rt-thread-official/bsp/ti/c28x/libraries/HAL_Drivers/drv_pwm.c

588 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-09-24 qiyu first version
*/
#include "rtdbg.h"
#include "drv_pwm.h"
#include "F2837xD_device.h"
#include "F28x_Project.h" /* Device Headerfile and Examples Include File */
#include "drv_config.h"
#include "F2837xD_epwm.h"
/*
* for now, cpu rate is a fixed value, waiting to be modified to an auto-ajustable variable.
*/
#ifdef BSP_USING_PWM
rt_err_t rt_device_pwm_register(struct rt_device_pwm *device, const char *name, const struct rt_pwm_ops *ops, const void *user_data);
#define CPU_FREQUENCY 200e6
/*
* TODO unknown issue, according to the configuration,
* this division should be 2,
* while 2 is inconsistent with the measured result
*/
#define PWM_DIVISION 2
#define CHANNEL_A 1
#define CHANNEL_B 2
#define UPDOWN 1
enum
{
#ifdef BSP_USING_PWM1
PWM1_INDEX,
#endif
#ifdef BSP_USING_PWM2
PWM2_INDEX,
#endif
#ifdef BSP_USING_PWM3
PWM3_INDEX,
#endif
#ifdef BSP_USING_PWM4
PWM4_INDEX,
#endif
#ifdef BSP_USING_PWM5
PWM5_INDEX,
#endif
#ifdef BSP_USING_PWM6
PWM6_INDEX,
#endif
#ifdef BSP_USING_PWM7
PWM7_INDEX,
#endif
#ifdef BSP_USING_PWM8
PWM8_INDEX,
#endif
#ifdef BSP_USING_PWM9
PWM9_INDEX,
#endif
#ifdef BSP_USING_PWM10
PWM10_INDEX,
#endif
#ifdef BSP_USING_PWM11
PWM11_INDEX,
#endif
#ifdef BSP_USING_PWM12
PWM12_INDEX,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops rt_pwm_ops =
{
drv_pwm_control
};
static struct c28x_pwm c28x_pwm_obj[] =
{
#ifdef BSP_USING_PWM1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_PWM2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_PWM3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_PWM4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_PWM5
PWM5_CONFIG,
#endif
#ifdef BSP_USING_PWM6
PWM6_CONFIG,
#endif
#ifdef BSP_USING_PWM7
PWM7_CONFIG,
#endif
#ifdef BSP_USING_PWM8
PWM8_CONFIG,
#endif
};
static rt_err_t drv_pwm_set(volatile struct EPWM_REGS *epwm,struct rt_pwm_configuration *configuration)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
/*
* TODO Unknown problem
* the clock division configuration of PWM module is 1
* however, the experiment result shows the division is 2
*/
/* Set the configuration of PWM according to the parameter*/
rt_uint32_t prd = configuration->period/(1e9/(CPU_FREQUENCY/PWM_DIVISION))/2;
rt_uint32_t comp = prd*configuration->pulse/configuration->period;
rt_uint32_t dead_time = configuration->dead_time/(1e9/(CPU_FREQUENCY/PWM_DIVISION));
rt_uint32_t phase = configuration->phase;
epwm->TBPRD = prd; /* Set timer period*/
epwm->TBCTR = 0x0000; /* Clear counter*/
epwm->CMPCTL.bit.SHDWAMODE = RT_SHADOW_MODE; /* Load registers every ZERO*/
epwm->CMPCTL.bit.SHDWBMODE = RT_SHADOW_MODE;
/* Setup compare */
if(configuration->channel == CHANNEL_A)
{
epwm->CMPA.bit.CMPA = comp;
}else
{
epwm->CMPB.bit.CMPB = comp;
}
/* Set actions */
epwm->AQCTLA.bit.CAU = AQ_CLEAR; /* Set PWMA on Zero*/
epwm->AQCTLA.bit.CAD = AQ_SET;
epwm->AQCTLB.bit.CBU = AQ_CLEAR; /* Set PWMB on Zero*/
epwm->AQCTLB.bit.CBD = AQ_SET;
/* Active Low PWMs - Setup Deadband */
/* TODO finish complementary setting */
epwm->DBCTL.bit.POLSEL = DB_ACTV_HIC;
