4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 09:48:01 +08:00

261 lines
4.9 KiB
C
Raw Normal View History

#include <math.h>
/*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS CRT
* FILE: lib/crt/math/cos.c
* PURPOSE: Generic C Implementation of cos
* PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
*/
#define PRECISION 9
static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
static double cos_sign_tbl[] = {1,-1,-1,1};
static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
static double sin_sign_tbl[] = {1,-1,-1,1};
double sin(double x)
{
int quadrant;
double x2, result;
/* Calculate the quadrant */
quadrant = x * (2./M_PI);
/* Get offset inside quadrant */
x = x - quadrant * (M_PI/2.);
/* Normalize quadrant to [0..3] */
quadrant = (quadrant - 1) & 0x3;
/* Fixup value for the generic function */
x += sin_off_tbl[quadrant];
/* Calculate the negative of the square of x */
x2 = - (x * x);
/* This is an unrolled taylor series using <PRECISION> iterations
* Example with 4 iterations:
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
* To save multiplications and to keep the precision high, it's performed
* like this:
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
*/
/* Start with 0, compiler will optimize this away */
result = 0;
#if (PRECISION >= 10)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
result *= x2;
#endif
#if (PRECISION >= 9)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
result *= x2;
#endif
#if (PRECISION >= 8)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
result *= x2;
#endif
#if (PRECISION >= 7)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
result *= x2;
#endif
#if (PRECISION >= 6)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
result *= x2;
#endif
#if (PRECISION >= 5)
result += 1./(1.*2*3*4*5*6*7*8*9*10);
result *= x2;
#endif
result += 1./(1.*2*3*4*5*6*7*8);
result *= x2;
result += 1./(1.*2*3*4*5*6);
result *= x2;
result += 1./(1.*2*3*4);
result *= x2;
result += 1./(1.*2);
result *= x2;
result += 1;
/* Apply correct sign */
result *= sin_sign_tbl[quadrant];
return result;
}
double cos(double x)
{
int quadrant;
double x2, result;
/* Calculate the quadrant */
quadrant = x * (2./M_PI);
/* Get offset inside quadrant */
x = x - quadrant * (M_PI/2.);
/* Normalize quadrant to [0..3] */
quadrant = quadrant & 0x3;
/* Fixup value for the generic function */
x += cos_off_tbl[quadrant];
/* Calculate the negative of the square of x */
x2 = - (x * x);
/* This is an unrolled taylor series using <PRECISION> iterations
* Example with 4 iterations:
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
* To save multiplications and to keep the precision high, it's performed
* like this:
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
*/
/* Start with 0, compiler will optimize this away */
result = 0;
#if (PRECISION >= 10)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
result *= x2;
#endif
#if (PRECISION >= 9)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
result *= x2;
#endif
#if (PRECISION >= 8)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
result *= x2;
#endif
#if (PRECISION >= 7)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
result *= x2;
#endif
#if (PRECISION >= 6)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
result *= x2;
#endif
#if (PRECISION >= 5)
result += 1./(1.*2*3*4*5*6*7*8*9*10);
result *= x2;
#endif
result += 1./(1.*2*3*4*5*6*7*8);
result *= x2;
result += 1./(1.*2*3*4*5*6);
result *= x2;
result += 1./(1.*2*3*4);
result *= x2;
result += 1./(1.*2);
result *= x2;
result += 1;
/* Apply correct sign */
result *= cos_sign_tbl[quadrant];
return result;
}
static const int N = 100;
double coef(int n)
{
double t;
if (n == 0)
{
return 0;
}
t = 1.0/n;
if (n%2 == 0)
{
t = -t;
}
return t;
}
double horner(double x)
{
double u = coef(N);
int i;
for(i=N-1; i>=0; i--)
{
u = u*x + coef(i);
}
return u;
}
double sqrt(double b)
{
double x = 1;
int step = 0;
while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50)
{
x = (b/x+x)/2.0;
step++;
}
return x;
}
double ln(double x)
{
int i;
if (x > 1.5)
{
for(i=0; x>1.25; i++)
{
x = sqrt(x);
}
return (1<<i)*horner(x-1);
}
else if (x<0.7 && x>0)
{
for(i=0; x<0.7; i++)
{
x = sqrt(x);
}
return (1<<i)*horner(x-1);
}
else if(x > 0)
{
return horner(x-1);
}
}
double exp(double x)
{
double sum = 1;
int i;
for(i=N; i>0; i--)
{
sum /= i;
sum *= x;
sum += 1;
}
return sum;
}
double pow(double m, double n)
{
return exp(n*ln(m));
}