rt-thread-official/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_enet.c

3929 lines
144 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 - 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2021 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_enet.h"
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
#include "fsl_cache.h"
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.enet"
#endif
/*! @brief Ethernet mac address length. */
#define ENET_FRAME_MACLEN 6U
/*! @brief MDC frequency. */
#define ENET_MDC_FREQUENCY 2500000U
/*! @brief NanoSecond in one second. */
#define ENET_NANOSECOND_ONE_SECOND 1000000000U
/*! @brief Define the ENET ring/class bumber . */
enum
{
kENET_Ring0 = 0U, /*!< ENET ring/class 0. */
#if FSL_FEATURE_ENET_QUEUE > 1
kENET_Ring1 = 1U, /*!< ENET ring/class 1. */
kENET_Ring2 = 2U /*!< ENET ring/class 2. */
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
};
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to enet clocks for each instance. */
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
const clock_ip_name_t s_enetClock[] = ENET_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to enet transmit IRQ number for each instance. */
static const IRQn_Type s_enetTxIrqId[] = ENET_Transmit_IRQS;
/*! @brief Pointers to enet receive IRQ number for each instance. */
static const IRQn_Type s_enetRxIrqId[] = ENET_Receive_IRQS;
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*! @brief Pointers to enet timestamp IRQ number for each instance. */
static const IRQn_Type s_enetTsIrqId[] = ENET_Ts_IRQS;
/*! @brief Pointers to enet 1588 timestamp IRQ number for each instance. */
static const IRQn_Type s_enet1588TimerIrqId[] = ENET_1588_Timer_IRQS;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*! @brief Pointers to enet error IRQ number for each instance. */
static const IRQn_Type s_enetErrIrqId[] = ENET_Error_IRQS;
/*! @brief Pointers to enet bases for each instance. */
static ENET_Type *const s_enetBases[] = ENET_BASE_PTRS;
/*! @brief Pointers to enet handles for each instance. */
static enet_handle_t *s_ENETHandle[ARRAY_SIZE(s_enetBases)];
/* ENET ISR for transactional APIs. */
#if FSL_FEATURE_ENET_QUEUE > 1
static enet_isr_ring_t s_enetTxIsr[ARRAY_SIZE(s_enetBases)];
static enet_isr_ring_t s_enetRxIsr[ARRAY_SIZE(s_enetBases)];
#else
static enet_isr_t s_enetTxIsr[ARRAY_SIZE(s_enetBases)];
static enet_isr_t s_enetRxIsr[ARRAY_SIZE(s_enetBases)];
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
static enet_isr_t s_enetErrIsr[ARRAY_SIZE(s_enetBases)];
static enet_isr_t s_enetTsIsr[ARRAY_SIZE(s_enetBases)];
static enet_isr_t s_enet1588TimerIsr[ARRAY_SIZE(s_enetBases)];
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Set ENET MAC controller with the configuration.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param config ENET Mac configuration.
* @param bufferConfig ENET buffer configuration.
* @param macAddr ENET six-byte mac address.
* @param srcClock_Hz ENET module clock source, normally it's system clock.
*/
static void ENET_SetMacController(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz);
/*!
* @brief Set ENET handler.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param config ENET configuration stucture pointer.
* @param bufferConfig ENET buffer configuration.
*/
static void ENET_SetHandler(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint32_t srcClock_Hz);
/*!
* @brief Set ENET MAC transmit buffer descriptors.
*
* @param handle The ENET handle pointer.
* @param config The ENET configuration structure.
* @param bufferConfig The ENET buffer configuration.
*/
static void ENET_SetTxBufferDescriptors(enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig);
/*!
* @brief Set ENET MAC receive buffer descriptors.
*
* @param handle The ENET handle pointer.
* @param config The ENET configuration structure.
* @param bufferConfig The ENET buffer configuration.
*/
static void ENET_SetRxBufferDescriptors(enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig);
/*!
* @brief Updates the ENET read buffer descriptors.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param ringId The descriptor ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
*/
static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint8_t ringId);
/*!
* @brief Updates index.
*/
static uint16_t ENET_IncreaseIndex(uint16_t index, uint16_t max);
/*!
* @brief Allocates all Rx buffers in BDs.
*/
static status_t ENET_RxBufferAllocAll(ENET_Type *base, enet_handle_t *handle);
/*!
* @brief Frees all Rx buffers in BDs.
*/
static void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle);
/*******************************************************************************
* Code
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
uint32_t ENET_GetInstance(ENET_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_enetBases); instance++)
{
if (s_enetBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_enetBases));
return instance;
}
/*!
* brief Gets the ENET default configuration structure.
*
* The purpose of this API is to get the default ENET MAC controller
* configure structure for ENET_Init(). User may use the initialized
* structure unchanged in ENET_Init(), or modify some fields of the
* structure before calling ENET_Init().
* Example:
code
enet_config_t config;
ENET_GetDefaultConfig(&config);
endcode
* param config The ENET mac controller configuration structure pointer.
*/
void ENET_GetDefaultConfig(enet_config_t *config)
{
/* Checks input parameter. */
assert(config != NULL);
/* Initializes the MAC configure structure to zero. */
(void)memset(config, 0, sizeof(enet_config_t));
/* Sets MII mode, full duplex, 100Mbps for MAC and PHY data interface. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
config->miiMode = kENET_RgmiiMode;
#else
config->miiMode = kENET_RmiiMode;
#endif
config->miiSpeed = kENET_MiiSpeed100M;
config->miiDuplex = kENET_MiiFullDuplex;
config->ringNum = 1;
/* Sets the maximum receive frame length. */
config->rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
}
/*!
* brief Initializes the ENET module.
*
* This function initializes the module with the ENET configuration.
* note ENET has two buffer descriptors legacy buffer descriptors and
* enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To
* use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor
* by defining "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" and calling ENET_Ptp1588Configure()
* to configure the 1588 feature and related buffers after calling ENET_Up().
*
* param base ENET peripheral base address.
* param handle ENET handler pointer.
* param config ENET mac configuration structure pointer.
* The "enet_config_t" type mac configuration return from ENET_GetDefaultConfig
* can be used directly. It is also possible to verify the Mac configuration using other methods.
* param bufferConfig ENET buffer configuration structure pointer.
* The buffer configuration should be prepared for ENET Initialization.
* It is the start address of "ringNum" enet_buffer_config structures.
* To support added multi-ring features in some soc and compatible with the previous
* enet driver version. For single ring supported, this bufferConfig is a buffer
* configure structure pointer, for multi-ring supported and used case, this bufferConfig
* pointer should be a buffer configure structure array pointer.
* param macAddr ENET mac address of Ethernet device. This MAC address should be
* provided.
* param srcClock_Hz The internal module clock source for MII clock.
* retval kStatus_Success Succeed to initialize the ethernet driver.
* retval kStatus_ENET_InitMemoryFail Init fails since buffer memory is not enough.
*/
status_t ENET_Up(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz)
{
/* Checks input parameters. */
assert(handle != NULL);
assert(config != NULL);
assert(bufferConfig != NULL);
assert(macAddr != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(config->ringNum <= (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
status_t result = kStatus_Success;
/* Initializes the ENET transmit buffer descriptors. */
ENET_SetTxBufferDescriptors(handle, config, bufferConfig);
/* Initializes the ENET receive buffer descriptors. */
ENET_SetRxBufferDescriptors(handle, config, bufferConfig);
/* Initializes the ENET MAC controller with basic function. */
ENET_SetMacController(base, handle, config, bufferConfig, macAddr, srcClock_Hz);
/* Set all buffers or data in handler for data transmit/receive process. */
ENET_SetHandler(base, handle, config, bufferConfig, srcClock_Hz);
/* Allocate buffers for all Rx BDs when zero copy Rx API is needed. */
if (handle->rxBuffAlloc != NULL)
{
result = ENET_RxBufferAllocAll(base, handle);
}
return result;
}
/*!
* brief Initializes the ENET module.
*
* This function ungates the module clock and initializes it with the ENET configuration.
* note ENET has two buffer descriptors legacy buffer descriptors and
* enhanced IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To
* use the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor
* by defining "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" and calling ENET_Ptp1588Configure()
* to configure the 1588 feature and related buffers after calling ENET_Init().
*
* param base ENET peripheral base address.
* param handle ENET handler pointer.
* param config ENET mac configuration structure pointer.
* The "enet_config_t" type mac configuration return from ENET_GetDefaultConfig
* can be used directly. It is also possible to verify the Mac configuration using other methods.
* param bufferConfig ENET buffer configuration structure pointer.
* The buffer configuration should be prepared for ENET Initialization.
* It is the start address of "ringNum" enet_buffer_config structures.
* To support added multi-ring features in some soc and compatible with the previous
* enet driver version. For single ring supported, this bufferConfig is a buffer
* configure structure pointer, for multi-ring supported and used case, this bufferConfig
* pointer should be a buffer configure structure array pointer.
* param macAddr ENET mac address of Ethernet device. This MAC address should be
* provided.
* param srcClock_Hz The internal module clock source for MII clock.
* retval kStatus_Success Succeed to initialize the ethernet driver.
* retval kStatus_ENET_InitMemoryFail Init fails since buffer memory is not enough.
*/
status_t ENET_Init(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = ENET_GetInstance(base);
/* Ungate ENET clock. */
(void)CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Reset ENET module. */
ENET_Reset(base);
return ENET_Up(base, handle, config, bufferConfig, macAddr, srcClock_Hz);
}
/*!
* brief Stops the ENET module.
* This function disables the ENET module.
*
* param base ENET peripheral base address.
*/
void ENET_Down(ENET_Type *base)
{
uint32_t instance = ENET_GetInstance(base);
enet_handle_t *handle = s_ENETHandle[instance];
/* Disable interrupt. */
base->EIMR = 0;
/* Disable ENET. */
base->ECR &= ~ENET_ECR_ETHEREN_MASK;
if (handle->rxBuffFree != NULL)
{
ENET_RxBufferFreeAll(base, handle);
}
}
/*!
* brief Deinitializes the ENET module.
* This function gates the module clock, clears ENET interrupts, and disables the ENET module.
*
* param base ENET peripheral base address.
*/
void ENET_Deinit(ENET_Type *base)
{
ENET_Down(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disables the clock source. */
(void)CLOCK_DisableClock(s_enetClock[ENET_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* deprecated Do not use this function. It has been superceded by the config param in @ref ENET_Init.