epwm->DBRED.bit.DBRED = dead_time;
epwm->DBFED.bit.DBFED = dead_time;
epwm->DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
/*
if(configuration->complementary)
{
}
else
{
epwm->DBRED.bit.DBRED = 0;
epwm->DBFED.bit.DBFED = 0;
epwm->DBCTL.bit.POLSEL = DB_ACTV_HI;
epwm->DBCTL.bit.OUT_MODE = DB_DISABLE;
}
*/
epwm->DBCTL.bit.IN_MODE = DBA_ALL;
/* if disable dead time, set dead_time to 0 */
#ifdef BSP_PWM1_CTR_MODE_UPDOWN
if(phase<180)
{
epwm->TBPHS.bit.TBPHS = prd * phase/180;
epwm->TBCTL.bit.PHSDIR = 0; /* count up */
}else
{
epwm->TBPHS.bit.TBPHS = prd-prd * (phase-180)/180;
epwm->TBCTL.bit.PHSDIR = 1; /* count up*/
}
#endif
if(epwm == &EPwm1Regs)
{
epwm->TBCTL.bit.PHSEN = TB_DISABLE; /* Disable phase loading */
epwm->TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;
}else
{
epwm->TBCTL.bit.PHSEN = TB_ENABLE; /* Disable phase loading */
epwm->TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
}
return RT_EOK;
}
static rt_err_t drv_pwm_get(struct EPWM_REGS *epwm,struct rt_pwm_configuration *configuration)
{
/* Retrieve the pwm configuration */
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
rt_uint32_t prd = epwm->TBPRD;
rt_uint32_t comp = epwm->CMPA.bit.CMPA;
if(UPDOWN)
{
/* if in updown mode, period in configuration has to be doubled */
configuration->period = prd*(1e9/(CPU_FREQUENCY/PWM_DIVISION))*2;
}
else
{
configuration->period = prd*(1e9/(CPU_FREQUENCY/PWM_DIVISION));
}
configuration->pulse = comp*configuration->period/prd;
return RT_EOK;
}
static rt_err_t drv_pwm_set_period(struct EPWM_REGS *epwm, rt_uint32_t period)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
rt_uint32_t prd = period/(1e9/(CPU_FREQUENCY/PWM_DIVISION))/2;
epwm->TBPRD = prd; /* Set timer period */
return RT_EOK;
}
static rt_err_t drv_pwm_set_pulse(struct EPWM_REGS *epwm, int channel, rt_uint32_t pulse)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
rt_uint32_t comp = pulse/(1e9/(CPU_FREQUENCY/PWM_DIVISION));
if(channel == CHANNEL_A)
{
epwm->CMPA.bit.CMPA = comp; /* set comparator value */
}else
{
epwm->CMPB.bit.CMPB = comp; /* set comparator value */
}
return RT_EOK;
}
static rt_err_t drv_pwm_set_dead_time(struct EPWM_REGS *epwm, rt_uint32_t dead_time)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
rt_uint32_t _dead_time = dead_time/(1e9/(CPU_FREQUENCY/PWM_DIVISION));
epwm->DBRED.bit.DBRED = _dead_time; /* rising dead time */
epwm->DBFED.bit.DBFED = _dead_time; /* falling dead time */
return RT_EOK;
}
static rt_err_t drv_pwm_set_phase(struct EPWM_REGS *epwm, rt_uint32_t phase)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
if(phase<180)
{
epwm->TBPHS.bit.TBPHS = epwm->TBPRD * phase/180;
epwm->TBCTL.bit.PHSDIR = 0;/* count up */
}else
{
epwm->TBPHS.bit.TBPHS = epwm->TBPRD-epwm->TBPRD * (phase-180)/180;
epwm->TBCTL.bit.PHSDIR = 1;/* count up */
}
return RT_EOK;
}
static rt_err_t drv_pwm_enable_irq(volatile struct EPWM_REGS *epwm,rt_bool_t enable)
{
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
if(enable == RT_TRUE)
{
/* Interrupt setting */
epwm->ETSEL.bit.INTEN = 1; /* Enable INT */
}else{
epwm->ETSEL.bit.INTEN = 0; /* Enable INT */
}
return RT_EOK;
}
