rt-thread-official/bsp/apollo2/board/spi.c

298 lines
8.2 KiB
C
Raw Normal View History

/*
* File : spi.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2017-12-04 Haley the first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "am_mcu_apollo.h"
#include "board.h"
#include "spi.h"
/* SPI1 */
#define AM_SPI0_IOM_INST 0
#define SPI0_GPIO_SCK 5
#define SPI0_GPIO_CFG_SCK AM_HAL_PIN_5_M0SCK
#define SPI0_GPIO_MISO 6
#define SPI0_GPIO_CFG_MISO AM_HAL_PIN_6_M0MISO
#define SPI0_GPIO_MOSI 7
#define SPI0_GPIO_CFG_MOSI AM_HAL_PIN_7_M0MOSI
/* SPI2 */
#define AM_SPI1_IOM_INST 1
static am_hal_iom_config_t g_sIOMConfig =
{
AM_HAL_IOM_SPIMODE, // ui32InterfaceMode
AM_HAL_IOM_8MHZ, // ui32ClockFrequency
0, // bSPHA
0, // bSPOL
4, // ui8WriteThreshold
60, // ui8ReadThreshold
};
/* AM spi driver */
struct am_spi_bus
{
struct rt_spi_bus parent;
rt_uint32_t u32Module;
};
//connect am drv to rt drv.
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration)
{
struct am_spi_bus * am_spi_bus = (struct am_spi_bus *)device->bus;
rt_uint32_t max_hz = configuration->max_hz;
if(max_hz >= 8000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_8MHZ;
}
else if(max_hz >= 6000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_6MHZ;
}
else if(max_hz >= 4000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_4MHZ;
}
else if(max_hz >= 3000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_3MHZ;
}
else if(max_hz >= 2000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_2MHZ;
}
else if(max_hz >= 1500000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_1_5MHZ;
}
else if(max_hz >= 1000000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_1MHZ;
}
else if(max_hz >= 750000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_750KHZ;
}
else if(max_hz >= 500000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_500KHZ;
}
else if(max_hz >= 400000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_400KHZ;
}
else if(max_hz >= 375000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_375KHZ;
}
else if(max_hz >= 250000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_250KHZ;
}
else if(max_hz >= 100000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_100KHZ;
}
else if(max_hz >= 50000)
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_50KHZ;
}
else
{
g_sIOMConfig.ui32ClockFrequency = AM_HAL_IOM_10KHZ;
}
/* CPOL */
if(configuration->mode & RT_SPI_CPOL)
{
g_sIOMConfig.bSPOL = 1;
}
else
{
g_sIOMConfig.bSPOL = 0;
}
/* CPHA */
if(configuration->mode & RT_SPI_CPHA)
{
g_sIOMConfig.bSPHA= 1;
}
else
{
g_sIOMConfig.bSPHA= 0;
}
/* init SPI */
am_hal_iom_disable(am_spi_bus->u32Module);
am_hal_iom_pwrctrl_enable(am_spi_bus->u32Module);
am_hal_iom_config(am_spi_bus->u32Module, &g_sIOMConfig);
am_hal_iom_enable(am_spi_bus->u32Module);
return RT_EOK;
};
static rt_uint32_t xfer(struct rt_spi_device *device, struct rt_spi_message* message)
{
struct am_spi_bus * am_spi_bus = (struct am_spi_bus *)device->bus;
//struct rt_spi_configuration * config = &device->config;
struct am_spi_cs * am_spi_cs = device->parent.user_data;
rt_uint32_t * send_ptr = (rt_uint32_t *)message->send_buf;
rt_uint32_t * recv_ptr = message->recv_buf;
rt_uint32_t u32BytesRemaining = message->length;
rt_uint32_t u32TransferSize = 0;
/* take CS */
if (message->cs_take)
{
;
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (recv_ptr != RT_NULL)
{
u32TransferSize = u32BytesRemaining;
while (u32BytesRemaining)
{
/* Set the transfer size to either 64, or the number of remaining
bytes, whichever is smaller */
if (u32BytesRemaining > 64)
{
u32TransferSize = 64;
am_hal_iom_spi_read(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)recv_ptr, u32TransferSize, AM_HAL_IOM_CS_LOW | AM_HAL_IOM_RAW);
}
else
{
u32TransferSize = u32BytesRemaining;
/* release CS */
if(message->cs_release)
{
am_hal_iom_spi_read(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)recv_ptr, u32TransferSize, AM_HAL_IOM_RAW);
}
else
{
am_hal_iom_spi_read(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)recv_ptr, u32TransferSize, AM_HAL_IOM_CS_LOW | AM_HAL_IOM_RAW);
}
}
u32BytesRemaining -= u32TransferSize;
recv_ptr = (rt_uint32_t *)((rt_uint32_t)recv_ptr + u32TransferSize);
}
}
// д<><D0B4><EFBFBD><EFBFBD>
else if (send_ptr != RT_NULL)
{
while (u32BytesRemaining)
{
/* Set the transfer size to either 32, or the number of remaining
bytes, whichever is smaller */
if (u32BytesRemaining > 32)
{
u32TransferSize = 32;
am_hal_iom_spi_write(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)send_ptr, u32TransferSize, AM_HAL_IOM_CS_LOW | AM_HAL_IOM_RAW);
}
else
{
u32TransferSize = u32BytesRemaining;
/* release CS */
if (message->cs_release)
{
am_hal_iom_spi_write(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)send_ptr, u32TransferSize, AM_HAL_IOM_RAW);
}
else
{
am_hal_iom_spi_write(am_spi_bus->u32Module, am_spi_cs->chip_select,
(uint32_t *)send_ptr, u32TransferSize, AM_HAL_IOM_CS_LOW | AM_HAL_IOM_RAW);
}
}
u32BytesRemaining -= u32TransferSize;
send_ptr = (rt_uint32_t *)((rt_uint32_t)send_ptr + u32TransferSize);
}
}
return message->length;
}
static const struct rt_spi_ops am_spi_ops =
{
configure,
xfer
};
#ifdef RT_USING_SPI1
static struct am_spi_bus am_spi_bus_1 =
{
{0},
AM_SPI0_IOM_INST
};
#endif /* #ifdef RT_USING_SPI1 */
#ifdef RT_USING_SPI2
static struct ambiq_spi_bus ambiq_spi_bus_2 =
{
{1},
AM_SPI1_IOM_INST
};
#endif /* #ifdef RT_USING_SPI2 */
int yr_hw_spi_init(void)
{
struct am_spi_bus* am_spi;
#ifdef RT_USING_SPI1
/* init spi gpio */
am_hal_gpio_pin_config(SPI0_GPIO_SCK, SPI0_GPIO_CFG_SCK);
am_hal_gpio_pin_config(SPI0_GPIO_MISO, SPI0_GPIO_CFG_MISO);
am_hal_gpio_pin_config(SPI0_GPIO_MOSI, SPI0_GPIO_CFG_MOSI);
/* Initialize IOM 0 in SPI mode at 100KHz */
am_hal_iom_pwrctrl_enable(AM_SPI0_IOM_INST);
am_hal_iom_config(AM_SPI0_IOM_INST, &g_sIOMConfig);
am_hal_iom_enable(AM_SPI0_IOM_INST);
//init spi bus device
am_spi = &am_spi_bus_1;
rt_spi_bus_register(&am_spi->parent, "spi1", &am_spi_ops);
#endif
rt_kprintf("spi init!\n");
return 0;
}
#ifdef RT_USING_COMPONENTS_INIT
INIT_BOARD_EXPORT(yr_hw_spi_init);
#endif
/*@}*/