*/
void ENET_SetCallback(enet_handle_t *handle, enet_callback_t callback, void *userData)
{
assert(handle != NULL);
/* Set callback and userData. */
handle->callback = callback;
handle->userData = userData;
}
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_ring_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetRxIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetRxIrqId[instance]);
}
void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_ring_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetTxIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetTxIrqId[instance]);
}
#else
void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetRxIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetRxIrqId[instance]);
}
void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetTxIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetTxIrqId[instance]);
}
#endif
void ENET_SetErrISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetErrIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetErrIrqId[instance]);
}
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
void ENET_SetTsISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enetTsIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enetTsIrqId[instance]);
}
void ENET_Set1588TimerISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
{
uint32_t instance = ENET_GetInstance(base);
s_enet1588TimerIsr[instance] = ISRHandler;
(void)EnableIRQ(s_enet1588TimerIrqId[instance]);
}
#endif
static void ENET_SetHandler(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint32_t srcClock_Hz)
{
uint8_t count;
uint32_t instance = ENET_GetInstance(base);
const enet_buffer_config_t *buffCfg = bufferConfig;
/* Store transfer parameters in handle pointer. */
(void)memset(handle, 0, sizeof(enet_handle_t));
for (count = 0; count < config->ringNum; count++)
{
assert(buffCfg->rxBuffSizeAlign * buffCfg->rxBdNumber > config->rxMaxFrameLen);
handle->rxBdRing[count].rxBdBase = buffCfg->rxBdStartAddrAlign;
handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign;
handle->rxBdRing[count].rxRingLen = buffCfg->rxBdNumber;
handle->rxMaintainEnable[count] = buffCfg->rxMaintainEnable;
handle->txBdRing[count].txBdBase = buffCfg->txBdStartAddrAlign;
handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign;
handle->txBdRing[count].txRingLen = buffCfg->txBdNumber;
handle->txMaintainEnable[count] = buffCfg->txMaintainEnable;
handle->txDirtyRing[count].txDirtyBase = buffCfg->txFrameInfo;
handle->txDirtyRing[count].txRingLen = buffCfg->txBdNumber;
buffCfg++;
}
handle->ringNum = config->ringNum;
handle->rxBuffAlloc = config->rxBuffAlloc;
handle->rxBuffFree = config->rxBuffFree;
handle->callback = config->callback;
handle->userData = config->userData;
#if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID
handle->enetClock = srcClock_Hz;
#endif
/* Save the handle pointer in the global variables. */
s_ENETHandle[instance] = handle;
/* Set the IRQ handler when the interrupt is enabled. */
if (0U != (config->interrupt & (uint32_t)ENET_TX_INTERRUPT))
{
ENET_SetTxISRHandler(base, ENET_TransmitIRQHandler);
}
if (0U != (config->interrupt & (uint32_t)ENET_RX_INTERRUPT))
{
ENET_SetRxISRHandler(base, ENET_ReceiveIRQHandler);
}
if (0U != (config->interrupt & (uint32_t)ENET_ERR_INTERRUPT))
{
ENET_SetErrISRHandler(base, ENET_ErrorIRQHandler);
}
}
static void ENET_SetMacController(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz)
{
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1)
{
/* Check the MII mode/speed/duplex setting. */
if (config->miiSpeed == kENET_MiiSpeed1000M)
{
/* Only RGMII mode has the 1000M bit/s. The 1000M only support full duplex. */
assert(config->miiMode == kENET_RgmiiMode);
assert(config->miiDuplex == kENET_MiiFullDuplex);
}
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
uint32_t rcr = 0;
uint32_t tcr = 0;
uint32_t ecr = base->ECR;
uint32_t macSpecialConfig = config->macSpecialConfig;
uint32_t maxFrameLen = config->rxMaxFrameLen;
uint32_t configVal = 0;
/* Maximum frame length check. */
if (0U != (macSpecialConfig & (uint32_t)kENET_ControlVLANTagEnable))
{
maxFrameLen = (ENET_FRAME_MAX_FRAMELEN + ENET_FRAME_VLAN_TAGLEN);
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1)
{
if (0U != (macSpecialConfig & (uint32_t)kENET_ControlSVLANEnable))
{
/* Double vlan tag (SVLAN) supported. */
maxFrameLen += ENET_FRAME_VLAN_TAGLEN;
}
ecr |= (uint32_t)(((macSpecialConfig & (uint32_t)kENET_ControlSVLANEnable) != 0U) ?
(ENET_ECR_SVLANEN_MASK | ENET_ECR_SVLANDBL_MASK) :
0U) |
(uint32_t)(((macSpecialConfig & (uint32_t)kENET_ControlVLANUseSecondTag) != 0U) ?
ENET_ECR_VLANUSE2ND_MASK :
0U);
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
}
/* Configures MAC receive controller with user configure structure. */
rcr = ((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxPayloadCheckEnable)) ? ENET_RCR_NLC_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable)) ? ENET_RCR_CFEN_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable)) ? ENET_RCR_FCE_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxPadRemoveEnable)) ? ENET_RCR_PADEN_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlRxBroadCastRejectEnable)) ? ENET_RCR_BC_REJ_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlPromiscuousEnable)) ? ENET_RCR_PROM_MASK : 0U) |
ENET_RCR_MAX_FL(maxFrameLen) | ENET_RCR_CRCFWD_MASK;
/* Set the RGMII or RMII, MII mode and control register. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1)
{
if (config->miiMode == kENET_RgmiiMode)
{
rcr |= ENET_RCR_RGMII_EN_MASK;
}
else
{
rcr &= ~ENET_RCR_RGMII_EN_MASK;
}
if (config->miiSpeed == kENET_MiiSpeed1000M)
{
ecr |= ENET_ECR_SPEED_MASK;
}
else
{
ecr &= ~ENET_ECR_SPEED_MASK;
}
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
rcr |= ENET_RCR_MII_MODE_MASK;
if (config->miiMode == kENET_RmiiMode)
{
rcr |= ENET_RCR_RMII_MODE_MASK;
}
/* Speed. */
if (config->miiSpeed == kENET_MiiSpeed10M)
{
rcr |= ENET_RCR_RMII_10T_MASK;
}
/* Receive setting for half duplex. */
if (config->miiDuplex == kENET_MiiHalfDuplex)
{
rcr |= ENET_RCR_DRT_MASK;
}
/* Sets internal loop only for MII mode. */
if ((0U != (config->macSpecialConfig & (uint32_t)kENET_ControlMIILoopEnable)) &&
(config->miiMode != kENET_RmiiMode))
{
rcr |= ENET_RCR_LOOP_MASK;
rcr &= ~ENET_RCR_DRT_MASK;
}
base->RCR = rcr;
/* Configures MAC transmit controller: duplex mode, mac address insertion. */
tcr = base->TCR & ~(ENET_TCR_FDEN_MASK | ENET_TCR_ADDINS_MASK);
tcr |= ((kENET_MiiHalfDuplex != config->miiDuplex) ? (uint32_t)ENET_TCR_FDEN_MASK : 0U) |
((0U != (macSpecialConfig & (uint32_t)kENET_ControlMacAddrInsert)) ? (uint32_t)ENET_TCR_ADDINS_MASK : 0U);
base->TCR = tcr;
/* Configures receive and transmit accelerator. */
base->TACC = config->txAccelerConfig;
base->RACC = config->rxAccelerConfig;
/* Sets the pause duration and FIFO threshold for the flow control enabled case. */
if (0U != (macSpecialConfig & (uint32_t)kENET_ControlFlowControlEnable))
{
uint32_t reemReg;
base->OPD = config->pauseDuration;
reemReg = ENET_RSEM_RX_SECTION_EMPTY(config->rxFifoEmptyThreshold);
#if defined(FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD) && FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD
reemReg |= ENET_RSEM_STAT_SECTION_EMPTY(config->rxFifoStatEmptyThreshold);
#endif /* FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD */
base->RSEM = reemReg;
}
/* FIFO threshold setting for store and forward enable/disable case. */
if (0U != (macSpecialConfig & (uint32_t)kENET_ControlStoreAndFwdDisable))
{
/* Transmit fifo watermark settings. */
configVal = ((uint32_t)config->txFifoWatermark) & ENET_TFWR_TFWR_MASK;
base->TFWR = configVal;
/* Receive fifo full threshold settings. */
configVal = ((uint32_t)config->rxFifoFullThreshold) & ENET_RSFL_RX_SECTION_FULL_MASK;
base->RSFL = configVal;
}
else
{
/* Transmit fifo watermark settings. */
base->TFWR = ENET_TFWR_STRFWD_MASK;
base->RSFL = 0;
}
/* Enable store and forward when accelerator is enabled */
if (0U !=
(config->txAccelerConfig & ((uint32_t)kENET_TxAccelIpCheckEnabled | (uint32_t)kENET_TxAccelProtoCheckEnabled)))
{
base->TFWR = ENET_TFWR_STRFWD_MASK;
}
if (0U != ((config->rxAccelerConfig &
((uint32_t)kENET_RxAccelIpCheckEnabled | (uint32_t)kENET_RxAccelProtoCheckEnabled))))
{
base->RSFL = 0;
}
/* Initializes the ring 0. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR = (uint32_t)bufferConfig->txBdStartAddrAlign;
base->RDSR = (uint32_t)bufferConfig->rxBdStartAddrAlign;
#endif
base->MRBR = (uint32_t)bufferConfig->rxBuffSizeAlign;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1)
{
const enet_buffer_config_t *buffCfg = bufferConfig;
if (config->ringNum > 1U)
{
/* Initializes the ring 1. */
buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR1 = (uint32_t)buffCfg->txBdStartAddrAlign;
base->RDSR1 = (uint32_t)buffCfg->rxBdStartAddrAlign;
#endif
base->MRBR1 = (uint32_t)buffCfg->rxBuffSizeAlign;
/* Enable the DMAC for ring 1 and with no rx classification set. */
base->DMACFG[0] = ENET_DMACFG_DMA_CLASS_EN_MASK;
}
if (config->ringNum > 2U)
{
/* Initializes the ring 2. */
buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR2 = (uint32_t)buffCfg->txBdStartAddrAlign;
base->RDSR2 = (uint32_t)buffCfg->rxBdStartAddrAlign;
#endif
base->MRBR2 = (uint32_t)buffCfg->rxBuffSizeAlign;
/* Enable the DMAC for ring 2 and with no rx classification set. */
base->DMACFG[1] = ENET_DMACFG_DMA_CLASS_EN_MASK;
}
/* Defaulting the class/ring 1 and 2 are not enabled and the receive classification is disabled
* so we set the default transmit scheme with the round-robin mode. Beacuse the legacy bd mode
* only supports the round-robin mode. If the avb feature is required, just call the setup avb
* feature API. */
base->QOS |= ENET_QOS_TX_SCHEME(1);
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Configures the Mac address. */
ENET_SetMacAddr(base, macAddr);
/* Initialize the SMI if uninitialized. */
if (!ENET_GetSMI(base))
{
ENET_SetSMI(base, srcClock_Hz,
((0U != (config->macSpecialConfig & (uint32_t)kENET_ControlSMIPreambleDisable)) ? true : false));
}
/* Enables Ethernet interrupt, enables the interrupt coalsecing if it is required. */
#if defined(FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE) && FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE
uint8_t queue = 0;
if (NULL != config->intCoalesceCfg)
{
uint32_t intMask = (ENET_EIMR_TXB_MASK | ENET_EIMR_RXB_MASK);
#if FSL_FEATURE_ENET_QUEUE > 1
if (FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) > 1)
{
intMask |= ENET_EIMR_TXB2_MASK | ENET_EIMR_RXB2_MASK | ENET_EIMR_TXB1_MASK | ENET_EIMR_RXB1_MASK;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
/* Clear all buffer interrupts. */
base->EIMR &= ~intMask;
/* Set the interrupt coalescence. */
for (queue = 0; queue < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base); queue++)
{
base->TXIC[queue] = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[queue]) |
config->intCoalesceCfg->txCoalesceTimeCount[queue] | ENET_TXIC_ICCS_MASK |
ENET_TXIC_ICEN_MASK;
base->RXIC[queue] = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[queue]) |
config->intCoalesceCfg->rxCoalesceTimeCount[queue] | ENET_RXIC_ICCS_MASK |
ENET_RXIC_ICEN_MASK;
}
}
#endif /* FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE */
ENET_EnableInterrupts(base, config->interrupt);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Sets the 1588 enhanced feature. */
ecr |= ENET_ECR_EN1588_MASK;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Enables Ethernet module after all configuration except the buffer descriptor active. */
ecr |= ENET_ECR_ETHEREN_MASK | ENET_ECR_DBSWP_MASK;
base->ECR = ecr;
}
static void ENET_SetTxBufferDescriptors(enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig)
{
assert(config != NULL);
assert(bufferConfig != NULL);
/* Default single ring is supported. */
uint8_t ringNum;
uint16_t count;
uint32_t txBuffSizeAlign;
uint8_t *txBuffer = NULL;
const enet_buffer_config_t *buffCfg = bufferConfig;
/* Check the input parameters. */
for (ringNum = 0; ringNum < config->ringNum; ringNum++)
{
if (buffCfg->txBdStartAddrAlign != NULL)
{
volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign;
txBuffSizeAlign = buffCfg->txBuffSizeAlign;
if (buffCfg->txBufferAlign != NULL)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
txBuffer =
(uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBufferAlign, kMEMORY_Local2DMA);
#else
txBuffer = buffCfg->txBufferAlign;
#endif
}
for (count = 0; count < buffCfg->txBdNumber; count++)
{
if (buffCfg->txBufferAlign != NULL)
{
/* Set data buffer address. */
curBuffDescrip->buffer = (uint8_t *)((uint32_t)&txBuffer[count * txBuffSizeAlign]);
}
/* Initializes data length. */
curBuffDescrip->length = 0;
/* Sets the crc. */
curBuffDescrip->control = ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK;
/* Sets the last buffer descriptor with the wrap flag. */
if (count == (buffCfg->txBdNumber - 1U))
{
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_WRAP_MASK;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Enable transmit interrupt for store the transmit timestamp. */
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
/* Set the type of the frame when the credit-based scheme is used. */
curBuffDescrip->controlExtend1 |= (uint16_t)(ENET_BD_FTYPE(ringNum));
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the index. */
curBuffDescrip++;
}
}
buffCfg++;
}
}
static void ENET_SetRxBufferDescriptors(enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig)
{
assert(config != NULL);
assert(bufferConfig != NULL);
/* Default single ring is supported. */
uint8_t ringNum;
uint16_t count;
uint16_t rxBuffSizeAlign;
uint8_t *rxBuffer;
const enet_buffer_config_t *buffCfg = bufferConfig;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint32_t mask = ((uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Check the input parameters. */
for (ringNum = 0; ringNum < config->ringNum; ringNum++)
{
assert(buffCfg->rxBuffSizeAlign >= ENET_RX_MIN_BUFFERSIZE);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
#if FSL_FEATURE_ENET_QUEUE > 1
if (ringNum == 1U)
{
mask = ((uint32_t)kENET_RxFrame1Interrupt | (uint32_t)kENET_RxBuffer1Interrupt);
}
else if (ringNum == 2U)
{
mask = ((uint32_t)kENET_RxFrame2Interrupt | (uint32_t)kENET_RxBuffer2Interrupt);
}
else
{
/* Intentional empty */
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
if ((buffCfg->rxBdStartAddrAlign != NULL) && ((buffCfg->rxBufferAlign != NULL) || config->rxBuffAlloc != NULL))
{
volatile enet_rx_bd_struct_t *curBuffDescrip = buffCfg->rxBdStartAddrAlign;
rxBuffSizeAlign = buffCfg->rxBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
rxBuffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBufferAlign, kMEMORY_Local2DMA);
#else
rxBuffer = buffCfg->rxBufferAlign;
#endif
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (buffCfg->rxMaintainEnable)
{
/* Invalidate rx buffers before DMA transfer data into them. */
DCACHE_InvalidateByRange((uint32_t)rxBuffer, ((uint32_t)buffCfg->rxBdNumber * rxBuffSizeAlign));
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
for (count = 0; count < buffCfg->rxBdNumber; count++)
{
/* Set data buffer and the length. */
curBuffDescrip->length = 0;
if (config->rxBuffAlloc == NULL)
{
curBuffDescrip->buffer = (uint8_t *)((uint32_t)&rxBuffer[count * rxBuffSizeAlign]);
/* Initializes the buffer descriptors with empty bit. */
curBuffDescrip->control = ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
}
/* Sets the last buffer descriptor with the wrap flag. */
if (count == (buffCfg->rxBdNumber - 1U))
{
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (0U != (config->interrupt & mask))
{
/* Enable receive interrupt. */
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_RX_INTERRUPT_MASK;
}
else
{
curBuffDescrip->controlExtend1 = 0;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the index. */
curBuffDescrip++;
}
}
buffCfg++;
}
}
/*!