static rt_err_t drv_pwm_enable(volatile struct EPWM_REGS *epwm,rt_bool_t enable)
{
/*
* TODO
* Still not sure about how to stop PWM in C2000
*/
if(epwm == RT_NULL)
{
return -RT_ERROR;
}
if(enable == RT_TRUE)
{
/* clear trip zone flag */
EALLOW;
epwm->TZCLR.bit.OST = 1;
EDIS;
}
else
{
/* set trip zone flag */
EALLOW;
epwm->TZFRC.bit.OST = 1;
EDIS;
}
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
struct c28x_pwm *pwm = (struct c28x_pwm *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable((struct EPWM_REGS *)(pwm->pwm_regs), RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable((struct EPWM_REGS *)(pwm->pwm_regs), RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set((struct EPWM_REGS *)(pwm->pwm_regs), configuration);
case PWM_CMD_GET:
return drv_pwm_get((struct EPWM_REGS *)(pwm->pwm_regs), configuration);
case PWM_CMD_SET_PERIOD:
return drv_pwm_set_period((struct EPWM_REGS *)(pwm->pwm_regs), configuration->period);
case PWM_CMD_SET_PULSE:
return drv_pwm_set_pulse((struct EPWM_REGS *)(pwm->pwm_regs), configuration->channel,configuration->pulse);
case PWM_CMD_SET_DEAD_TIME:
return drv_pwm_set_dead_time((struct EPWM_REGS *)(pwm->pwm_regs), configuration->dead_time);
case PWM_CMD_SET_PHASE:
return drv_pwm_set_phase((struct EPWM_REGS *)(pwm->pwm_regs), configuration->phase);
case PWM_CMD_ENABLE_IRQ:
return drv_pwm_enable_irq((struct EPWM_REGS *)(pwm->pwm_regs), RT_TRUE);
case PWM_CMD_DISABLE_IRQ:
return drv_pwm_enable_irq((struct EPWM_REGS *)(pwm->pwm_regs), RT_FALSE);
default:
return RT_EINVAL;
}
}
static void pwm_isr(struct rt_device_pwm *rt_pwm)
{
struct c28x_pwm *pwm;
pwm = (struct c28x_pwm *)rt_pwm->parent.user_data;
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
pwm->pwm_regs->ETCLR.bit.INT = 1;
}
#define EPWM_ISR_DEFINE(i) void EPWM##i##_Isr(){\
rt_interrupt_enter(); \
pwm_isr(&(c28x_pwm_obj[PWM##i##_INDEX].pwm_device)); \
rt_interrupt_leave(); \
}
#ifdef BSP_PWM1_IT_ENABLE
EPWM_ISR_DEFINE(1)
void EPWM1_Isr();
#endif
#ifdef BSP_PWM2_IT_ENABLE
EPWM_ISR_DEFINE(2)
void EPWM2_Isr();
#endif
#ifdef BSP_PWM3_IT_ENABLE
EPWM_ISR_DEFINE(3)
void EPWM3_Isr();
#endif
#ifdef BSP_PWM4_IT_ENABLE
EPWM_ISR_DEFINE(4)
void EPWM4_Isr();
#endif
static int c28x_hw_pwm_init(struct c28x_pwm *device)
{
IER |= M_INT3;
rt_err_t result = 0;
EALLOW;
#ifdef BSP_USING_PWM1
GpioCtrlRegs.GPAPUD.all |= 5<<(1-1)*4; /* Disable pull-up(EPWM1A) */
GpioCtrlRegs.GPAMUX1.all|= 5<<(1-1)*4; /* Configure as EPWM1A */
EPwm1Regs.TZCTL.bit.TZA = TZ_OFF; /* diable A when trip zone */
EPwm1Regs.TZCTL.bit.TZB = TZ_OFF; /* diable B when trip zone */
EPwm1Regs.TBCTL.bit.CTRMODE = BSP_PWM1_CTRMODE;
EPwm1Regs.TBCTL.bit.HSPCLKDIV = BSP_PWM1_HSPCLKDIV; /* Clock ratio to SYSCLKOUT*/
EPwm1Regs.TBCTL.bit.CLKDIV = BSP_PWM1_CLKDIV;
EPwm1Regs.CMPCTL.bit.LOADAMODE = BSP_PWM1_LOADAMODE;
EPwm1Regs.CMPCTL.bit.LOADBMODE = BSP_PWM1_LOADAMODE;
#ifdef BSP_PWM1_IT_ENABLE
EPwm1Regs.ETSEL.bit.INTEN = 1; /* Enable INT */
EPwm1Regs.ETSEL.bit.INTSEL = BSP_PWM1_INTSEL;
EPwm1Regs.ETPS.bit.INTPRD = BSP_PWM1_INTPRD;
/* Assigning ISR to PIE */
PieVectTable.EPWM1_INT = &EPWM1_Isr;
/* ENABLE Interrupt */
#else
EPwm1Regs.ETSEL.bit.INTEN = 0; /* Disable INT */
#endif
#ifdef BSP_PWM1_ADC_TRIGGER
EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm1Regs.ETSEL.bit.SOCASEL = BSP_PWM1_SOCASEL; // Select SOC from zero
EPwm1Regs.ETPS.bit.SOCAPRD = BSP_PWM1_SOCAPRD; // Generate pulse on 1st event
#else
EPwm1Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
#endif
#ifdef BSP_PWM1_MASTER
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; /* Disable phase loading */
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;
#else
EPwm1Regs.TBCTL.bit.PHSEN = TB_ENABLE; /* Disable phase loading */
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
#endif
#endif
#ifdef BSP_USING_PWM2
GpioCtrlRegs.GPAPUD.all |= 5<<(2-1)*4; /* Disable pull-up on (EPWM2A) */
GpioCtrlRegs.GPAMUX1.all|= 5<<(2-1)*4; /* Configure as EPWM2A */
EPwm2Regs.TZCTL.bit.TZA = TZ_OFF; /* diable A when trip zone */
EPwm2Regs.TZCTL.bit.TZB = TZ_OFF; /* diable B when trip zone */
EPwm2Regs.TBCTL.bit.CTRMODE = BSP_PWM2_CTRMODE;
EPwm2Regs.TBCTL.bit.HSPCLKDIV = BSP_PWM2_HSPCLKDIV; /* Clock ratio to SYSCLKOUT*/
EPwm2Regs.TBCTL.bit.CLKDIV = BSP_PWM2_CLKDIV;
EPwm2Regs.CMPCTL.bit.LOADAMODE = BSP_PWM2_LOADAMODE;
EPwm2Regs.CMPCTL.bit.LOADBMODE = BSP_PWM2_LOADAMODE;
#ifdef BSP_PWM2_IT_ENABLE
EPwm2Regs.ETSEL.bit.INTEN = 1; /* Enable INT */
EPwm2Regs.ETSEL.bit.INTSEL = BSP_PWM2_INTSEL;
EPwm2Regs.ETPS.bit.INTPRD = BSP_PWM2_INTPRD;
/* Assigning ISR to PIE */
PieVectTable.EPWM2_INT = &EPWM2_Isr;
/* ENABLE Interrupt */
#else
EPwm2Regs.ETSEL.bit.INTEN = 0; /* Disable INT */
#endif
#ifdef BSP_PWM2_ADC_TRIGGER
EPwm2Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm2Regs.ETSEL.bit.SOCASEL = BSP_PWM2_SOCASEL; // Select SOC from zero
EPwm2Regs.ETPS.bit.SOCAPRD = BSP_PWM2_SOCAPRD; // Generate pulse on 1st event
#else
EPwm2Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
#endif
#ifdef BSP_PWM2_MASTER
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; /* Disable phase loading */
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;
#else
EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; /* Disable phase loading */
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
#endif
#endif
#ifdef BSP_USING_PWM3
GpioCtrlRegs.GPAPUD.all |= 5<<(3-1)*4; /* Disable pull-up on (EPWM3A) */
GpioCtrlRegs.GPAMUX1.all|= 5<<(3-1)*4; /* Configure as EPWM3A */
EPwm3Regs.TZCTL.bit.TZA = TZ_OFF; /* diable A when trip zone */
EPwm3Regs.TZCTL.bit.TZB = TZ_OFF; /* diable B when trip zone */
EPwm3Regs.TBCTL.bit.CTRMODE = BSP_PWM3_CTRMODE;
EPwm3Regs.TBCTL.bit.HSPCLKDIV = BSP_PWM3_HSPCLKDIV; /* Clock ratio to SYSCLKOUT*/
EPwm3Regs.TBCTL.bit.CLKDIV = BSP_PWM3_CLKDIV;
EPwm3Regs.CMPCTL.bit.LOADAMODE = BSP_PWM3_LOADAMODE;
EPwm3Regs.CMPCTL.bit.LOADBMODE = BSP_PWM3_LOADAMODE;
#ifdef BSP_PWM3_IT_ENABLE
EPwm3Regs.ETSEL.bit.INTEN = 1; /* Enable INT */
EPwm3Regs.ETSEL.bit.INTSEL = BSP_PWM3_INTSEL;
EPwm3Regs.ETPS.bit.INTPRD = BSP_PWM3_INTPRD;
/* Assigning ISR to PIE */
PieVectTable.EPWM3_INT = &EPWM3_Isr;
/* ENABLE Interrupt */
#else
EPwm3Regs.ETSEL.bit.INTEN = 0; /* Disable INT */
#endif
#ifdef BSP_PWM3_ADC_TRIGGER
EPwm3Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm3Regs.ETSEL.bit.SOCASEL = BSP_PWM3_SOCASEL; // Select SOC from zero
