_t sdio_io_send_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t
*cmd5_resp)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t i, err = 0;
RT_ASSERT(host != RT_NULL);
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_IO_SEND_OP_COND;
cmd.arg = ocr;
cmd.flags = RESP_SPI_R4 | RESP_R4 | CMD_BCR;
for (i = 100; i; i--)
{
err = mmcsd_send_cmd(host, &cmd, 0);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (controller_is_spi(host))
{
/*
* Both R1_SPI_IDLE and MMC_CARD_BUSY indicate
* an initialized card under SPI, but some cards
* (Marvell's) only behave when looking at this
* one.
*/
if (cmd.resp[1] & CARD_BUSY)
break;
}
else
{
if (cmd.resp[0] & CARD_BUSY)
break;
}
err = -RT_ETIMEOUT;
mmcsd_delay_ms(10);
}
if (cmd5_resp)
*cmd5_resp = cmd.resp[controller_is_spi(host) ? 1 : 0];
return err;
}
rt_int32_t sdio_io_rw_direct(struct rt_mmcsd_card *card, rt_int32_t rw, rt_uint32_t fn,
rt_uint32_t reg_addr, rt_uint8_t *pdata, rt_uint8_t raw)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t err;
RT_ASSERT(card != RT_NULL);
RT_ASSERT(fn <= SDIO_MAX_FUNCTIONS);
if (reg_addr & ~SDIO_ARG_CMD53_REG_MASK)
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_IO_RW_DIRECT;
cmd.arg = rw ? SDIO_ARG_CMD52_WRITE : SDIO_ARG_CMD52_READ;
cmd.arg |= fn << SDIO_ARG_CMD52_FUNC_SHIFT;
cmd.arg |= raw ? SDIO_ARG_CMD52_RAW_FLAG : 0x00000000;
cmd.arg |= reg_addr << SDIO_ARG_CMD52_REG_SHIFT;
cmd.arg |= *pdata;
cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 0);
if (err)
return err;
if (!controller_is_spi(card->host))
{
if (cmd.resp[0] & R5_ERROR)
return -RT_EIO;
if (cmd.resp[0] & R5_FUNCTION_NUMBER)
return -RT_ERROR;
if (cmd.resp[0] & R5_OUT_OF_RANGE)
return -RT_ERROR;
}
if (!rw || raw)
{
if (controller_is_spi(card->host))
*pdata = (cmd.resp[0] >> 8) & 0xFF;
else
*pdata = cmd.resp[0] & 0xFF;
}
return 0;
}
rt_int32_t sdio_io_rw_extended(struct rt_mmcsd_card *card, rt_int32_t rw, rt_uint32_t fn,
rt_uint32_t addr, rt_int32_t op_code, rt_uint8_t *buf, rt_uint32_t blocks, rt_uint32_t blksize)
{
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
RT_ASSERT(card != RT_NULL);
RT_ASSERT(fn <= SDIO_MAX_FUNCTIONS);
RT_ASSERT(blocks != 1 || blksize <= 512);
RT_ASSERT(blocks != 0);
RT_ASSERT(blksize != 0);
if (addr & ~SDIO_ARG_CMD53_REG_MASK)
return -RT_ERROR;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SD_IO_RW_EXTENDED;
cmd.arg = rw ? SDIO_ARG_CMD53_WRITE : SDIO_ARG_CMD53_READ;
cmd.arg |= fn << SDIO_ARG_CMD53_FUNC_SHIFT;
cmd.arg |= op_code ? SDIO_ARG_CMD53_INCREMENT : 0x00000000;
cmd.arg |= addr << SDIO_ARG_CMD53_REG_SHIFT;
if (blocks == 1 && blksize <= 512)
cmd.arg |= (blksize == 512) ? 0 : blksize; /* byte mode */
else
cmd.arg |= SDIO_ARG_CMD53_BLOCK_MODE | blocks; /* block mode */
cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_ADTC;