* brief Allocates all Rx buffers in BDs.
*/
static status_t ENET_RxBufferAllocAll(ENET_Type *base, enet_handle_t *handle)
{
assert(handle->rxBuffAlloc != NULL);
enet_rx_bd_ring_t *rxBdRing;
volatile enet_rx_bd_struct_t *curBuffDescrip;
uint16_t index;
void *buffer;
uint16_t ringId;
/* Allocate memory for all empty buffers in buffer descriptor */
for (ringId = 0; ringId < handle->ringNum; ringId++)
{
assert(handle->rxBdRing[ringId].rxBdBase != NULL);
rxBdRing = &handle->rxBdRing[ringId];
curBuffDescrip = rxBdRing->rxBdBase;
index = 0;
do
{
buffer = handle->rxBuffAlloc(base, handle->userData, ringId);
if (buffer == NULL)
{
ENET_RxBufferFreeAll(base, handle);
return kStatus_ENET_InitMemoryFail;
}
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->rxMaintainEnable[ringId])
{
/* Invalidate cache in case any unfinished cache operation occurs. */
DCACHE_InvalidateByRange((uint32_t)(uint32_t *)buffer, handle->rxBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffer =
(void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)buffer, kMEMORY_Local2DMA);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
curBuffDescrip->buffer = (uint8_t *)(uint32_t *)buffer;
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase the buffer descriptor, if it's the last one, increase to first one of the ring. */
index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + index;
} while (index != 0U);
}
return kStatus_Success;
}
/*!
* brief Frees all Rx buffers in BDs.
*/
static void ENET_RxBufferFreeAll(ENET_Type *base, enet_handle_t *handle)
{
assert(handle->rxBuffFree != NULL);
uint16_t index;
enet_rx_bd_ring_t *rxBdRing;
volatile enet_rx_bd_struct_t *curBuffDescrip;
void *buffer;
uint16_t ringId;
for (ringId = 0; ringId < handle->ringNum; ringId++)
{
assert(handle->rxBdRing[ringId].rxBdBase != NULL);
rxBdRing = &handle->rxBdRing[ringId];
curBuffDescrip = rxBdRing->rxBdBase;
index = 0;
/* Free memory for all buffers in buffer descriptor */
do
{
if (curBuffDescrip->buffer != NULL)
{
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffer = (void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,
kMEMORY_DMA2Local);
#else
buffer = curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
handle->rxBuffFree(base, buffer, handle->userData, ringId);
curBuffDescrip->buffer = NULL;
/* Clears status. */
curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
}
/* Increase the buffer descriptor, if it's the last one, increase to first one of the ring. */
index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + index;
} while (index != 0U);
}
}
/*!
* brief Activates frame reception for specified ring.
*
* This function is to active the enet read process for specified ring.
* note This must be called after the MAC configuration and
* state are ready. It must be called after the ENET_Init() and
* ENET_Ptp1588Configure(). This should be called when the ENET receive required.
*
* param base ENET peripheral base address.
* param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
*/
static inline void ENET_ActiveReadRing(ENET_Type *base, uint8_t ringId)
{
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
/* Ensure previous data update is completed with Data Synchronization Barrier before activing Rx BD. */
__DSB();
/* Actives the receive buffer descriptor. */
switch (ringId)
{
case kENET_Ring0:
base->RDAR = ENET_RDAR_RDAR_MASK;
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case kENET_Ring1:
base->RDAR1 = ENET_RDAR1_RDAR_MASK;
break;
case kENET_Ring2:
base->RDAR2 = ENET_RDAR2_RDAR_MASK;
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
assert(false);
break;
}
}
/*!
* brief Activates frame sending for specified ring.
* note This must be called after the MAC configuration and
* state are ready. It must be called after the ENET_Init() and
* this should be called when the ENET receive required.
*
* param base ENET peripheral base address.
* param ringId The descriptor ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
*
*/
static void ENET_ActiveSendRing(ENET_Type *base, uint8_t ringId)
{
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
volatile uint32_t *txDesActive = NULL;
/* Ensure previous data update is completed with Data Synchronization Barrier before activing Tx BD. */
__DSB();
switch (ringId)
{
case kENET_Ring0:
txDesActive = &(base->TDAR);
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case kENET_Ring1:
txDesActive = &(base->TDAR1);
break;
case kENET_Ring2:
txDesActive = &(base->TDAR2);
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
txDesActive = &(base->TDAR);
break;
}
#if defined(FSL_FEATURE_ENET_HAS_ERRATA_007885) && FSL_FEATURE_ENET_HAS_ERRATA_007885
/* There is a TDAR race condition for mutliQ when the software sets TDAR
* and the UDMA clears TDAR simultaneously or in a small window (2-4 cycles).
* This will cause the udma_tx and udma_tx_arbiter state machines to hang.
* Software workaround: introduces a delay by reading the relevant ENET_TDARn_TDAR 4 times
*/
for (uint8_t i = 0; i < 4U; i++)
{
if (*txDesActive == 0U)
{
break;
}
}
#endif
/* Write to active tx descriptor */
*txDesActive = 0;
}
/*!
* brief Sets the ENET MII speed and duplex.
*
* This API is provided to dynamically change the speed and dulpex for MAC.
*
* param base ENET peripheral base address.
* param speed The speed of the RMII mode.
* param duplex The duplex of the RMII mode.
*/
void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
{
uint32_t rcr = base->RCR;
uint32_t tcr = base->TCR;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (FSL_FEATURE_ENET_INSTANCE_HAS_AVBn(base) == 1)
{
uint32_t ecr = base->ECR;
if (kENET_MiiSpeed1000M == speed)
{
assert(duplex == kENET_MiiFullDuplex);
ecr |= ENET_ECR_SPEED_MASK;
}
else
{
ecr &= ~ENET_ECR_SPEED_MASK;
}
base->ECR = ecr;
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Sets speed mode. */
if (kENET_MiiSpeed10M == speed)
{
rcr |= ENET_RCR_RMII_10T_MASK;
}
else
{
rcr &= ~ENET_RCR_RMII_10T_MASK;
}
/* Set duplex mode. */
if (duplex == kENET_MiiHalfDuplex)
{
rcr |= ENET_RCR_DRT_MASK;
tcr &= ~ENET_TCR_FDEN_MASK;
}
else
{
rcr &= ~ENET_RCR_DRT_MASK;
tcr |= ENET_TCR_FDEN_MASK;
}
base->RCR = rcr;
base->TCR = tcr;
}
/*!
* brief Sets the ENET module Mac address.
*
* param base ENET peripheral base address.
* param macAddr The six-byte Mac address pointer.
* The pointer is allocated by application and input into the API.
*/
void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
uint32_t address;
/* Set physical address lower register. */
address = (uint32_t)(((uint32_t)macAddr[0] << 24U) | ((uint32_t)macAddr[1] << 16U) | ((uint32_t)macAddr[2] << 8U) |
(uint32_t)macAddr[3]);
base->PALR = address;
/* Set physical address high register. */
address = (uint32_t)(((uint32_t)macAddr[4] << 8U) | ((uint32_t)macAddr[5]));
base->PAUR = address << ENET_PAUR_PADDR2_SHIFT;
}
/*!
* brief Gets the ENET module Mac address.
*
* param base ENET peripheral base address.
* param macAddr The six-byte Mac address pointer.
* The pointer is allocated by application and input into the API.
*/
void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
assert(macAddr != NULL);
uint32_t address;
/* Get from physical address lower register. */
address = base->PALR;
macAddr[0] = 0xFFU & (uint8_t)(address >> 24U);
macAddr[1] = 0xFFU & (uint8_t)(address >> 16U);
macAddr[2] = 0xFFU & (uint8_t)(address >> 8U);
macAddr[3] = 0xFFU & (uint8_t)address;
/* Get from physical address high register. */
address = (base->PAUR & ENET_PAUR_PADDR2_MASK) >> ENET_PAUR_PADDR2_SHIFT;
macAddr[4] = 0xFFU & (uint8_t)(address >> 8U);
macAddr[5] = 0xFFU & (uint8_t)address;
}
/*!
* brief Sets the ENET SMI(serial management interface)- MII management interface.
*
* param base ENET peripheral base address.
* param srcClock_Hz This is the ENET module clock frequency. See clock distribution.
* param isPreambleDisabled The preamble disable flag.
* - true Enables the preamble.
* - false Disables the preamble.
*/
void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
{
/* Due to bits limitation of SPEED and HOLDTIME, srcClock_Hz must ensure MDC <= 2.5M and holdtime >= 10ns. */
assert((srcClock_Hz != 0U) && (srcClock_Hz <= 320000000U));
uint32_t clkCycle = 0;
uint32_t speed = 0;
uint32_t mscr = 0;
/* Use (param + N - 1) / N to increase accuracy with rounding. */
/* Calculate the MII speed which controls the frequency of the MDC. */
speed = (srcClock_Hz + 2U * ENET_MDC_FREQUENCY - 1U) / (2U * ENET_MDC_FREQUENCY) - 1U;
/* Calculate the hold time on the MDIO output. */
clkCycle = (10U + ENET_NANOSECOND_ONE_SECOND / srcClock_Hz - 1U) / (ENET_NANOSECOND_ONE_SECOND / srcClock_Hz) - 1U;
/* Build the configuration for MDC/MDIO control. */
mscr =
ENET_MSCR_MII_SPEED(speed) | ENET_MSCR_HOLDTIME(clkCycle) | (isPreambleDisabled ? ENET_MSCR_DIS_PRE_MASK : 0U);
base->MSCR = mscr;
}
/*!
* brief Starts an SMI write command.
*
* Used for standard IEEE802.3 MDIO Clause 22 format.
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register. Range from 0 ~ 31.
* param operation The write operation.
* param data The data written to PHY.
*/
void ENET_StartSMIWrite(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_write_t operation, uint32_t data)
{
uint32_t mmfr = 0;
/* Build MII write command. */
mmfr = ENET_MMFR_ST(1U) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) |
ENET_MMFR_TA(2U) | (data & 0xFFFFU);
base->MMFR = mmfr;
}
/*!