EPwm3Regs.ETPS.bit.SOCAPRD = BSP_PWM3_SOCAPRD; // Generate pulse on 1st event
#else
EPwm3Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
#endif
#ifdef BSP_PWM3_MASTER
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; /* Disable phase loading */
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;
#else
EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; /* Disable phase loading */
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
#endif
#endif
#ifdef BSP_USING_PWM4
GpioCtrlRegs.GPAPUD.all |= 5<<(4-1)*4; /* Disable pull-up on (EPWM4A) */
GpioCtrlRegs.GPAMUX1.all|= 5<<(4-1)*4; /* Configure as EPWM4A */
EPwm4Regs.TZCTL.bit.TZA = TZ_OFF; /* diable A when trip zone */
EPwm4Regs.TZCTL.bit.TZB = TZ_OFF; /* diable B when trip zone */
EPwm4Regs.TBCTL.bit.CTRMODE = BSP_PWM4_CTRMODE;
EPwm4Regs.TBCTL.bit.HSPCLKDIV = BSP_PWM4_HSPCLKDIV; /* Clock ratio to SYSCLKOUT*/
EPwm4Regs.TBCTL.bit.CLKDIV = BSP_PWM4_CLKDIV;
EPwm4Regs.CMPCTL.bit.LOADAMODE = BSP_PWM4_LOADAMODE;
EPwm4Regs.CMPCTL.bit.LOADBMODE = BSP_PWM4_LOADAMODE;
#ifdef BSP_PWM4_IT_ENABLE
EPwm4Regs.ETSEL.bit.INTEN = 1; /* Enable INT */
EPwm4Regs.ETSEL.bit.INTSEL = BSP_PWM4_INTSEL;
EPwm4Regs.ETPS.bit.INTPRD = BSP_PWM4_INTPRD;
/* Assigning ISR to PIE */
PieVectTable.EPWM4_INT = &EPWM4_Isr;
/* ENABLE Interrupt */
#else
EPwm4Regs.ETSEL.bit.INTEN = 0; /* Disable INT */
#endif
#ifdef BSP_PWM4_ADC_TRIGGER
EPwm4Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm4Regs.ETSEL.bit.SOCASEL = BSP_PWM4_SOCASEL; // Select SOC from zero
EPwm4Regs.ETPS.bit.SOCAPRD = BSP_PWM4_SOCAPRD; // Generate pulse on 1st event
#else
EPwm4Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
#endif
#ifdef BSP_PWM4_MASTER
EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; /* Disable phase loading */
EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO;
#else
EPwm4Regs.TBCTL.bit.PHSEN = TB_ENABLE; /* Disable phase loading */
EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN;
#endif
#endif
EDIS;
return result;
}
int c28x_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(c28x_pwm_obj) / sizeof(c28x_pwm_obj[0]); i++)
{
/* pwm init */
if (c28x_hw_pwm_init(&c28x_pwm_obj[i]) != RT_EOK)
{
LOG_E("%s init failed", c28x_pwm_obj[i].name);
result = -RT_ERROR;
return result;
}
else
{
LOG_D("%s init success", c28x_pwm_obj[i].name);
/* register pwm device */
if (rt_device_pwm_register(&c28x_pwm_obj[i].pwm_device, c28x_pwm_obj[i].name, &rt_pwm_ops, &c28x_pwm_obj[i]) == RT_EOK)
{
LOG_D("%s register success", c28x_pwm_obj[i].name);
}
else
{
LOG_E("%s register failed", c28x_pwm_obj[i].name);
result = -RT_ERROR;
}
}
}
struct rt_pwm_configuration config_tmp1 =
{
.channel = CHANNEL_A,
.period = BSP_PWM1_INIT_PERIOD,
.pulse = BSP_PWM1_INIT_PULSE,
.dead_time = BSP_PWM1_DB,
.phase = 0,
.complementary = RT_TRUE
};
drv_pwm_set(c28x_pwm_obj[0].pwm_regs,&config_tmp1);
// config_tmp1.phase = BSP_PWM2_PHASE;
// drv_pwm_set(c28x_pwm_obj[1].pwm_regs,&config_tmp1);
// config_tmp1.phase = BSP_PWM3_PHASE;
// drv_pwm_set(c28x_pwm_obj[2].pwm_regs,&config_tmp1);
// config_tmp1.phase = BSP_PWM4_PHASE;
// drv_pwm_set(c28x_pwm_obj[3].pwm_regs,&config_tmp1);
return result;
}
INIT_DEVICE_EXPORT(c28x_pwm_init);
#endif /* BSP_USING_PWM */