data.blksize = blksize;
data.blks = blocks;
data.flags = rw ? DATA_DIR_WRITE : DATA_DIR_READ;
data.buf = (rt_uint32_t *)buf;
mmcsd_set_data_timeout(&data, card);
mmcsd_send_request(card->host, &req);
if (cmd.err)
return cmd.err;
if (data.err)
return data.err;
if (!controller_is_spi(card->host))
{
if (cmd.resp[0] & R5_ERROR)
return -RT_EIO;
if (cmd.resp[0] & R5_FUNCTION_NUMBER)
return -RT_ERROR;
if (cmd.resp[0] & R5_OUT_OF_RANGE)
return -RT_ERROR;
}
return 0;
}
rt_inline rt_uint32_t sdio_max_block_size(struct rt_sdio_function *func)
{
rt_uint32_t size = MIN(func->card->host->max_seg_size,
func->card->host->max_blk_size);
size = MIN(size, func->max_blk_size);
return MIN(size, 512u); /* maximum size for byte mode */
}
static rt_int32_t sdio_io_rw_extended_block(struct rt_sdio_function *func, rt_int32_t rw,
rt_uint32_t addr, rt_int32_t op_code, rt_uint8_t *buf, rt_uint32_t len)
{
rt_int32_t ret;
rt_uint32_t left_size;
rt_uint32_t max_blks, blks;
left_size = len;
/* Do the bulk of the transfer using block mode (if supported). */
if (func->card->cccr.multi_block && (len > sdio_max_block_size(func))) {
max_blks = MIN(func->card->host->max_blk_count,
func->card->host->max_seg_size / func->cur_blk_size);
max_blks = MIN(max_blks, 511u);
while (left_size > func->cur_blk_size) {
blks = left_size / func->cur_blk_size;
if (blks > max_blks)
blks = max_blks;
len = blks * func->cur_blk_size;
ret = sdio_io_rw_extended(func->card, rw, func->num,
addr, op_code, buf, blks, func->cur_blk_size);
if (ret)
return ret;
left_size -= len;
buf += len;
if (op_code)
addr += len;
}
}
while (left_size > 0) {
len = MIN(left_size, sdio_max_block_size(func));
ret = sdio_io_rw_extended(func->card, rw, func->num,
addr, op_code, buf, 1, len);
if (ret)
return ret;
left_size -= len;
buf += len;
if (op_code)
addr += len;
}
return 0;
}
rt_uint8_t sdio_io_readb(struct rt_sdio_function *func,
rt_uint32_t reg, rt_int32_t *err)
{
rt_uint8_t data;
rt_int32_t ret;
ret = sdio_io_rw_direct(func->card, 0, func->num, reg, &data, 0);
if (err)
{
*err = ret;
}
return data;
}
rt_int32_t sdio_io_writeb(struct rt_sdio_function *func,
rt_uint32_t reg, rt_uint8_t data)
{
return sdio_io_rw_direct(func->card, 1, func->num, reg, &data, 0);
}
rt_uint16_t sdio_io_readw(struct rt_sdio_function *func, rt_uint32_t addr, rt_int32_t *err)
{
rt_int32_t ret;
rt_uint32_t dmabuf;
if (err)
*err = 0;
ret = sdio_io_rw_extended_block(func, 0, addr, 1, (rt_uint8_t *)&dmabuf, 2);
if (ret)
{
if (err)
*err = ret;
}
return (rt_uint16_t)dmabuf;
}
rt_int32_t sdio_io_writew(struct rt_sdio_function *func, rt_uint16_t data, rt_uint32_t addr)
{
rt_uint32_t dmabuf = data;
return sdio_io_rw_extended_block(func, 1, addr, 1, (rt_uint8_t *)&dmabuf, 2);
}
rt_uint32_t sdio_io_readl(struct rt_sdio_function *func, rt_uint32_t addr, rt_int32_t *err)
{
rt_int32_t ret;
rt_uint32_t dmabuf;
if (err)
*err = 0;
ret = sdio_io_rw_extended_block(func, 0, addr, 1, (rt_uint8_t *)&dmabuf, 4);
if (ret)
{
if (err)
*err = ret;
}
return dmabuf;
}
rt_int32_t sdio_io_writel(struct rt_sdio_function *func, rt_uint32_t data, rt_uint32_t addr)
{
rt_uint32_t dmabuf = data;
return sdio_io_rw_extended_block(func, 1, addr, 1, (rt_uint8_t *)&dmabuf, 4);
}
rt_int32_t sdio_io_read_multi_fifo_b(struct rt_sdio_function *func,
rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len)
{
return sdio_io_rw_extended_block(func, 0, addr, 0, buf, len);
}
rt_int32_t sdio_io_write_multi_fifo_b(struct rt_sdio_function *func,
rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len)
{
return sdio_io_rw_extended_block(func, 1, addr, 0, buf, len);
}
rt_int32_t sdio_io_read_multi_incr_b(struct rt_sdio_function *func,
rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len)
{
return sdio_io_rw_extended_block(func, 0, addr, 1, buf, len);
}
rt_int32_t sdio_io_write_multi_incr_b(struct rt_sdio_function *func,
rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len)
{
return sdio_io_rw_extended_block(func, 1, addr, 1, buf, len);
}
static rt_int32_t sdio_read_cccr(struct rt_mmcsd_card *card)
{
rt_int32_t ret;
rt_int32_t cccr_version;
rt_uint8_t data;
rt_memset(&card->cccr, 0, sizeof(struct rt_sdio_cccr));
data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CCCR_REV, &ret);
if (ret)
goto out;
cccr_version = data & 0x0f;
if (cccr_version > SDIO_CCCR_REV_1_20)
{
rt_kprintf("unrecognised CCCR structure version %d\n", cccr_version);
return -RT_ERROR;
}
card->cccr.sdio_version = (data & 0xf0) >> 4;
data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CARD_CAPS, &ret);
if (ret)
goto out;
if (data & SDIO_CCCR_CAP_SMB)
card->cccr.multi_block = 1;
if (data & SDIO_CCCR_CAP_LSC)
card->cccr.low_speed = 1;
if (data & SDIO_CCCR_CAP_4BLS)
card->cccr.low_speed_4 = 1;
if (data & SDIO_CCCR_CAP_4BLS)
card->cccr.bus_width = 1;
if (cccr_version >= SDIO_CCCR_REV_1_10)
{
data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_POWER_CTRL, &ret);
if (ret)
goto out;
if (data & SDIO_POWER_SMPC)
card->cccr.power_ctrl = 1;
}
if (cccr_version >= SDIO_CCCR_REV_1_20)
{
data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret);
if (ret)
goto out;
if (data & SDIO_SPEED_SHS)
card->cccr.high_speed = 1;
}
out:
return ret;
}
static rt_int32_t cistpl_funce_func0(struct rt_mmcsd_card *card,
const rt_uint8_t *buf, rt_uint32_t size)
{
if (size < 0x04 || buf[0] != 0)
return -RT_ERROR;
/* TPLFE_FN0_BLK_SIZE */
card->cis.func0_blk_size = buf[1] | (buf[2] << 8);
/* TPLFE_MAX_TRAN_SPEED */
card->cis.max_tran_speed = speed_value[(buf[3] >> 3) & 15] *
speed_unit[buf[3] & 7];
return 0;
}
static rt_int32_t cistpl_funce_func(struct rt_sdio_function *func,
const rt_uint8_t *buf, rt_uint32_t size)
{
rt_uint32_t version;
rt_uint32_t min_size;
version = func->card->cccr.sdio_version;
min_size = (version == SDIO_SDIO_REV_1_00) ? 28 : 42;
if (size < min_size || buf[0] != 1)
return -RT_ERROR;
/* TPLFE_MAX_BLK_SIZE */
func->max_blk_size = buf[12] | (buf[13] << 8);
/* TPLFE_ENABLE_TIMEOUT_VAL, present in ver 1.1 and above */
if (version > SDIO_SDIO_REV_1_00)
func->enable_timeout_val = (buf[28] | (buf[29] << 8)) * 10;
else
func->enable_timeout_val = 1000; /* 1000ms */
return 0;
}
static rt_int32_t sdio_read_cis(struct rt_sdio_function *func)
{
rt_int32_t ret;
struct rt_sdio_function_tuple *curr, **prev;
rt_uint32_t i, cisptr = 0;
rt_uint8_t data;
rt_uint8_t tpl_code, tpl_link;
struct rt_mmcsd_card *card = func->card;
struct rt_sdio_function *func0 = card->sdio_function[0];
RT_ASSERT(func0 != RT_NULL);
for (i = 0; i < 3; i++)
{
data = sdio_io_readb(func0,
SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_CIS + i, &ret);
if (ret)
return ret;
cisptr |= data << (i * 8);
}
prev = &func->tuples;
do {
tpl_code = sdio_io_readb(func0, cisptr++, &ret);
if (ret)
break;
tpl_link = sdio_io_readb(func0, cisptr++, &ret);
if (ret)
break;
if ((tpl_code == CISTPL_END) || (tpl_link == 0xff))
break;
if (tpl_code == CISTPL_NULL)
continue;
curr = rt_malloc(sizeof(struct rt_sdio_function_tuple) + tpl_link);
if (!curr)
return -RT_ENOMEM;
curr->data = (rt_uint8_t *)curr + sizeof(struct rt_sdio_function_tuple);
for (i = 0; i < tpl_link; i++)
{
curr->data[i] = sdio_io_readb(func0, cisptr + i, &ret);
if (ret)
break;
}
if (ret)
{
rt_free(curr);
break;
}
switch (tpl_code)
{
case CISTPL_MANFID:
if (tpl_link < 4)
{
rt_kprintf("bad CISTPL_MANFID length\n");
break;
}
if (func->num != 0)
{
func->manufacturer = curr->data[0];
func->manufacturer |= curr->data[1] << 8;
func->product = curr->data[2];
func->product |= curr->data[3] << 8;
}
else
{
card->cis.manufacturer = curr->data[0];
card->cis.manufacturer |= curr->data[1] << 8;
card->cis.product = curr->data[2];
card->cis.product |= curr->data[3] << 8;
}
break;
case CISTPL_FUNCE:
if (func->num != 0)
ret = cistpl_funce_func(func, curr->data, tpl_link);
else
ret = cistpl_funce_func0(card, curr->data, tpl_link);
if (ret)
{
rt_kprintf("bad CISTPL_FUNCE size %u "
"type %u\n", tpl_link, curr->data[0]);
}
break;
case CISTPL_VERS_1:
if (tpl_link < 2)
{
rt_kprintf("CISTPL_VERS_1 too short\n");
}
break;
default:
/* this tuple is unknown to the core */
curr->next = RT_NULL;
curr->code = tpl_code;
curr->size = tpl_link;
*prev = curr;
prev = &curr->next;
rt_kprintf( "function %d, CIS tuple code %#x, length %d\n",
func->num, tpl_code, tpl_link);
break;
}
cisptr += tpl_link;
} while (1);
/*
* Link in all unknown tuples found in the common CIS so that
* drivers don't have to go digging in two places.
*/
if (func->num != 0)
*prev = func0->tuples;
return ret;
}
void sdio_free_cis(struct rt_sdio_function *func)
{
struct rt_sdio_function_tuple *tuple, *tmp;
struct rt_mmcsd_card *card = func->card;
tuple = func->tuples;
while (tuple && ((tuple != card->sdio_function[0]->tuples) || (!func->num)))
{
tmp = tuple;
tuple = tuple->next;
rt_free(tmp);
}
func->tuples = RT_NULL;
}
static rt_int32_t sdio_read_fbr(struct rt_sdio_function *func)
{
rt_int32_t ret;
rt_uint8_t data;
struct rt_sdio_function *func0 = func->card->sdio_function[0];
data = sdio_io_readb(func0,
SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_FUNC_IF, &ret);
if (ret)
goto err;
data &= 0x0f;
if (data == 0x0f)
{
data = sdio_io_readb(func0,
SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_IF_EXT, &ret);
if (ret)
goto err;
}
func->func_code = data;
err:
return ret;
}
static rt_int32_t sdio_initialize_function(struct rt_mmcsd_card *card, rt_uint32_t func_num)
{
rt_int32_t ret;
struct rt_sdio_function *func;
RT_ASSERT(func_num <= SDIO_MAX_FUNCTIONS);
func = rt_malloc(sizeof(struct rt_sdio_function));
if (!func)
{
rt_kprintf("malloc rt_sdio_function failed\n");
ret = -RT_ENOMEM;
goto err;
}
rt_memset(func, 0, sizeof(struct rt_sdio_function));
func->card = card;
func->num = func_num;
ret = sdio_read_fbr(func);
if (ret)
goto err1;
ret = sdio_read_cis(func);
if (ret)
goto err1;
card->sdio_function[func_num] = func;
return 0;
err1:
sdio_free_cis(func);
rt_free(func);
card->sdio_function[func_num] = RT_NULL;
err:
return ret;
}
static rt_int32_t sdio_set_highspeed(struct rt_mmcsd_card *card)
{
rt_int32_t ret;
rt_uint8_t speed;
if (!(card->host->flags & MMCSD_SUP_HIGHSPEED))
return 0;
if (!card->cccr.high_speed)
return 0;
speed = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret);
if (ret)
return ret;
speed |= SDIO_SPEED_EHS;
ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, speed);
if (ret)
return ret;
card->flags |= CARD_FLAG_HIGHSPEED;
return 0;
}
static rt_int32_t sdio_set_bus_wide(struct rt_mmcsd_card *card)
{
rt_int32_t ret;
rt_uint8_t busif;
if (!(card->host->flags & MMCSD_BUSWIDTH_4))
return 0;
if (card->cccr.low_speed && !card->cccr.bus_width)
return 0;
busif = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, &ret);
if (ret)
return ret;
busif |= SDIO_BUS_WIDTH_4BIT;
ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, busif);
if (ret)
return ret;
mmcsd_set_bus_width(card->host, MMCSD_BUS_WIDTH_4);
return 0;
}
static rt_int32_t sdio_register_card(struct rt_mmcsd_card *card)
{
struct sdio_card *sc;
struct sdio_driver *sd;
rt_list_t *l;
sc = rt_malloc(sizeof(struct sdio_card));
if (sc == RT_NULL)
{
rt_kprintf("malloc sdio card failed\n");
return -RT_ENOMEM;
}
sc->card = card;
rt_list_insert_after(&sdio_cards, &sc->list);
if (rt_list_isempty(&sdio_drivers))
{
goto out;
}
for (l = (&sdio_drivers)->next; l != &sdio_drivers; l = l->next)
{
sd = (struct sdio_driver *)rt_list_entry(l, struct sdio_driver, list);
if (sdio_match_card(card, sd->drv->id))
{
sd->drv->probe(card);
}
}
out:
return 0;
}
static rt_int32_t sdio_init_card(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
rt_int32_t err = 0;
rt_int32_t i, function_num;
rt_uint32_t cmd5_resp;
struct rt_mmcsd_card *card;
err = sdio_io_send_op_cond(host, ocr, &cmd5_resp);
if (err)
goto err;
if (controller_is_spi(host))
{
err = mmcsd_spi_use_crc(host, host->spi_use_crc);
if (err)
goto err;
}
function_num = (cmd5_resp & 0x70000000) >> 28;
card = rt_malloc(sizeof(struct rt_mmcsd_card));
if (!card)
{
rt_kprintf("malloc card failed\n");
err = -RT_ENOMEM;
goto err;
}
rt_memset(card, 0, sizeof(struct rt_mmcsd_card));
card->card_type = CARD_TYPE_SDIO;
card->sdio_function_num = function_num;
card->host = host;
host->card = card;
card->sdio_function[0] = rt_malloc(sizeof(struct rt_sdio_function));
if (!card->sdio_function[0])
{
rt_kprintf("malloc sdio_func0 failed\n");
err = -RT_ENOMEM;
goto err1;
}
rt_memset(card->sdio_function[0], 0, sizeof(struct rt_sdio_function));
card->sdio_function[0]->card = card;
card->sdio_function[0]->num = 0;
if (!controller_is_spi(host))
{
err = mmcsd_get_card_addr(host, &card->rca);
if (err)
goto err2;
mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL);
}
if (!controller_is_spi(host))
{
err = mmcsd_select_card(card);
if (err)
goto err2;
}
err = sdio_read_cccr(card);
if (err)
goto err2;
err = sdio_read_cis(card->sdio_function[0]);
if (err)
goto err2;
err = sdio_set_highspeed(card);
if (err)
goto err2;
if (card->flags & CARD_FLAG_HIGHSPEED)
{
mmcsd_set_clock(host, 50000000);
}
else
{
mmcsd_set_clock(host, card->cis.max_tran_speed);
}
err = sdio_set_bus_wide(card);
if (err)
goto err2;
for (i = 1; i < function_num + 1; i++)
{
err = sdio_initialize_function(card, i);
if (err)
goto err3;
}
/* register sdio card */
err = sdio_register_card(card);
if (err)
{
goto err3;
}
return 0;
err3:
if (host->card)
{
for (i = 1; i < host->card->sdio_function_num + 1; i++)
{
if (host->card->sdio_function[i])
{
sdio_free_cis(host->card->sdio_function[i]);
rt_free(host->card->sdio_function[i]);
host->card->sdio_function[i] = RT_NULL;
rt_free(host->card);
host->card = RT_NULL;
}
}
}
err2:
if (host->card && host->card->sdio_function[0])
{
sdio_free_cis(host->card->sdio_function[0]);
rt_free(host->card->sdio_function[0]);
host->card->sdio_function[0] = RT_NULL;
}
err1:
if (host->card)
{
rt_free(host->card);
}
err:
rt_kprintf("error %d while initialising SDIO card\n", err);
return err;
}
rt_int32_t init_sdio(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
rt_int32_t err;
rt_uint32_t current_ocr;
RT_ASSERT(host != RT_NULL);
if (ocr & 0x7F)
{
rt_kprintf("Card ocr below the defined voltage rang.\n");
ocr &= ~0x7F;
}
if (ocr & VDD_165_195)
{
rt_kprintf("Can't support the low voltage SDIO card.\n");
ocr &= ~VDD_165_195;
}
current_ocr = mmcsd_select_voltage(host, ocr);
if (!current_ocr)
{
err = -RT_ERROR;
goto err;
}
err = sdio_init_card(host, current_ocr);
if (err)
goto remove_card;
return 0;
remove_card:
rt_free(host->card);
host->card = RT_NULL;
err:
rt_kprintf("init SDIO card failed\n");
return err;
}
static void sdio_irq_thread(void *param)
{
rt_int32_t i, ret;
rt_uint8_t pending;
struct rt_mmcsd_card *card;
struct rt_mmcsd_host *host = (struct rt_mmcsd_host *)param;
RT_ASSERT(host != RT_NULL);
card = host->card;
RT_ASSERT(card != RT_NULL);
while (1)
{
if (rt_sem_take(host->sdio_irq_sem, RT_WAITING_FOREVER) == RT_EOK)
{
mmcsd_host_lock(host);
pending = sdio_io_readb(host->card->sdio_function[0],
SDIO_REG_CCCR_INT_PEND, &ret);
if (ret)
{
mmcsd_dbg("error %d reading SDIO_REG_CCCR_INT_PEND\n", ret);
goto out;
}
for (i = 1; i <= 7; i++)
{
if (pending & (1 << i))
{
struct rt_sdio_function *func = card->sdio_function[i];
if (!func)
{
mmcsd_dbg("pending IRQ for "
"non-existant function %d\n", func->num);
goto out;
}
else if (func->irq_handler)
{
func->irq_handler(func);
}
else
{
mmcsd_dbg("pending IRQ with no register handler\n");
goto out;
}
}
}
out:
mmcsd_host_unlock(host);
if (host->flags & MMCSD_SUP_SDIO_IRQ)
host->ops->enable_sdio_irq(host, 1);
continue;
}
}
}
static rt_int32_t sdio_irq_thread_create(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_host *host = card->host;
/* init semaphore and create sdio irq processing thread */
if (!host->sdio_irq_num)
{
host->sdio_irq_num++;
host->sdio_irq_sem = rt_sem_create("sdio_irq", 0, RT_IPC_FLAG_FIFO);
RT_ASSERT(host->sdio_irq_sem != RT_NULL);
host->sdio_irq_thread = rt_thread_create("sdio_irq", sdio_irq_thread, host,
RT_SDIO_STACK_SIZE, RT_SDIO_THREAD_PREORITY, 20);
if (host->sdio_irq_thread != RT_NULL)
{
rt_thread_startup(host->sdio_irq_thread);
}
}
return 0;
}
static rt_int32_t sdio_irq_thread_delete(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_host *host = card->host;
RT_ASSERT(host->sdio_irq_num > 0);
host->sdio_irq_num--;
if (!host->sdio_irq_num)
{
if (host->flags & MMCSD_SUP_SDIO_IRQ)
host->ops->enable_sdio_irq(host, 0);
rt_sem_delete(host->sdio_irq_sem);
host->sdio_irq_sem = RT_NULL;
rt_thread_delete(host->sdio_irq_thread);
host->sdio_irq_thread = RT_NULL;
}
return 0;
}
rt_int32_t sdio_attach_irq(struct rt_sdio_function *func, rt_sdio_irq_handler_t *handler)
{
rt_int32_t ret;
rt_uint8_t reg;
struct rt_sdio_function *func0;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->card != RT_NULL);
func0 = func->card->sdio_function[0];
mmcsd_dbg("SDIO: enabling IRQ for function %d\n", func->num);
if (func->irq_handler)
{
mmcsd_dbg("SDIO: IRQ for already in use.\n");
return -RT_EBUSY;
}
reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret);
if (ret)
return ret;
reg |= 1 << func->num;
reg |= 1; /* Master interrupt enable */
ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg);
if (ret)
return ret;
func->irq_handler = handler;
ret = sdio_irq_thread_create(func->card);
if (ret)
func->irq_handler = RT_NULL;
return ret;
}
rt_int32_t sdio_detach_irq(struct rt_sdio_function *func)
{
rt_int32_t ret;
rt_uint8_t reg;
struct rt_sdio_function *func0;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->card != RT_NULL);
func0 = func->card->sdio_function[0];
mmcsd_dbg("SDIO: disabling IRQ for function %d\n", func->num);
if (func->irq_handler)
{
func->irq_handler = RT_NULL;
sdio_irq_thread_delete(func->card);
}
reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret);
if (ret)
return ret;
reg &= ~(1 << func->num);
/* Disable master interrupt with the last function interrupt */
if (!(reg & 0xFE))
reg = 0;
ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg);
if (ret)
return ret;
return 0;
}
void sdio_irq_wakeup(struct rt_mmcsd_host *host)
{
host->ops->enable_sdio_irq(host, 0);
rt_sem_release(host->sdio_irq_sem);
}
rt_int32_t sdio_enable_func(struct rt_sdio_function *func)
{
rt_int32_t ret;
rt_uint8_t reg;
rt_uint32_t timeout;
struct rt_sdio_function *func0;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->card != RT_NULL);
func0 = func->card->sdio_function[0];
mmcsd_dbg("SDIO: enabling function %d\n", func->num);
reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret);
if (ret)
goto err;
reg |= 1 << func->num;
ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg);
if (ret)
goto err;
timeout = rt_tick_get() + func->enable_timeout_val * 1000 / RT_TICK_PER_SECOND;
while (1)
{
reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_RDY, &ret);
if (ret)
goto err;
if (reg & (1 << func->num))
break;
ret = -RT_ETIMEOUT;
if (rt_tick_get() > timeout)
goto err;
}
mmcsd_dbg("SDIO: enabled function successfull\n");
return 0;
err:
mmcsd_dbg("SDIO: failed to enable function %d\n", func->num);
return ret;
}
rt_int32_t sdio_disable_func(struct rt_sdio_function *func)
{
rt_int32_t ret;
rt_uint8_t reg;
struct rt_sdio_function *func0;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->card != RT_NULL);
func0 = func->card->sdio_function[0];
mmcsd_dbg("SDIO: disabling function %d\n", func->num);
reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret);
if (ret)
goto err;
reg &= ~(1 << func->num);
ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg);
if (ret)
goto err;
mmcsd_dbg("SDIO: disabled function successfull\n");
return 0;
err:
mmcsd_dbg("SDIO: failed to disable function %d\n", func->num);
return -RT_EIO;
}
rt_int32_t sdio_set_block_size(struct rt_sdio_function *func, rt_uint32_t blksize)
{
rt_int32_t ret;
struct rt_sdio_function *func0 = func->card->sdio_function[0];
if (blksize > func->card->host->max_blk_size)
return -RT_ERROR;
if (blksize == 0)
{
blksize = MIN(func->max_blk_size, func->card->host->max_blk_size);
blksize = MIN(blksize, 512u);
}
ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE,
blksize & 0xff);
if (ret)
return ret;
ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE + 1,
(blksize >> 8) & 0xff);
if (ret)
return ret;
func->cur_blk_size = blksize;
return 0;
}
rt_inline rt_int32_t sdio_match_card(struct rt_mmcsd_card *card,
const struct rt_sdio_device_id *id)
{
if ((id->manufacturer != SDIO_ANY_MAN_ID) &&
(id->manufacturer != card->cis.manufacturer))
return 0;
if ((id->product != SDIO_ANY_PROD_ID) &&
(id->product != card->cis.product))
return 0;
return 1;
}
static struct rt_mmcsd_card *sdio_match_driver(struct rt_sdio_device_id *id)
{
rt_list_t *l;
struct sdio_card *sc;
struct rt_mmcsd_card *card;
for (l = (&sdio_cards)->next; l != &sdio_cards; l = l->next)
{
sc = (struct sdio_card *)rt_list_entry(l, struct sdio_card, list);
card = sc->card;
if (sdio_match_card(card, id))
{
return card;
}
}
return RT_NULL;
}
rt_int32_t sdio_register_driver(struct rt_sdio_driver *driver)
{
struct sdio_driver *sd;
struct rt_mmcsd_card *card;
sd = rt_malloc(sizeof(struct sdio_driver));
if (sd == RT_NULL)
{
rt_kprintf("malloc sdio driver failed\n");
return -RT_ENOMEM;
}
rt_list_insert_after(&sdio_drivers, &sd->list);
if (!rt_list_isempty(&sdio_cards))
{
card = sdio_match_driver(driver->id);
if (card != RT_NULL)
{
driver->probe(card);
}
}
return 0;
}
rt_int32_t sdio_unregister_driver(struct rt_sdio_driver *driver)
{
rt_list_t *l;
struct sdio_driver *sd = RT_NULL;
struct rt_mmcsd_card *card;
rt_list_insert_after(&sdio_drivers, &sd->list);
for (l = (&sdio_drivers)->next; l != &sdio_drivers; l = l->next)
{
sd = (struct sdio_driver *)rt_list_entry(l, struct sdio_driver, list);
if (sd->drv != driver)
{
sd = RT_NULL;
}
}
if (sd == RT_NULL)
{
rt_kprintf("SDIO driver %s not register\n", driver->name);
return -RT_ERROR;
}
if (!rt_list_isempty(&sdio_cards))
{
card = sdio_match_driver(driver->id);
if (card != RT_NULL)
{
driver->remove(card);
rt_list_remove(&sd->list);
rt_free(sd);
}
}
return 0;
}
void rt_sdio_init(void)
{
rt_list_init(&sdio_cards);
rt_list_init(&sdio_drivers);
}