* brief Starts an SMI (Serial Management Interface) read command.
*
* Used for standard IEEE802.3 MDIO Clause 22 format.
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register. Range from 0 ~ 31.
* param operation The read operation.
*/
void ENET_StartSMIRead(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_read_t operation)
{
uint32_t mmfr = 0;
/* Build MII read command. */
mmfr = ENET_MMFR_ST(1U) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) | ENET_MMFR_TA(2U);
base->MMFR = mmfr;
}
#if defined(FSL_FEATURE_ENET_HAS_EXTEND_MDIO) && FSL_FEATURE_ENET_HAS_EXTEND_MDIO
/*!
* brief Starts the extended IEEE802.3 Clause 45 MDIO format SMI write register command.
*
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register. For MDIO IEEE802.3 Clause 45,
* the phyReg is a 21-bits combination of the devaddr (5 bits device address)
* and the regAddr (16 bits phy register): phyReg = (devaddr << 16) | regAddr.
*/
void ENET_StartExtC45SMIWriteReg(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg)
{
uint32_t mmfr = 0;
/* Parse the address from the input register. */
uint16_t devAddr = (uint16_t)((phyReg >> 16U) & 0x1FU);
uint16_t regAddr = (uint16_t)(phyReg & 0xFFFFU);
/* Address write. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiAddrWrite_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2) | ENET_MMFR_DATA(regAddr);
base->MMFR = mmfr;
}
/*!
* brief Starts the extended IEEE802.3 Clause 45 MDIO format SMI write data command.
*
* After writing MMFR register, we need to check whether the transmission is over.
* This is an example for whole precedure of clause 45 MDIO write.
* code
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* ENET_StartExtC45SMIWriteReg(base, phyAddr, phyReg);
* while ((ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) == 0U)
* {
* }
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* ENET_StartExtC45SMIWriteData(base, phyAddr, phyReg, data);
* while ((ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) == 0U)
* {
* }
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* endcode
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register. For MDIO IEEE802.3 Clause 45,
* the phyReg is a 21-bits combination of the devaddr (5 bits device address)
* and the regAddr (16 bits phy register): phyReg = (devaddr << 16) | regAddr.
* param data The data written to PHY.
*/
void ENET_StartExtC45SMIWriteData(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t mmfr = 0;
/* Parse the address from the input register. */
uint16_t devAddr = (uint16_t)((phyReg >> 16U) & 0x1FU);
/* Build MII write command. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiWriteFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2) | ENET_MMFR_DATA(data);
base->MMFR = mmfr;
}
/*!
* brief Starts the extended IEEE802.3 Clause 45 MDIO format SMI read data command.
*
* After writing MMFR register, we need to check whether the transmission is over.
* This is an example for whole precedure of clause 45 MDIO read.
* code
* uint32_t data;
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* ENET_StartExtC45SMIWriteReg(base, phyAddr, phyReg);
* while ((ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) == 0U)
* {
* }
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* ENET_StartExtC45SMIReadData(base, phyAddr, phyReg);
* while ((ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) == 0U)
* {
* }
* ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
* data = ENET_ReadSMIData(base);
* endcode
* param base ENET peripheral base address.
* param phyAddr The PHY address.
* param phyReg The PHY register. For MDIO IEEE802.3 Clause 45,
* the phyReg is a 21-bits combination of the devaddr (5 bits device address)
* and the regAddr (16 bits phy register): phyReg = (devaddr << 16) | regAddr.
*/
void ENET_StartExtC45SMIReadData(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg)
{
uint32_t mmfr = 0;
/* Parse the address from the input register. */
uint16_t devAddr = (uint16_t)((phyReg >> 16U) & 0x1FU);
/* Build MII read command. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiReadFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2);
base->MMFR = mmfr;
}
#endif /* FSL_FEATURE_ENET_HAS_EXTEND_MDIO */
static uint16_t ENET_IncreaseIndex(uint16_t index, uint16_t max)
{
assert(index < max);
/* Increase the index. */
index++;
if (index >= max)
{
index = 0;
}
return index;
}
static inline bool ENET_TxDirtyRingAvailable(enet_tx_dirty_ring_t *txDirtyRing)
{
return !txDirtyRing->isFull;
}
/*!
* brief Gets the error statistics of a received frame for ENET specified ring.
*
* This API must be called after the ENET_GetRxFrameSize and before the ENET_ReadFrame().
* If the ENET_GetRxFrameSize returns kStatus_ENET_RxFrameError,
* the ENET_GetRxErrBeforeReadFrame can be used to get the exact error statistics.
* This is an example.
* code
* status = ENET_GetRxFrameSize(&g_handle, &length, 0);
* if (status == kStatus_ENET_RxFrameError)
* {
* ENET_GetRxErrBeforeReadFrame(&g_handle, &eErrStatic, 0);
* ENET_ReadFrame(EXAMPLE_ENET, &g_handle, NULL, 0);
* }
* endcode
* param handle The ENET handler structure pointer. This is the same handler pointer used in the ENET_Init.
* param eErrorStatic The error statistics structure pointer.
* param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
*/
void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic, uint8_t ringId)
{
assert(handle != NULL);
assert(eErrorStatic != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
uint16_t control = 0;
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
volatile enet_rx_bd_struct_t *cmpBuffDescrip = curBuffDescrip;
do
{
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
control = curBuffDescrip->control;
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK))
{
/* The receive truncate error. */
eErrorStatic->statsRxTruncateErr++;
}
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK))
{
/* The receive over run error. */
eErrorStatic->statsRxOverRunErr++;
}
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK))
{
/* The receive length violation error. */
eErrorStatic->statsRxLenGreaterErr++;
}
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK))
{
/* The receive alignment error. */
eErrorStatic->statsRxAlignErr++;
}
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK))
{
/* The receive CRC error. */
eErrorStatic->statsRxFcsErr++;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint16_t controlExt = curBuffDescrip->controlExtend1;
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK))
{
/* The MAC error. */
eErrorStatic->statsRxMacErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK))
{
/* The PHY error. */
eErrorStatic->statsRxPhyErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK))
{
/* The receive collision error. */
eErrorStatic->statsRxCollisionErr++;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
break;
}
/* Increase the buffer descriptor, if it's the last one, increase to first one of the ring buffer. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK))
{
curBuffDescrip = rxBdRing->rxBdBase;
}
else
{
curBuffDescrip++;
}
} while (curBuffDescrip != cmpBuffDescrip);
}
/*!
* brief Gets statistical data in transfer.
*
* param base ENET peripheral base address.
* param statistics The statistics structure pointer.
*/
void ENET_GetStatistics(ENET_Type *base, enet_transfer_stats_t *statistics)
{
/* Rx statistics */
statistics->statsRxFrameCount = base->RMON_R_PACKETS;
statistics->statsRxFrameOk = base->IEEE_R_FRAME_OK;
statistics->statsRxCrcErr = base->IEEE_R_CRC;
statistics->statsRxAlignErr = base->IEEE_R_ALIGN;
statistics->statsRxDropInvalidSFD = base->IEEE_R_DROP;
statistics->statsRxFifoOverflowErr = base->IEEE_R_MACERR;
/* Tx statistics */
statistics->statsTxFrameCount = base->RMON_T_PACKETS;
statistics->statsTxFrameOk = base->IEEE_T_FRAME_OK;
statistics->statsTxCrcAlignErr = base->RMON_T_CRC_ALIGN;
statistics->statsTxFifoUnderRunErr = base->IEEE_T_MACERR;
}
/*!
* brief Gets the size of the read frame for specified ring.
*
* This function gets a received frame size from the ENET buffer descriptors.
* note The FCS of the frame is automatically removed by MAC and the size is the length without the FCS.
* After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called to receive frame and update the BD
* if the result is not "kStatus_ENET_RxFrameEmpty".
*
* param handle The ENET handler structure. This is the same handler pointer used in the ENET_Init.
* param length The length of the valid frame received.
* param ringId The ring index or ring number.
* retval kStatus_ENET_RxFrameEmpty No frame received. Should not call ENET_ReadFrame to read frame.
* retval kStatus_ENET_RxFrameError Data error happens. ENET_ReadFrame should be called with NULL data
* and NULL length to update the receive buffers.
* retval kStatus_Success Receive a frame Successfully then the ENET_ReadFrame
* should be called with the right data buffer and the captured data length input.
*/
status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length, uint8_t ringId)
{
assert(handle != NULL);
assert(length != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
/* Reset the length to zero. */
*length = 0;
uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
uint16_t index = rxBdRing->rxGenIdx;
bool isReturn = false;
status_t result = kStatus_Success;
/* Check the current buffer descriptor's empty flag. If empty means there is no frame received. */
/* If this buffer descriptor is owned by application, return empty. Only need to check the first BD's owner if one
* frame in mutiple BDs. */
if (0U != (curBuffDescrip->control & (ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK | ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK)))
{
isReturn = true;
result = kStatus_ENET_RxFrameEmpty;
}
else
{
do
{
/* Add check for abnormal case. */
if (curBuffDescrip->length == 0U)
{
isReturn = true;
result = kStatus_ENET_RxFrameError;
break;
}
/* Find the last buffer descriptor. */
if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
isReturn = true;
/* The last buffer descriptor in the frame check the status of the received frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK))
{
result = kStatus_ENET_RxFrameError;
break;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (0U != (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK))
{
result = kStatus_ENET_RxFrameError;
break;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* FCS is removed by MAC. */
*length = curBuffDescrip->length;
break;
}
/* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + index;
} while (index != rxBdRing->rxGenIdx);
}
if (isReturn == false)
{
/* The frame is on processing - set to empty status to make application to receive it next time. */
result = kStatus_ENET_RxFrameEmpty;
}
return result;
}
/*!
* brief Reads a frame from the ENET device.
* This function reads a frame (both the data and the length) from the ENET buffer descriptors.
* User can get timestamp through ts pointer if the ts is not NULL.
* note It doesn't store the timestamp in the receive timestamp queue.
* The ENET_GetRxFrameSize should be used to get the size of the prepared data buffer.
* This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer
* in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time
* consumption.
* This is an example:
* code
* uint32_t length;
* enet_handle_t g_handle;
* Comments: Get the received frame size firstly.
* status = ENET_GetRxFrameSize(&g_handle, &length, 0);
* if (length != 0)
* {
* Comments: Allocate memory here with the size of "length"
* uint8_t *data = memory allocate interface;
* if (!data)
* {
* ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL);
* Comments: Add the console warning log.
* }
* else
* {
* status = ENET_ReadFrame(ENET, &g_handle, data, length, 0, NULL);
* Comments: Call stack input API to deliver the data to stack
* }
* }
* else if (status == kStatus_ENET_RxFrameError)
* {
* Comments: Update the received buffer when a error frame is received.
* ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL);
* }
* endcode
* param base ENET peripheral base address.
* param handle The ENET handler structure. This is the same handler pointer used in the ENET_Init.
* param data The data buffer provided by user to store the frame which memory size should be at least "length".
* param length The size of the data buffer which is still the length of the received frame.
* param ringId The ring index or ring number.
* param ts The timestamp address to store received timestamp.
* return The execute status, successful or failure.
*/
status_t ENET_ReadFrame(
ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint8_t ringId, uint32_t *ts)
{
assert(handle != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
uint32_t len = 0;
uint32_t offset = 0;
uint16_t control;
bool isLastBuff = false;
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
uint16_t index = rxBdRing->rxGenIdx;
status_t result = kStatus_Success;
uint32_t address;
uint32_t dest;
/* For data-NULL input, only update the buffer descriptor. */
if (data == NULL)
{
do
{
/* Update the control flag. */
control = curBuffDescrip->control;
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
/* Find the last buffer descriptor for the frame. */
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
break;
}
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
} while (index != rxBdRing->rxGenIdx);
}
else
{
while (!isLastBuff)
{
/* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->rxMaintainEnable[ringId])
{
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
dest = (uint32_t)data + offset;
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
/* This is a valid frame. */
isLastBuff = true;
if (length == curBuffDescrip->length)
{
/* Copy the frame to user's buffer without FCS. */
len = curBuffDescrip->length - offset;
(void)memcpy((void *)(uint32_t *)dest, (void *)(uint32_t *)address, len);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Get the timestamp if the ts isn't NULL. */
if (ts != NULL)
{
*ts = curBuffDescrip->timestamp;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
break;
}
else
{
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
}
}
else
{
/* Store a frame on several buffer descriptors. */
isLastBuff = false;
/* Length check. */
if (offset >= length)
{
result = kStatus_ENET_RxFrameFail;
break;
}
(void)memcpy((void *)(uint32_t *)dest, (void *)(uint32_t *)address, handle->rxBuffSizeAlign[ringId]);
offset += handle->rxBuffSizeAlign[ringId];
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
}
/* Get the current buffer descriptor. */
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
}
}
return result;
}
static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint8_t ringId)
{
assert(handle != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
/* Clears status. */
curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase current buffer descriptor to the next one. */
rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
ENET_ActiveReadRing(base, ringId);
}
/*!
* brief Transmits an ENET frame for specified ring.
* note The CRC is automatically appended to the data. Input the data to send without the CRC.
* This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data buffer
* in 32 bits platforms provided by user may let compiler use optimization instruction to reduce time
* consumption.
*
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param data The data buffer provided by user to send.
* param length The length of the data to send.
* param ringId The ring index or ring number.
* param tsFlag Timestamp enable flag.
* param context Used by user to handle some events after transmit over.
* retval kStatus_Success Send frame succeed.
* retval kStatus_ENET_TxFrameBusy Transmit buffer descriptor is busy under transmission.
* The transmit busy happens when the data send rate is over the MAC capacity.
* The waiting mechanism is recommended to be added after each call return with
* kStatus_ENET_TxFrameBusy.
*/
status_t ENET_SendFrame(ENET_Type *base,
enet_handle_t *handle,
const uint8_t *data,
uint32_t length,
uint8_t ringId,
bool tsFlag,
void *context)
{
assert(handle != NULL);
assert(data != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
volatile enet_tx_bd_struct_t *curBuffDescrip;
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
enet_frame_info_t *txDirty = NULL;
uint32_t len = 0;
uint32_t sizeleft = 0;
uint32_t address;
status_t result = kStatus_Success;
uint32_t src;
uint32_t configVal;
bool isReturn = false;
uint32_t primask;
/* Check the frame length. */
if (length > ENET_FRAME_TX_LEN_LIMITATION(base))
{
result = kStatus_ENET_TxFrameOverLen;
}
else
{
/* Check if the transmit buffer is ready. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))
{
result = kStatus_ENET_TxFrameBusy;
}
/* Check txDirtyRing if need frameinfo in tx interrupt callback. */
else if ((handle->txReclaimEnable[ringId]) && !ENET_TxDirtyRingAvailable(txDirtyRing))
{
result = kStatus_ENET_TxFrameBusy;
}
else
{
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[ringId] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
(void)memcpy((void *)(uint32_t *)address, (const void *)(uint32_t *)(uint32_t)data, length);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
DCACHE_CleanByRange(address, length);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Set data length. */
curBuffDescrip->length = (uint16_t)length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
/* Add context to frame info ring */
if (handle->txReclaimEnable[ringId])
{
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSendRing(base, ringId);
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Update the size left to be transmit. */
sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
src = (uint32_t)data + len;
/* Increase the current software index of BD */
txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
if (sizeleft > handle->txBuffSizeAlign[ringId])
{
/* Data copy. */
(void)memcpy((void *)(uint32_t *)address, (void *)(uint32_t *)src,
handle->txBuffSizeAlign[ringId]);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, handle->txBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[ringId];
len += handle->txBuffSizeAlign[ringId];
/* Sets the control flag. */
configVal = (uint32_t)curBuffDescrip->control;
configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
curBuffDescrip->control = (uint16_t)configVal;
if (handle->txReclaimEnable[ringId])
{
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor*/
ENET_ActiveSendRing(base, ringId);
}
else
{
(void)memcpy((void *)(uint32_t *)address, (void *)(uint32_t *)src, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, sizeleft);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
curBuffDescrip->length = (uint16_t)sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
if (handle->txReclaimEnable[ringId])
{
/* Add context to frame info ring */
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSendRing(base, ringId);
isReturn = true;
break;
}
/* Update the buffer descriptor address. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
} while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
if (isReturn == false)
{
result = kStatus_ENET_TxFrameBusy;
}
}
}
}
return result;
}
/*!
* brief Enable or disable tx descriptors reclaim mechanism.
* note This function must be called when no pending send frame action.
* Set enable if you want to reclaim context or timestamp in interrupt.
*
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param isEnable Enable or disable flag.
* param ringId The ring index or ring number.
* retval kStatus_Success Succeed to enable/disable Tx reclaim.
* retval kStatus_Fail Fail to enable/disable Tx reclaim.
*/
status_t ENET_SetTxReclaim(enet_handle_t *handle, bool isEnable, uint8_t ringId)
{
assert(handle != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
status_t result = kStatus_Success;
/* If tx dirty ring is empty, can set this flag and reset txConsumIdx */
if ((txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx) && ENET_TxDirtyRingAvailable(txDirtyRing))
{
if (isEnable)
{
handle->txReclaimEnable[ringId] = true;
txBdRing->txConsumIdx = txBdRing->txGenIdx;
}
else
{
handle->txReclaimEnable[ringId] = false;
}
}
else
{
result = kStatus_Fail;
}
return result;
}
/*!
* brief Reclaim tx descriptors.
* This function is used to update the tx descriptor status and
* store the tx timestamp when the 1588 feature is enabled.
* This is called by the transmit interupt IRQ handler after the
* complete of a frame transmission.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param ringId The ring index or ring number.
*/
void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t ringId)
{
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
volatile enet_tx_bd_struct_t *curBuffDescrip = txBdRing->txBdBase + txBdRing->txConsumIdx;
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
enet_frame_info_t *txDirty = NULL;
uint32_t primask;
/* Need to update the first index for transmit buffer free. */
while ((0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)) && (txBdRing->txDescUsed > 0U))
{
if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK) != 0U)
{
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txConsumIdx;
txDirtyRing->txConsumIdx = ENET_IncreaseIndex(txDirtyRing->txConsumIdx, txDirtyRing->txRingLen);
txDirtyRing->isFull = false;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
txDirty->isTsAvail = false;
if ((curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK) != 0U)
{
enet_ptp_time_t *ts = &txDirty->timeStamp;
/* Get transmit time stamp second. */
txDirty->isTsAvail = true;
ts->second = handle->msTimerSecond;
ts->nanosecond = curBuffDescrip->timestamp;
}
#endif
/* For tx buffer free or requeue for last descriptor.
* The tx interrupt callback should free/requeue the tx buffer. */
if (handle->callback != NULL)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, ringId, kENET_TxEvent, txDirty, handle->userData);
#else
handle->callback(base, handle, kENET_TxEvent, txDirty, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed--;
EnableGlobalIRQ(primask);
/* Update the index. */
txBdRing->txConsumIdx = ENET_IncreaseIndex(txBdRing->txConsumIdx, txBdRing->txRingLen);
curBuffDescrip = txBdRing->txBdBase + txBdRing->txConsumIdx;
}
}
/*!
* deprecated Do not use this function. It has been superseded by @ref ENET_GetRxFrame.
*/
status_t ENET_GetRxBuffer(ENET_Type *base,
enet_handle_t *handle,
void **buffer,
uint32_t *length,
uint8_t ringId,
bool *isLastBuff,
uint32_t *ts)
{
assert(handle != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
assert(handle->rxBdRing[ringId].rxBdBase != NULL);
assert(handle->rxBuffAlloc == NULL);
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
uint32_t address;
/* Check if current rx BD is under usage by certain application */
/* Buffer owner flag, 1: owned by application, 0: owned by driver */
if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK) == 0U)
{
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK;
}
else
{
return kStatus_ENET_RxFrameFail;
}
/* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->rxMaintainEnable[ringId])
{
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
*buffer = (void *)(uint32_t *)address;
*length = curBuffDescrip->length;
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
/* This is a valid frame. */
*isLastBuff = true;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (ts != NULL)
{
*ts = curBuffDescrip->timestamp;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
}
else
{
*isLastBuff = false;
}
/* Increase current buffer descriptor to the next one. */
rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
return kStatus_Success;
}
/*!
* deprecated Do not use this function. It has been superseded by @ref ENET_GetRxFrame.
*/
void ENET_ReleaseRxBuffer(ENET_Type *base, enet_handle_t *handle, void *buffer, uint8_t ringId)
{
assert(handle != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
enet_rx_bd_struct_t *ownBuffDescrip = (enet_rx_bd_struct_t *)(uint32_t)rxBdRing->rxBdBase;
enet_rx_bd_struct_t *blockBuffDescrip = (enet_rx_bd_struct_t *)(uint32_t)rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
enet_rx_bd_struct_t tempBuffDescrip;
uint16_t index = rxBdRing->rxGenIdx;
bool isReleaseBd = false;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffer = (void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)buffer, kMEMORY_Local2DMA);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
do
{
/* Find the BD for releasing, do nothing if it's not owned by application. */
if (buffer == ownBuffDescrip->buffer)
{
if (0U != (ownBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK))
{
isReleaseBd = true;
break;
}
}
if (0U != (ownBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK))
{
break;
}
ownBuffDescrip++;
} while (true);
if (isReleaseBd)
{
/* Find the first BD owned by application after rxBdCurrent, isReleaseBd is true so there's at least one BD is
* owned by application */
do
{
if (0U != (blockBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK))
{
break;
}
if (0U != (blockBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK))
{
blockBuffDescrip = (enet_rx_bd_struct_t *)(uint32_t)rxBdRing->rxBdBase;
}
else
{
blockBuffDescrip++;
}
index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen);
} while (index != rxBdRing->rxGenIdx);
/* If the BD ready for releasing isn't the first BD owned by application after rxBdCurrent then exchange the two
* BDs */
if (blockBuffDescrip != ownBuffDescrip)
{
/* Exchange buffer descriptor content */
tempBuffDescrip = *ownBuffDescrip;
*ownBuffDescrip = *blockBuffDescrip;
*blockBuffDescrip = tempBuffDescrip;
/* Maintain the wrap flag */
if (0U != (ownBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK))
{
ownBuffDescrip->control &= (uint16_t)(~ENET_BUFFDESCRIPTOR_RX_WRAP_MASK);
blockBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
}
else if (0U != (blockBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK))
{
blockBuffDescrip->control &= (uint16_t)(~ENET_BUFFDESCRIPTOR_RX_WRAP_MASK);
ownBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
}
else
{
/* Intentional empty */
}
/* Clears status including the owner flag. */
blockBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
blockBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
}
else
{
/* Clears status including the owner flag. */
ownBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
ownBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
}
ENET_ActiveReadRing(base, ringId);
}
}
static inline status_t ENET_GetRxFrameErr(enet_rx_bd_struct_t *rxDesc, enet_rx_frame_error_t *rxFrameError)
{
assert(rxDesc != NULL);
assert(rxFrameError != NULL);
status_t result = kStatus_Success;
uint16_t control = rxDesc->control;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint16_t controlExtend1 = rxDesc->controlExtend1;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
union _frame_error
{
uint32_t data;
enet_rx_frame_error_t frameError;
};
union _frame_error error;
(void)memset((void *)&error.frameError, 0, sizeof(enet_rx_frame_error_t));
/* The last buffer descriptor in the frame check the status of the received frame. */
if (0U != (control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK))
{
result = kStatus_ENET_RxFrameError;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (0U != (controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK))
{
result = kStatus_ENET_RxFrameError;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
if (result != kStatus_Success)
{
error.data = control;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
error.data |= ((uint32_t)controlExtend1 << 16U);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
}
*rxFrameError = error.frameError;
return result;
}
/*!
* brief Receives one frame in specified BD ring with zero copy.
*
* This function will use the user-defined allocate and free callback. Every time application gets one frame through
* this function, driver will allocate new buffers for the BDs whose buffers have been taken by application.
* note This function will drop current frame and update related BDs as available for DMA if new buffers allocating
* fails. Application must provide a memory pool including at least BD number + 1 buffers to make this function work
* normally. If user calls this function in Rx interrupt handler, be careful that this function makes Rx BD ready with
* allocating new buffer(normal) or updating current BD(out of memory). If there's always new Rx frame input, Rx
* interrupt will be triggered forever. Application need to disable Rx interrupt according to specific design in this
* case.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param rxFrame The received frame information structure provided by user.
* param ringId The ring index or ring number.
* retval kStatus_Success Succeed to get one frame and allocate new memory for Rx buffer.
* retval kStatus_ENET_RxFrameEmpty There's no Rx frame in the BD.
* retval kStatus_ENET_RxFrameError There's issue in this receiving.
* retval kStatus_ENET_RxFrameDrop There's no new buffer memory for BD, drop this frame.
*/
status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t *rxFrame, uint8_t ringId)
{
assert(handle != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
assert(handle->rxBdRing[ringId].rxBdBase != NULL);
assert(rxFrame != NULL);
assert(rxFrame->rxBuffArray != NULL);
status_t result = kStatus_Success;
enet_rx_bd_ring_t *rxBdRing = &handle->rxBdRing[ringId];
volatile enet_rx_bd_struct_t *curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
void *newBuff = NULL;
bool isLastBuff = false;
uint16_t buffLen = 0;
enet_buffer_struct_t *rxBuffer;
uint16_t index;
uint32_t address;
void *buffer;
/* Check the current buffer descriptor's empty flag. If empty means there is no frame received. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK))
{
result = kStatus_ENET_RxFrameEmpty;
}
else
{
index = rxBdRing->rxGenIdx;
do
{
/* Find the last buffer descriptor. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
/* The last buffer descriptor stores the status of rhis received frame. */
result = ENET_GetRxFrameErr((enet_rx_bd_struct_t *)(uint32_t)curBuffDescrip, &rxFrame->rxFrameError);
break;
}
/* Can't find the last BD flag, no valid frame. */
index = ENET_IncreaseIndex(index, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + index;
if (index == rxBdRing->rxGenIdx)
{
result = kStatus_ENET_RxFrameEmpty;
break;
}
} while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK));
}
/* Drop the error frame. */
if (result == kStatus_ENET_RxFrameError)
{
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
do
{
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
isLastBuff = true;
}
/* Clears status including the owner flag. */
curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase current buffer descriptor to the next one. */
rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
} while (!isLastBuff);
ENET_ActiveReadRing(base, ringId);
return result;
}
else if (result != kStatus_Success)
{
return result;
}
else
{
/* Intentional empty */
}
/* Get the valid frame */
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
index = 0;
do
{
newBuff = handle->rxBuffAlloc(base, handle->userData, ringId);
if (newBuff != NULL)
{
rxBuffer = &rxFrame->rxBuffArray[index];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->rxMaintainEnable[ringId])
{
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
rxBuffer->buffer = (void *)(uint32_t *)address;
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
/* This is a valid frame. */
isLastBuff = true;
rxFrame->totLen = curBuffDescrip->length;
rxBuffer->length = curBuffDescrip->length - buffLen;
rxFrame->rxAttribute.promiscuous = false;
if (0U != (base->RCR & ENET_RCR_PROM_MASK))
{
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_MISS_MASK))
{
rxFrame->rxAttribute.promiscuous = true;
}
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
rxFrame->rxAttribute.timestamp = curBuffDescrip->timestamp;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
}
else
{
rxBuffer->length = curBuffDescrip->length;
buffLen += rxBuffer->length;
}
/* Give new buffer from application to BD */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
buffer =
(void *)(uint32_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)(uint32_t *)newBuff, kMEMORY_Local2DMA);
#else
buffer = newBuff;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->rxMaintainEnable[ringId])
{
DCACHE_InvalidateByRange((uint32_t)(uint32_t *)buffer, handle->rxBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
curBuffDescrip->buffer = buffer;
/* Clears status including the owner flag. */
curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase Rx array index and the buffer descriptor address. */
index++;
rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
}
else
{
/* Drop frame if there's no new buffer memory */
/* Free the incomplete frame buffers. */
while (index-- != 0U)
{
handle->rxBuffFree(base, &rxFrame->rxBuffArray[index].buffer, handle->userData, ringId);
}
/* Update left buffers as ready for next coming frame */
do
{
/* The last buffer descriptor of a frame. */
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK))
{
isLastBuff = true;
}
/* Clears status including the owner flag. */
curBuffDescrip->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase current buffer descriptor to the next one. */
rxBdRing->rxGenIdx = ENET_IncreaseIndex(rxBdRing->rxGenIdx, rxBdRing->rxRingLen);
curBuffDescrip = rxBdRing->rxBdBase + rxBdRing->rxGenIdx;
} while (!isLastBuff);
result = kStatus_ENET_RxFrameDrop;
break;
}
} while (!isLastBuff);
ENET_ActiveReadRing(base, ringId);
return result;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
static inline void ENET_PrepareTxDesc(volatile enet_tx_bd_struct_t *txDesc, enet_tx_config_struct_t *txConfig)
{
uint16_t controlExtend1 = 0U;
/* For enable the timestamp. */
if (txConfig->intEnable)
{
controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK;
}
if (txConfig->tsEnable)
{
controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
if (txConfig->autoProtocolChecksum)
{
controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_PROTOCHECKSUM_MASK;
}
if (txConfig->autoIPChecksum)
{
controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_IPCHECKSUM_MASK;
}
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (txConfig->tltEnable)
{
controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_USETXLAUNCHTIME_MASK;
txDesc->txLaunchTimeLow |= txConfig->tltLow;
txDesc->txLaunchTimeHigh |= txConfig->tltHigh;
}
controlExtend1 |= (uint16_t)ENET_BD_FTYPE(txConfig->AVBFrameType);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
txDesc->controlExtend1 = controlExtend1;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*!
* brief Sends one frame in specified BD ring with zero copy.
*
* This function supports scattered buffer transmit, user needs to provide the buffer array.
* note Tx reclaim should be enabled to ensure the Tx buffer ownership can be given back to
* application after Tx is over.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer. This is the same handler pointer used in the ENET_Init.
* param txFrame The Tx frame structure.
* param ringId The ring index or ring number.
* retval kStatus_Success Succeed to send one frame.
* retval kStatus_ENET_TxFrameBusy The BD is not ready for Tx or the reclaim operation still not finishs.
* retval kStatus_ENET_TxFrameOverLen The Tx frame length is over max ethernet frame length.
*/
status_t ENET_StartTxFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t *txFrame, uint8_t ringId)
{
assert(handle != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
assert(txFrame->txBuffArray != NULL);
assert(txFrame->txBuffNum != 0U);
assert(handle->txReclaimEnable[ringId]);
volatile enet_tx_bd_struct_t *curBuffDescrip;
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
status_t result = kStatus_Success;
enet_buffer_struct_t *txBuff = txFrame->txBuffArray;
uint32_t txBuffNum = txFrame->txBuffNum;
enet_frame_info_t *txDirty = NULL;
uint32_t frameLen = 0;
uint32_t idleDescNum = 0;
uint16_t index = 0;
uint32_t configVal;
uint32_t primask;
void *buffer;
/* Calculate frame length and Tx data buffer number. */
do
{
frameLen += txBuff->length;
txBuff++;
} while (--txBuffNum != 0U);
txBuffNum = txFrame->txBuffNum;
/* Check whether the available BD number is enough for Tx data buffer. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
index = txBdRing->txGenIdx;
do
{
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))
{
break;
}
/* Idle BD number is enough */
if (++idleDescNum >= txBuffNum)
{
break;
}
index = ENET_IncreaseIndex(index, txBdRing->txRingLen);
curBuffDescrip = txBdRing->txBdBase + index;
} while (index != txBdRing->txGenIdx);
/* Check the frame length. */
if (frameLen > ENET_FRAME_TX_LEN_LIMITATION(base))
{
result = kStatus_ENET_TxFrameOverLen;
}
/* Return busy if idle BD is not enough. */
else if (txBuffNum > idleDescNum)
{
result = kStatus_ENET_TxFrameBusy;
}
/* Check txDirtyRing if need frameinfo in tx interrupt callback. */
else if (!ENET_TxDirtyRingAvailable(txDirtyRing))
{
result = kStatus_ENET_TxFrameBusy;
}
else
{
txBuff = txFrame->txBuffArray;
do
{
assert(txBuff->buffer != NULL);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
DCACHE_CleanByRange((uint32_t)(uint32_t *)txBuff->buffer, txBuff->length);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
/* Map loacl memory address to DMA for special platform. */
buffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)txBuff->buffer, kMEMORY_Local2DMA);
#else
buffer = txBuff->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
/* Set data buffer and length. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
curBuffDescrip->buffer = (uint8_t *)(uint32_t *)buffer;
curBuffDescrip->length = txBuff->length;
/* Increase txBuffer array address and the buffer descriptor address. */
txBuff++;
txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
ENET_PrepareTxDesc(curBuffDescrip, &txFrame->txConfig);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Linked buffers */
if (--txBuffNum != 0U)
{
/* Set BD ready flag and clean last BD flag. */
configVal = (uint32_t)curBuffDescrip->control;
configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
curBuffDescrip->control = (uint16_t)configVal;
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
else
{
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Add context to frame info ring */
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = txFrame->context;
txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active Tx BD everytime to speed up transfer */
ENET_ActiveSendRing(base, ringId);
} while (txBuffNum != 0U);
}
return result;
}
/*!
* deprecated Do not use this function. It has been superseded by @ref ENET_StartTxFrame.
*/
status_t ENET_SendFrameZeroCopy(ENET_Type *base,
enet_handle_t *handle,
const uint8_t *data,
uint32_t length,
uint8_t ringId,
bool tsFlag,
void *context)
{
assert(handle != NULL);
assert(data != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
volatile enet_tx_bd_struct_t *curBuffDescrip;
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
enet_frame_info_t *txDirty = NULL;
uint32_t len = 0;
uint32_t sizeleft = 0;
status_t result = kStatus_Success;
uint8_t *data_temp;
uint32_t configVal;
bool isReturn = false;
uint32_t primask;
/* Check the frame length. */
if (length > ENET_FRAME_TX_LEN_LIMITATION(base))
{
result = kStatus_ENET_TxFrameOverLen;
}
else
{
/* Check if the transmit buffer is ready. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))
{
result = kStatus_ENET_TxFrameBusy;
}
/* Check txDirtyRing if need frameinfo in tx interrupt callback. */
else if (handle->txReclaimEnable[ringId] && !ENET_TxDirtyRingAvailable(txDirtyRing))
{
result = kStatus_ENET_TxFrameBusy;
}
else
{
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[ringId] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
data = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)data, kMEMORY_Local2DMA);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
curBuffDescrip->buffer = (uint8_t *)(uint32_t)data;
/* Set data length. */
curBuffDescrip->length = (uint16_t)length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
/* Add context to frame info ring */
if (handle->txReclaimEnable[ringId])
{
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSendRing(base, ringId);
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Update the size left to be transmit. */
sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
data = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)data, kMEMORY_Local2DMA);
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
data_temp = (uint8_t *)(uint32_t)data + len;
/* Increase the current software index of BD */
txBdRing->txGenIdx = ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
if (sizeleft > handle->txBuffSizeAlign[ringId])
{
/* Set buffer. */
curBuffDescrip->buffer = data_temp;
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[ringId];
len += handle->txBuffSizeAlign[ringId];
/* Sets the control flag. */
configVal = (uint32_t)curBuffDescrip->control;
configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
curBuffDescrip->control = (uint16_t)configVal;
if (handle->txReclaimEnable[ringId])
{
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor*/
ENET_ActiveSendRing(base, ringId);
}
else
{
curBuffDescrip->buffer = data_temp;
curBuffDescrip->length = (uint16_t)sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
if (handle->txReclaimEnable[ringId])
{
/* Add context to frame info ring */
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSendRing(base, ringId);
isReturn = true;
break;
}
/* Update buffer descriptor address. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
} while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
if (isReturn == false)
{
result = kStatus_ENET_TxFrameBusy;
}
}
}
}
return result;
}
/*!
* brief Adds the ENET device to a multicast group.
*
* param base ENET peripheral base address.
* param address The six-byte multicast group address which is provided by application.
*/
void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address)
{
assert(address != NULL);
enet_handle_t *handle = s_ENETHandle[ENET_GetInstance(base)];
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
uint32_t configVal = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if (0U != ((c ^ crc) & 1U))
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
crc = crc >> 26U;
handle->multicastCount[crc]++;
/* Enable a multicast group address. */
configVal = ((uint32_t)1U << (crc & 0x1FU));
if (0U != (crc & 0x20U))
{
base->GAUR |= configVal;
}
else
{
base->GALR |= configVal;
}
}
/*!
* brief Moves the ENET device from a multicast group.
*
* param base ENET peripheral base address.
* param address The six-byte multicast group address which is provided by application.
*/
void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
{
assert(address != NULL);
enet_handle_t *handle = s_ENETHandle[ENET_GetInstance(base)];
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
uint32_t configVal = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if (0U != ((c ^ crc) & 1U))
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
crc = crc >> 26U;
handle->multicastCount[crc]--;
/* Set the hash table if no collisions */
if (0U == handle->multicastCount[crc])
{
configVal = ~((uint32_t)1U << (crc & 0x1FU));
if (0U != (crc & 0x20U))
{
base->GAUR &= configVal;
}
else
{
base->GALR &= configVal;
}
}
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*!
* brief Gets the ENET transmit frame statistics after the data send for specified ring.
*
* This interface gets the error statistics of the transmit frame.
* Because the error information is reported by the uDMA after the data delivery, this interface
* should be called after the data transmit API. It is recommended to call this function on
* transmit interrupt handler. After calling the ENET_SendFrame, the
* transmit interrupt notifies the transmit completion.
*
* param handle The PTP handler pointer. This is the same handler pointer used in the ENET_Init.
* param eErrorStatic The error statistics structure pointer.
* param ringId The ring index, range from 0 ~ (FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).
* return The execute status.
*/
status_t ENET_GetTxErrAfterSendFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic, uint8_t ringId)
{
assert(handle != NULL);
assert(eErrorStatic != NULL);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_QUEUE);
uint16_t control = 0;
uint16_t controlExt = 0;
status_t result = kStatus_Success;
bool isReturn = false;
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
volatile enet_tx_bd_struct_t *curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
do
{
/* Get the current dirty transmit buffer descriptor. */
control = handle->txBdDirtyStatic[ringId]->control;
controlExt = handle->txBdDirtyStatic[ringId]->controlExtend0;
/* Get the control status data, If the buffer descriptor has not been processed break out. */
if (0U != (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))
{
result = kStatus_ENET_TxFrameBusy;
isReturn = true;
break;
}
/* Increase the transmit dirty static pointer. */
if (0U != (handle->txBdDirtyStatic[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK))
{
handle->txBdDirtyStatic[ringId] = txBdRing->txBdBase;
}
else
{
handle->txBdDirtyStatic[ringId]++;
}
/* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */
if (0U != (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK))
{
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK))
{
/* Transmit error. */
eErrorStatic->statsTxErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK))
{
/* Transmit excess collision error. */
eErrorStatic->statsTxExcessCollisionErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK))
{
/* Transmit late collision error. */
eErrorStatic->statsTxLateCollisionErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK))
{
/* Transmit under flow error. */
eErrorStatic->statsTxUnderFlowErr++;
}
if (0U != (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK))
{
/* Transmit over flow error. */
eErrorStatic->statsTxOverFlowErr++;
}
isReturn = true;
break;
}
} while (handle->txBdDirtyStatic[ringId] != curBuffDescrip);
if (isReturn == false)
{
result = kStatus_ENET_TxFrameFail;
}
return result;
}
void ENET_Ptp1588ConfigureHandler(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig)
{
assert(handle != NULL);
assert(ptpConfig != NULL);
uint8_t count;
uint32_t mask = (uint32_t)kENET_TxBufferInterrupt;
#if FSL_FEATURE_ENET_QUEUE > 1
mask |= (uint32_t)kENET_TxBuffer1Interrupt | (uint32_t)kENET_TxBuffer2Interrupt;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
for (count = 0; count < handle->ringNum; count++)
{
handle->txBdDirtyStatic[count] = handle->txBdRing[count].txBdBase;
}
/* Setting the receive and transmit state for transaction. */
handle->msTimerSecond = 0;
#if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID
uint32_t refClock;
/* The minimum time is defined by the greater of either six register clock cycles or six ptp clock cycles. */
if (handle->enetClock <= ptpConfig->ptp1588ClockSrc_Hz)
{
/* Caculate how many core cycles delay is needed. */
/* In the cases with this IP design issue, core clock = enetClock */
handle->tsDelayCount = 6U * handle->enetClock;
}
else
{
refClock = ptpConfig->ptp1588ClockSrc_Hz;
/* Caculate how many core cycles delay is needed. */
/* In the cases with this IP design issue, core clock = enetClock */
handle->tsDelayCount = 6U * ((handle->enetClock + refClock - 1U) / refClock);
}
#endif
ENET_DisableInterrupts(base, mask);
/* Set the IRQ handler when the interrupt is enabled. */
ENET_SetTsISRHandler(base, ENET_TimeStampIRQHandler);
ENET_SetTxISRHandler(base, ENET_TransmitIRQHandler);
/* Enables the time stamp interrupt and transmit frame interrupt to
* handle the time-stamp . */
ENET_EnableInterrupts(base, (ENET_TS_INTERRUPT | ENET_TX_INTERRUPT));
}
/*!
* brief Configures the ENET PTP IEEE 1588 feature with the basic configuration.
* The function sets the clock for PTP 1588 timer and enables
* time stamp interrupts and transmit interrupts for PTP 1588 features.
* This API should be called when the 1588 feature is enabled
* or the ENET_ENHANCEDBUFFERDESCRIPTOR_MODE is defined.
* ENET_Init should be called before calling this API.
*
* note The PTP 1588 time-stamp second increase though time-stamp interrupt handler
* and the transmit time-stamp store is done through transmit interrupt handler.
* As a result, the TS interrupt and TX interrupt are enabled when you call this API.
*
* param base ENET peripheral base address.
* param handle ENET handler pointer.
* param ptpConfig The ENET PTP1588 configuration.
*/
void ENET_Ptp1588Configure(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig)
{
assert(handle != NULL);
assert(ptpConfig != NULL);
/* Start the 1588 timer. */
ENET_Ptp1588StartTimer(base, ptpConfig->ptp1588ClockSrc_Hz);
ENET_Ptp1588ConfigureHandler(base, handle, ptpConfig);
}
/*!
* brief Starts the ENET PTP 1588 Timer.
* This function is used to initialize the PTP timer. After the PTP starts,
* the PTP timer starts running.
*
* param base ENET peripheral base address.
* param ptpClkSrc The clock source of the PTP timer.
*/
void ENET_Ptp1588StartTimer(ENET_Type *base, uint32_t ptpClkSrc)
{
/* Restart PTP 1588 timer, master clock. */
base->ATCR = ENET_ATCR_RESTART_MASK;
/* Initializes PTP 1588 timer. */
base->ATINC = ENET_ATINC_INC(ENET_NANOSECOND_ONE_SECOND / ptpClkSrc);
base->ATPER = ENET_NANOSECOND_ONE_SECOND;
/* Sets periodical event and the event signal output assertion and Actives PTP 1588 timer. */
base->ATCR = ENET_ATCR_PEREN_MASK | ENET_ATCR_PINPER_MASK | ENET_ATCR_EN_MASK;
}
/*!
* brief Gets the current ENET time from the PTP 1588 timer.
* Interrupts are not disabled.
*
* param base ENET peripheral base address.
* param handle The ENET state pointer. This is the same state pointer used in the ENET_Init.
* param ptpTime The PTP timer structure.
*/
void ENET_Ptp1588GetTimerNoIrqDisable(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
/* Get the current PTP time. */
ptpTime->second = handle->msTimerSecond;
/* Get the nanosecond from the master timer. */
base->ATCR |= ENET_ATCR_CAPTURE_MASK;
#if defined(FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID) && FSL_FEATURE_ENET_TIMESTAMP_CAPTURE_BIT_INVALID
/* The whole while loop includes at least three instructions(subs, nop and bne). */
uint32_t count = (handle->tsDelayCount + 3U - 1U) / 3U;
while (0U != (count--))
{
__NOP();
}
#else
/* Wait for capture over */
while (0U != (base->ATCR & ENET_ATCR_CAPTURE_MASK))
{
}
#endif
/* Get the captured time. */
ptpTime->nanosecond = base->ATVR;
}
/*!
* brief Gets the current ENET time from the PTP 1588 timer.
*
* param base ENET peripheral base address.
* param handle The ENET state pointer. This is the same state pointer used in the ENET_Init.
* param ptpTime The PTP timer structure.
*/
void ENET_Ptp1588GetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
assert(handle != NULL);
assert(ptpTime != NULL);
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
ENET_Ptp1588GetTimerNoIrqDisable(base, handle, ptpTime);
/* Get PTP timer wrap event. */
if (0U != (base->EIR & (uint32_t)kENET_TsTimerInterrupt))
{
ptpTime->second++;
}
/* Enables the interrupt. */
EnableGlobalIRQ(primask);
}
/*!
* brief Sets the ENET PTP 1588 timer to the assigned time.
*
* param base ENET peripheral base address.
* param handle The ENET state pointer. This is the same state pointer used in the ENET_Init.
* param ptpTime The timer to be set to the PTP timer.
*/
void ENET_Ptp1588SetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
assert(handle != NULL);
assert(ptpTime != NULL);
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
/* Sets PTP timer. */
handle->msTimerSecond = ptpTime->second;
base->ATVR = ptpTime->nanosecond;
/* Enables the interrupt. */
EnableGlobalIRQ(primask);
}
/*!
* brief Adjusts the ENET PTP 1588 timer.
*
* param base ENET peripheral base address.
* param corrIncrease The correction increment value. This value is added every time the correction
* timer expires. A value less than the PTP timer frequency(1/ptpClkSrc) slows down the timer,
* a value greater than the 1/ptpClkSrc speeds up the timer.
* param corrPeriod The PTP timer correction counter wrap-around value. This defines after how
* many timer clock the correction counter should be reset and trigger a correction
* increment on the timer. A value of 0 disables the correction counter and no correction occurs.
*/
void ENET_Ptp1588AdjustTimer(ENET_Type *base, uint32_t corrIncrease, uint32_t corrPeriod)
{
/* Set correction for PTP timer increment. */
base->ATINC = (base->ATINC & ~ENET_ATINC_INC_CORR_MASK) | (corrIncrease << ENET_ATINC_INC_CORR_SHIFT);
/* Set correction for PTP timer period. */
base->ATCOR = (base->ATCOR & ~ENET_ATCOR_COR_MASK) | (corrPeriod << ENET_ATCOR_COR_SHIFT);
}
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
/*!
* brief Sets the ENET AVB feature.
*
* ENET AVB feature configuration, set the Receive classification match and transmit
* bandwidth. This API is called when the AVB feature is required.
*
* Note: The AVB frames transmission scheme is credit-based tx scheme and it's only supported
* with the Enhanced buffer descriptors. so the AVB configuration should only done with
* Enhanced buffer descriptor. so when the AVB feature is required, please make sure the
* the "ENET_ENHANCEDBUFFERDESCRIPTOR_MODE" is defined.
*
* param base ENET peripheral base address.
* param handle ENET handler pointer.
* param config The ENET AVB feature configuration structure.
*/
void ENET_AVBConfigure(ENET_Type *base, enet_handle_t *handle, const enet_avb_config_t *config)
{
assert(config != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
uint8_t count = 0;
for (count = 0; count < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) - 1U; count++)
{
/* Set the AVB receive ring classification match when the match is not 0. */
if (0U != (config->rxClassifyMatch[count]))
{
base->RCMR[count] = ((uint32_t)config->rxClassifyMatch[count] & 0xFFFFU) | ENET_RCMR_MATCHEN_MASK;
}
/* Set the dma controller for the extended ring. */
base->DMACFG[count] |= ENET_DMACFG_IDLE_SLOPE(config->idleSlope[count]);
}
/* Shall use the credit-based scheme for avb. */
base->QOS &= ~ENET_QOS_TX_SCHEME_MASK;
base->QOS |= ENET_QOS_RX_FLUSH0_MASK;
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
#if FSL_FEATURE_ENET_QUEUE > 1
/*!
* brief The transmit IRQ handler.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer.
*/
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
/*!
* brief The transmit IRQ handler.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer.
*/
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
assert(handle != NULL);
uint32_t mask = (uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt;
uint32_t index = 0;
uint32_t irq;
/* Check if the transmit interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
switch (ringId)
{
case kENET_Ring1:
mask = ((uint32_t)kENET_TxFrame1Interrupt | (uint32_t)kENET_TxBuffer1Interrupt);
break;
case kENET_Ring2:
mask = ((uint32_t)kENET_TxFrame2Interrupt | (uint32_t)kENET_TxBuffer2Interrupt);
break;
default:
mask = (uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt;
break;
}
index = ringId;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
while (0U != (mask & base->EIR))
{
irq = base->EIR;
/* Clear the transmit interrupt event. */
base->EIR = mask;
/* Callback Handler. */
if (handle->txReclaimEnable[index] && (0U != (irq & (uint32_t)kENET_TxFrameInterrupt)))
{
ENET_ReclaimTxDescriptor(base, handle, (uint8_t)index);
}
else
{
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, index, kENET_TxEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_TxEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
}
/*!
* brief The receive IRQ handler.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer.
*/
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
assert(handle != NULL);
uint32_t mask = (uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt;
/* Check if the receive interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
switch (ringId)
{
case kENET_Ring1:
mask = ((uint32_t)kENET_RxFrame1Interrupt | (uint32_t)kENET_RxBuffer1Interrupt);
break;
case kENET_Ring2:
mask = ((uint32_t)kENET_RxFrame2Interrupt | (uint32_t)kENET_RxBuffer2Interrupt);
break;
default:
mask = (uint32_t)kENET_RxFrameInterrupt | (uint32_t)kENET_RxBufferInterrupt;
break;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
while (0U != (mask & base->EIR))
{
/* Clear the transmit interrupt event. */
base->EIR = mask;
/* Callback function. */
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, ringId, kENET_RxEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_RxEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
/*!
* brief Some special IRQ handler including the error, mii, wakeup irq handler.
*
* param base ENET peripheral base address.
* param handle The ENET handler pointer.
*/
void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
assert(handle != NULL);
uint32_t errMask = (uint32_t)kENET_BabrInterrupt | (uint32_t)kENET_BabtInterrupt | (uint32_t)kENET_EBusERInterrupt |
(uint32_t)kENET_PayloadRxInterrupt | (uint32_t)kENET_LateCollisionInterrupt |
(uint32_t)kENET_RetryLimitInterrupt | (uint32_t)kENET_UnderrunInterrupt;
/* Check if the error interrupt happen. */
if (0U != ((uint32_t)kENET_WakeupInterrupt & base->EIR))
{
/* Clear the wakeup interrupt. */
base->EIR = (uint32_t)kENET_WakeupInterrupt;
/* wake up and enter the normal mode. */
ENET_EnableSleepMode(base, false);
/* Callback function. */
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_WakeUpEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_WakeUpEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
else
{
/* Clear the error interrupt event status. */
errMask &= base->EIR;
base->EIR = errMask;
/* Callback function. */
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_ErrEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_ErrEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*!
* brief The IEEE 1588 PTP time stamp interrupt handler.
*
* param base ENET peripheral base address.
* param handle The ENET state pointer. This is the same state pointer used in the ENET_Init.
*/
void ENET_TimeStampIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
assert(handle != NULL);
/* Check if the PTP time stamp interrupt happen. */
if (0U != ((uint32_t)kENET_TsTimerInterrupt & base->EIR))
{
/* Clear the time stamp interrupt. */
base->EIR = (uint32_t)kENET_TsTimerInterrupt;
/* Increase timer second counter. */
handle->msTimerSecond++;
/* Callback function. */
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_TimeStampEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_TimeStampEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
if (0U != ((uint32_t)kENET_TsAvailInterrupt & base->EIR))
{
/* Clear the time stamp interrupt. */
base->EIR = (uint32_t)kENET_TsAvailInterrupt;
/* Callback function. */
if (NULL != handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_TimeStampAvailEvent, NULL, handle->userData);
#else
handle->callback(base, handle, kENET_TimeStampAvailEvent, NULL, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*!
* brief the common IRQ handler for the tx/rx/error etc irq handler.
*
* This is used for the combined tx/rx/error interrupt for single/mutli-ring (frame 0).
*
* param base ENET peripheral base address.
*/
void ENET_CommonFrame0IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
event &= base->EIMR;
if (0U != (event & ((uint32_t)kENET_TxBufferInterrupt | (uint32_t)kENET_TxFrameInterrupt)))
{
if (s_enetTxIsr[instance] != NULL)
{
#if FSL_FEATURE_ENET_QUEUE > 1
s_enetTxIsr[instance](base, s_ENETHandle[instance], 0);
#else
s_enetTxIsr[instance](base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
if (0U != (event & ((uint32_t)kENET_RxBufferInterrupt | (uint32_t)kENET_RxFrameInterrupt)))
{
if (s_enetRxIsr[instance] != NULL)
{
#if FSL_FEATURE_ENET_QUEUE > 1
s_enetRxIsr[instance](base, s_ENETHandle[instance], 0);
#else
s_enetRxIsr[instance](base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
if (0U != (event & ENET_TS_INTERRUPT) && (NULL != s_enetTsIsr[instance]))
{
s_enetTsIsr[instance](base, s_ENETHandle[instance]);
}
if (0U != (event & ENET_ERR_INTERRUPT) && (NULL != s_enetErrIsr[instance]))
{
s_enetErrIsr[instance](base, s_ENETHandle[instance]);
}
}
#if FSL_FEATURE_ENET_QUEUE > 1
/*!
* brief the common IRQ handler for the tx/rx irq handler.
*
* This is used for the combined tx/rx interrupt for multi-ring (frame 1).
*
* param base ENET peripheral base address.
*/
void ENET_CommonFrame1IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
event &= base->EIMR;
if (0U != (event & ((uint32_t)kENET_TxBuffer1Interrupt | (uint32_t)kENET_TxFrame1Interrupt)))
{
if (s_enetTxIsr[instance] != NULL)
{
s_enetTxIsr[instance](base, s_ENETHandle[instance], 1);
}
}
if (0U != (event & ((uint32_t)kENET_RxBuffer1Interrupt | (uint32_t)kENET_RxFrame1Interrupt)))
{
if (s_enetRxIsr[instance] != NULL)
{
s_enetRxIsr[instance](base, s_ENETHandle[instance], 1);
}
}
}
/*!
* brief the common IRQ handler for the tx/rx irq handler.
*
* This is used for the combined tx/rx interrupt for multi-ring (frame 2).
*
* param base ENET peripheral base address.
*/
void ENET_CommonFrame2IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
event &= base->EIMR;
if (0U != (event & ((uint32_t)kENET_TxBuffer2Interrupt | (uint32_t)kENET_TxFrame2Interrupt)))
{
if (s_enetTxIsr[instance] != NULL)
{
s_enetTxIsr[instance](base, s_ENETHandle[instance], 2);
}
}
if (0U != (event & ((uint32_t)kENET_RxBuffer2Interrupt | (uint32_t)kENET_RxFrame2Interrupt)))
{
if (s_enetRxIsr[instance] != NULL)
{
s_enetRxIsr[instance](base, s_ENETHandle[instance], 2);
}
}
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
void ENET_Ptp1588IRQHandler(ENET_Type *base)
{
uint32_t instance = ENET_GetInstance(base);
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* In some platforms, the 1588 event uses same irq with timestamp event. */
if ((s_enetTsIrqId[instance] == s_enet1588TimerIrqId[instance]) && (s_enetTsIrqId[instance] != NotAvail_IRQn))
{
uint32_t event = base->EIR;
event &= base->EIMR;
if (0U != (event & ((uint32_t)kENET_TsTimerInterrupt | (uint32_t)kENET_TsAvailInterrupt)))
{
if (s_enetTsIsr[instance] != NULL)
{
s_enetTsIsr[instance](base, s_ENETHandle[instance]);
}
}
}
#endif
if (s_enet1588TimerIsr[instance] != NULL)
{
s_enet1588TimerIsr[instance](base, s_ENETHandle[instance]);
}
}
#if defined(ENET)
#if FSL_FEATURE_ENET_QUEUE < 2
void ENET_TxIRQHandler(ENET_Type *base);
void ENET_TxIRQHandler(ENET_Type *base)
{
uint32_t instance = ENET_GetInstance(base);
if (s_enetTxIsr[instance] != NULL)
{
s_enetTxIsr[instance](base, s_ENETHandle[instance]);
}
SDK_ISR_EXIT_BARRIER;
}
void ENET_RxIRQHandler(ENET_Type *base);
void ENET_RxIRQHandler(ENET_Type *base)
{
uint32_t instance = ENET_GetInstance(base);
if (s_enetRxIsr[instance] != NULL)
{
s_enetRxIsr[instance](base, s_ENETHandle[instance]);
}
}
void ENET_ErrIRQHandler(ENET_Type *base);
void ENET_ErrIRQHandler(ENET_Type *base)
{
uint32_t instance = ENET_GetInstance(base);
if (s_enetErrIsr[instance] != NULL)
{
s_enetErrIsr[instance](base, s_ENETHandle[instance]);
}
}
void ENET_Transmit_DriverIRQHandler(void);
void ENET_Transmit_DriverIRQHandler(void)
{
ENET_TxIRQHandler(ENET);
SDK_ISR_EXIT_BARRIER;
}
void ENET_Receive_DriverIRQHandler(void);
void ENET_Receive_DriverIRQHandler(void)
{
ENET_RxIRQHandler(ENET);
SDK_ISR_EXIT_BARRIER;
}
void ENET_Error_DriverIRQHandler(void);
void ENET_Error_DriverIRQHandler(void)
{
ENET_ErrIRQHandler(ENET);
SDK_ISR_EXIT_BARRIER;
}
#endif /* FSL_FEATURE_ENET_QUEUE < 2 */
void ENET_DriverIRQHandler(void);
void ENET_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET);
SDK_ISR_EXIT_BARRIER;
}
void ENET_1588_Timer_DriverIRQHandler(void);
void ENET_1588_Timer_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(ENET);
SDK_ISR_EXIT_BARRIER;
}
#endif /* ENET */
#if defined(ENET1)
void ENET1_DriverIRQHandler(void);
void ENET1_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET1);
SDK_ISR_EXIT_BARRIER;
}
#endif /* ENET1 */
#if defined(ENET2)
void ENET2_DriverIRQHandler(void);
void ENET2_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET2);
SDK_ISR_EXIT_BARRIER;
}
void ENET2_1588_Timer_DriverIRQHandler(void);
void ENET2_1588_Timer_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(ENET2);
SDK_ISR_EXIT_BARRIER;
}
#endif /* ENET2 */
#if defined(CONNECTIVITY__ENET0)
void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET0);
SDK_ISR_EXIT_BARRIER;
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET0);
SDK_ISR_EXIT_BARRIER;
}
void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET0);
SDK_ISR_EXIT_BARRIER;
}
void CONNECTIVITY_ENET0_TIMER_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET0_TIMER_INT_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(CONNECTIVITY__ENET0);
SDK_ISR_EXIT_BARRIER;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#endif /* CONNECTIVITY__ENET0 */
#if defined(CONNECTIVITY__ENET1)
void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET1);
SDK_ISR_EXIT_BARRIER;
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET1);
SDK_ISR_EXIT_BARRIER;
}
void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET1);
SDK_ISR_EXIT_BARRIER;
}
void CONNECTIVITY_ENET1_TIMER_INT_DriverIRQHandler(void);
void CONNECTIVITY_ENET1_TIMER_INT_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(CONNECTIVITY__ENET1);
SDK_ISR_EXIT_BARRIER;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#endif /* CONNECTIVITY__ENET1 */
#if FSL_FEATURE_ENET_QUEUE > 1
#if defined(ENET_1G)
void ENET_1G_DriverIRQHandler(void);
void ENET_1G_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET_1G);
SDK_ISR_EXIT_BARRIER;
}
void ENET_1G_MAC0_Tx_Rx_1_DriverIRQHandler(void);
void ENET_1G_MAC0_Tx_Rx_1_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(ENET_1G);
SDK_ISR_EXIT_BARRIER;
}
void ENET_1G_MAC0_Tx_Rx_2_DriverIRQHandler(void);
void ENET_1G_MAC0_Tx_Rx_2_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(ENET_1G);
SDK_ISR_EXIT_BARRIER;
}
void ENET_1G_1588_Timer_DriverIRQHandler(void);
void ENET_1G_1588_Timer_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(ENET_1G);
SDK_ISR_EXIT_BARRIER;
}
#endif /* ENET_1G */
#if defined(ENET1)
void ENET1_MAC0_Rx_Tx_Done0_DriverIRQHandler(void);
void ENET1_MAC0_Rx_Tx_Done0_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(ENET1);
SDK_ISR_EXIT_BARRIER;
}
void ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler(void);
void ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(ENET1);
SDK_ISR_EXIT_BARRIER;
}
void ENET1_1588_Timer_DriverIRQHandler(void);
void ENET1_1588_Timer_DriverIRQHandler(void)
{
ENET_Ptp1588IRQHandler(ENET1);
SDK_ISR_EXIT_BARRIER;
}
#endif /* ENET1 */
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */