4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 15:03:21 +08:00

631 lines
19 KiB
C
Raw Normal View History

2021-05-12 19:15:17 +08:00
/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-12-12 Wayne Lin First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_I2S)
#include <rtdevice.h>
#include <drv_i2s.h>
#include "NuMicro.h"
/* Private define ---------------------------------------------------------------*/
#define DBG_ENABLE
#define DBG_LEVEL DBG_LOG
#define DBG_SECTION_NAME "i2s"
#define DBG_COLOR
#include <rtdbg.h>
#define I2S_RSR_R_DMA_RIA_IRQ_Pos (0)
#define I2S_RSR_R_DMA_RIA_IRQ_Msk (1<<I2S_RSR_R_DMA_RIA_IRQ_Pos)
#define I2S_RSR_R_DMA_RIA_SN_Pos (5)
#define I2S_RSR_R_DMA_RIA_SN_Msk (7<<I2S_RSR_R_DMA_RIA_SN_Pos)
#define I2S_GLBCON_P_DMA_IRQ_Pos (10)
#define I2S_GLBCON_P_DMA_IRQ_Msk (1<<I2S_GLBCON_P_DMA_IRQ_Pos)
#define I2S_GLBCON_R_DMA_IRQ_Pos (11)
#define I2S_GLBCON_R_DMA_IRQ_Msk (1<<I2S_GLBCON_R_DMA_IRQ_Pos)
#define I2S_PSP_P_DMA_RIA_I_Pos (0)
#define I2S_PSP_P_DMA_RIA_I_Msk (1<<I2S_PSP_P_DMA_RIA_I_Pos)
#define I2S_PSP_DMA_DATA_ZERO_IRQ_Pos (3)
#define I2S_PSP_DMA_DATA_ZERO_IRQ_Msk (1<<I2S_PSP_DMA_DATA_ZERO_IRQ_Pos)
#define I2S_PSP_DMA_CNTER_IRQ_Pos (4)
#define I2S_PSP_DMA_CNTER_IRQ_Msk (1<<I2S_PSP_DMA_CNTER_IRQ_Pos)
#define I2S_RESET_PLAY_Pos (5)
#define I2S_RESET_PLAY_Msk (1<<I2S_RESET_PLAY_Pos)
#define I2S_RESET_RECORD_Pos (6)
#define I2S_RESET_RECORD_Msk (1<<I2S_RESET_RECORD_Pos)
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_i2s_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps);
static rt_err_t nu_i2s_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps);
static rt_err_t nu_i2s_init(struct rt_audio_device *audio);
static rt_err_t nu_i2s_start(struct rt_audio_device *audio, int stream);
static rt_err_t nu_i2s_stop(struct rt_audio_device *audio, int stream);
static void nu_i2s_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info);
/* Public functions -------------------------------------------------------------*/
rt_err_t nu_i2s_acodec_register(nu_acodec_ops_t);
/* Private variables ------------------------------------------------------------*/
static struct nu_i2s g_nu_i2s_dev =
{
.name = "sound0",
.irqn = IRQ_ACTL,
.rstidx = I2SRST,
.clkidx = I2SCKEN,
};
static void nu_i2s_isr(int vector, void *param)
{
nu_i2s_t psNuI2s = (nu_i2s_t)param;
volatile uint32_t u32RegAudCtl = inpw(REG_ACTL_CON);
if (u32RegAudCtl & I2S_GLBCON_P_DMA_IRQ_Msk)
{
volatile uint32_t u32RegPlayStatus = inpw(REG_ACTL_PSR);
outpw(REG_ACTL_CON, u32RegAudCtl | I2S_GLBCON_P_DMA_IRQ_Msk); //Clear TX INT
if (u32RegPlayStatus & I2S_PSP_DMA_CNTER_IRQ_Msk)
{
outpw(REG_ACTL_PSR, I2S_PSP_DMA_CNTER_IRQ_Msk);
rt_kprintf("\ndebug:DMA_COUNTER_IRQ occur\n");
}
if (u32RegPlayStatus & I2S_PSP_DMA_DATA_ZERO_IRQ_Msk)
{
outpw(REG_ACTL_PSR, I2S_PSP_DMA_DATA_ZERO_IRQ_Msk);
rt_kprintf("\ndebug:DMA_DATA_ZERO_IRQ occur\n");
}
if (u32RegPlayStatus & I2S_PSP_P_DMA_RIA_I_Msk)
{
/* Clear Playback status of DMA reach indicate address interrupt. */
outpw(REG_ACTL_PSR, I2S_PSP_P_DMA_RIA_I_Msk);
rt_audio_tx_complete(&psNuI2s->audio);
}
}
if (u32RegAudCtl & I2S_GLBCON_R_DMA_IRQ_Msk)
{
volatile uint32_t u32RegRecordStatus = inpw(REG_ACTL_RSR);
outpw(REG_ACTL_CON, u32RegAudCtl | I2S_GLBCON_R_DMA_IRQ_Msk); //Clear RX INT
/* Record DMA Reach Indicative Address Interrupt Request Bit */
/* 0 = Record DMA address does not reach the indicative address by R_DMA_IRQ_SEL */
/* 1 = Record DMA address does reach the indicative address by R_DMA_IRQ_SEL */
/* Note: This bit is readable, and can only be cleared by writing '1' to it. */
if (u32RegRecordStatus & I2S_RSR_R_DMA_RIA_IRQ_Msk)
{
nu_i2s_dai_t psNuI2sDai = &psNuI2s->i2s_dais[NU_I2S_DAI_CAPTURE];
/*
Record DMA Reach Indicative Address Section Number Bit (Read Only)
R_DMA_IRQ_SEL (I2S_GLBCON[15:14]) = 01, R_DMA_RIA_SN[2:0]= 1, 0.
R_DMA_IRQ_SEL (I2S_GLBCON[15:14]) = 10, R_DMA_RIA_SN[2:0]= 1, 2, 3, 0.
R_DMA_IRQ_SEL (I2S_GLBCON[15:14]) = 11, R_DMA_RIA_SN[2:0]= 1, 2, 3, 4, 5, 6, 7, 0.
*/
uint8_t u8FifoBlockIdx = (u32RegRecordStatus & I2S_RSR_R_DMA_RIA_SN_Msk) >> I2S_RSR_R_DMA_RIA_SN_Pos;
rt_uint8_t *pbuf = (uint8_t *)((uint32_t)&psNuI2sDai->fifo[u8FifoBlockIdx * NU_I2S_DMA_BUF_BLOCK_SIZE] | NONCACHEABLE);
/* Clear Record status of DMA reach indicate address interrupt. */
outpw(REG_ACTL_RSR, I2S_RSR_R_DMA_RIA_IRQ_Msk);
/* Report upper layer. */
rt_audio_rx_done(&psNuI2s->audio, pbuf, NU_I2S_DMA_BUF_BLOCK_SIZE);
}
}
}
static rt_bool_t nu_i2s_capacity_check(struct rt_audio_configure *pconfig)
{
switch (pconfig->samplebits)
{
case 8:
case 16:
case 24:
break;
default:
goto exit_nu_i2s_capacity_check;
}
switch (pconfig->channels)
{
case 1:
case 2:
break;
default:
goto exit_nu_i2s_capacity_check;
}
return RT_TRUE;
exit_nu_i2s_capacity_check:
return RT_FALSE;
}
static rt_err_t nu_i2s_dai_setup(nu_i2s_t psNuI2s, struct rt_audio_configure *pconfig)
{
rt_err_t result = RT_EOK;
nu_acodec_ops_t pNuACodecOps = RT_NULL;
RT_ASSERT(psNuI2s->AcodecOps != RT_NULL);
pNuACodecOps = psNuI2s->AcodecOps;
/* Open I2S */
if (nu_i2s_capacity_check(pconfig) == RT_TRUE)
{
/* Reset audio codec */
if (pNuACodecOps->nu_acodec_reset)
result = pNuACodecOps->nu_acodec_reset();
if (result != RT_EOK)
goto exit_nu_i2s_dai_setup;
/* Setup audio codec */
if (pNuACodecOps->nu_acodec_init)
result = pNuACodecOps->nu_acodec_init();
if (!pNuACodecOps->nu_acodec_init || result != RT_EOK)
goto exit_nu_i2s_dai_setup;
/* Setup acodec samplerate/samplebit/channel */
if (pNuACodecOps->nu_acodec_dsp_control)
result = pNuACodecOps->nu_acodec_dsp_control(pconfig);
if (!pNuACodecOps->nu_acodec_dsp_control || result != RT_EOK)
goto exit_nu_i2s_dai_setup;
/* Open I2S */
if (i2sOpen() != 0)
goto exit_nu_i2s_dai_setup;
/* Select I2S function */
i2sIoctl(I2S_SELECT_BLOCK, I2S_BLOCK_I2S, 0);
/* Select Data width */
i2sIoctl(I2S_SELECT_BIT, ((pconfig->samplebits / 8) - 1), 0);
if (pconfig->channels > 1)
{
/* Set to stereo */
i2sIoctl(I2S_SET_CHANNEL, I2S_PLAY, I2S_CHANNEL_P_I2S_TWO);
i2sIoctl(I2S_SET_CHANNEL, I2S_REC, I2S_CHANNEL_R_I2S_TWO);
}
else
{
/* Set to mono */
i2sIoctl(I2S_SET_CHANNEL, I2S_PLAY, I2S_CHANNEL_P_I2S_ONE);
i2sIoctl(I2S_SET_CHANNEL, I2S_REC, I2S_CHANNEL_R_I2S_LEFT_PCM_SLOT0);
}
/* Set DMA interrupt selection to half of DMA buffer */
switch (NU_I2S_DMA_BUF_BLOCK_NUMBER)
{
case 2:
i2sIoctl(I2S_SET_PLAY_DMA_INT_SEL, I2S_DMA_INT_HALF, 0);
i2sIoctl(I2S_SET_REC_DMA_INT_SEL, I2S_DMA_INT_HALF, 0);
break;
case 4:
i2sIoctl(I2S_SET_PLAY_DMA_INT_SEL, I2S_DMA_INT_QUARTER, 0);
i2sIoctl(I2S_SET_REC_DMA_INT_SEL, I2S_DMA_INT_QUARTER, 0);
break;
case 8:
i2sIoctl(I2S_SET_PLAY_DMA_INT_SEL, I2S_DMA_INT_EIGHTH, 0);
i2sIoctl(I2S_SET_REC_DMA_INT_SEL, I2S_DMA_INT_EIGHTH, 0);
break;
default:
RT_ASSERT(0);
break;
}
/* Set DMA buffer address */
i2sIoctl(I2S_SET_DMA_ADDRESS, I2S_PLAY, (uint32_t)&psNuI2s->i2s_dais[NU_I2S_DAI_PLAYBACK].fifo[0]);
i2sIoctl(I2S_SET_DMA_ADDRESS, I2S_REC, (uint32_t)&psNuI2s->i2s_dais[NU_I2S_DAI_CAPTURE].fifo[0]);
/* Set DMA buffer length */
i2sIoctl(I2S_SET_DMA_LENGTH, I2S_PLAY, NU_I2S_DMA_FIFO_SIZE);
i2sIoctl(I2S_SET_DMA_LENGTH, I2S_REC, NU_I2S_DMA_FIFO_SIZE);
/* Select I2S format */
i2sIoctl(I2S_SET_I2S_FORMAT, I2S_FORMAT_I2S, 0);
if (psNuI2s->AcodecOps->role == NU_ACODEC_ROLE_MASTER)
{
if (pconfig->samplerate % 11025)
{
// 12.288MHz ==> APLL=98.4MHz / 8 = 12.3MHz
// APLL is 98.4MHz
/*
FB_DV = 0x28 -> N=FB_DV+1 -> N=41
IN_DV = 0 -> M=IN_DV+1 -> M=1
OUT_DV = 4 -> P=4+1 -> P=5
Fpllout = 12MHz * N / (M*P) -> Fpllout = 12MHz * 41 / (5*1) = 98.4 MHz
*/
outpw(REG_CLK_APLLCON, 0xC0008028);
// Select APLL as I2S source and divider is (7+1)
outpw(REG_CLK_DIVCTL1, (inpw(REG_CLK_DIVCTL1) & ~0x001f0000) | (0x2 << 19) | (0x7 << 24));
// Set sampleing rate, data width, channel
i2sSetSampleRate(12300000, pconfig->samplerate, pconfig->samplebits, pconfig->channels);
}
else
{
// 11.2896MHz ==> APLL=90MHz / 8 = 11.25MHz
// APLL is 90MHz
/*
FB_DV = 0x2D -> N=FB_DV+1 -> N=45
IN_DV = 0 -> M=IN_DV+1 -> M=1
OUT_DV = 5 -> P=5+1 -> P=6
Fpllout = 12MHz * N / (M*P) -> Fpllout = 12MHz * 45 / (6*1) = 90 MHz
*/
outpw(REG_CLK_APLLCON, 0xC000A02D);
// Select APLL as I2S source and divider is (7+1)
outpw(REG_CLK_DIVCTL1, (inpw(REG_CLK_DIVCTL1) & ~0x001f0000) | (0x2 << 19) | (0x7 << 24));
// Set sampleing rate, data width, channel
i2sSetSampleRate(11250000, pconfig->samplerate, pconfig->samplebits, pconfig->channels);
}
// Set as master
i2sIoctl(I2S_SET_MODE, I2S_MODE_MASTER, 0);
}
else
{
// Set as slave, source clock is XIN (12MHz)
i2sIoctl(I2S_SET_MODE, I2S_MODE_SLAVE, 0);
}
LOG_I("Open I2S.");
/* Set unmute */
if (pNuACodecOps->nu_acodec_mixer_control)
pNuACodecOps->nu_acodec_mixer_control(AUDIO_MIXER_MUTE, RT_FALSE);
}
else
result = -RT_EINVAL;
exit_nu_i2s_dai_setup:
return result;
}
static rt_err_t nu_i2s_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
nu_i2s_t psNuI2s;
nu_acodec_ops_t pNuACodecOps = RT_NULL;
RT_ASSERT(audio != RT_NULL);
RT_ASSERT(caps != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
RT_ASSERT(psNuI2s->AcodecOps != RT_NULL);
pNuACodecOps = psNuI2s->AcodecOps;
switch (caps->main_type)
{
case AUDIO_TYPE_QUERY:
switch (caps->sub_type)
{
case AUDIO_TYPE_QUERY:
caps->udata.mask = AUDIO_TYPE_INPUT | AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER;
break;
default:
result = -RT_ERROR;
break;
} // switch (caps->sub_type)
break;
case AUDIO_TYPE_MIXER:
if (pNuACodecOps->nu_acodec_mixer_query)
{
switch (caps->sub_type)
{
case AUDIO_MIXER_QUERY:
return pNuACodecOps->nu_acodec_mixer_query(AUDIO_MIXER_QUERY, &caps->udata.mask);
default:
return pNuACodecOps->nu_acodec_mixer_query(caps->sub_type, (rt_uint32_t *)&caps->udata.value);
} // switch (caps->sub_type)
} // if (pNuACodecOps->nu_acodec_mixer_query)
result = -RT_ERROR;
break;
case AUDIO_TYPE_INPUT:
case AUDIO_TYPE_OUTPUT:
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
caps->udata.config.channels = psNuI2s->config.channels;
caps->udata.config.samplebits = psNuI2s->config.samplebits;
caps->udata.config.samplerate = psNuI2s->config.samplerate;
break;
case AUDIO_DSP_SAMPLERATE:
caps->udata.config.samplerate = psNuI2s->config.samplerate;
break;
case AUDIO_DSP_CHANNELS:
caps->udata.config.channels = psNuI2s->config.channels;
break;
case AUDIO_DSP_SAMPLEBITS:
caps->udata.config.samplebits = psNuI2s->config.samplebits;
break;
default:
result = -RT_ERROR;
break;
} // switch (caps->sub_type)
break;
default:
result = -RT_ERROR;
break;
} // switch (caps->main_type)
return result;
}
static rt_err_t nu_i2s_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
nu_i2s_t psNuI2s;
nu_acodec_ops_t pNuACodecOps = RT_NULL;
int stream = -1;
RT_ASSERT(audio != RT_NULL);
RT_ASSERT(caps != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
RT_ASSERT(psNuI2s->AcodecOps != RT_NULL);
pNuACodecOps = psNuI2s->AcodecOps;
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
if (psNuI2s->AcodecOps->nu_acodec_mixer_control)
psNuI2s->AcodecOps->nu_acodec_mixer_control(caps->sub_type, caps->udata.value);
break;
case AUDIO_TYPE_INPUT:
stream = AUDIO_STREAM_RECORD;
case AUDIO_TYPE_OUTPUT:
{
rt_bool_t bNeedReset = RT_FALSE;
if (stream < 0)
stream = AUDIO_STREAM_REPLAY;
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
if (rt_memcmp(&psNuI2s->config, &caps->udata.config, sizeof(struct rt_audio_configure)) != 0)
{
rt_memcpy(&psNuI2s->config, &caps->udata.config, sizeof(struct rt_audio_configure));
bNeedReset = RT_TRUE;
}
break;
case AUDIO_DSP_SAMPLEBITS:
if (psNuI2s->config.samplerate != caps->udata.config.samplebits)
{
psNuI2s->config.samplerate = caps->udata.config.samplebits;
bNeedReset = RT_TRUE;
}
break;
case AUDIO_DSP_CHANNELS:
if (psNuI2s->config.channels != caps->udata.config.channels)
{
pNuACodecOps->config.channels = caps->udata.config.channels;
bNeedReset = RT_TRUE;
}
break;
case AUDIO_DSP_SAMPLERATE:
if (psNuI2s->config.samplerate != caps->udata.config.samplerate)
{
psNuI2s->config.samplerate = caps->udata.config.samplerate;
bNeedReset = RT_TRUE;
}
break;
default:
result = -RT_ERROR;
break;
} // switch (caps->sub_type)
if (bNeedReset)
{
return nu_i2s_start(audio, stream);
}
}
break;
default:
result = -RT_ERROR;
break;
} // switch (caps->main_type)
return result;
}
static rt_err_t nu_i2s_init(struct rt_audio_device *audio)
{
rt_err_t result = RT_EOK;
nu_i2s_t psNuI2s;
RT_ASSERT(audio != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
/* Enable IP engine clock */
nu_sys_ipclk_enable(psNuI2s->clkidx);
/* Reset IP engine */
nu_sys_ip_reset(psNuI2s->rstidx);
/* Enable interrupt */
rt_hw_interrupt_umask(psNuI2s->irqn);
return -(result);
}
static rt_err_t nu_i2s_start(struct rt_audio_device *audio, int stream)
{
nu_i2s_t psNuI2s;
RT_ASSERT(audio != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
/* Restart all: I2S and codec. */
nu_i2s_stop(audio, stream);
if (nu_i2s_dai_setup(psNuI2s, &psNuI2s->config) != RT_EOK)
return -RT_ERROR;
switch (stream)
{
case AUDIO_STREAM_REPLAY:
{
i2sIoctl(I2S_SET_PLAY, I2S_START_PLAY, 0);
LOG_I("Start replay.");
}
break;
case AUDIO_STREAM_RECORD:
{
i2sIoctl(I2S_SET_RECORD, I2S_START_REC, 0);
LOG_I("Start record.");
}
break;
default:
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t nu_i2s_stop(struct rt_audio_device *audio, int stream)
{
nu_i2s_t psNuI2s;
nu_i2s_dai_t psNuI2sDai = RT_NULL;
RT_ASSERT(audio != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
switch (stream)
{
case AUDIO_STREAM_REPLAY:
psNuI2sDai = &psNuI2s->i2s_dais[NU_I2S_DAI_PLAYBACK];
i2sIoctl(I2S_SET_PLAY, I2S_STOP_PLAY, 0);
LOG_I("Stop replay.");
break;
case AUDIO_STREAM_RECORD:
psNuI2sDai = &psNuI2s->i2s_dais[NU_I2S_DAI_CAPTURE];
i2sIoctl(I2S_SET_RECORD, I2S_STOP_REC, 0);
LOG_I("Stop record.");
break;
default:
return -RT_EINVAL;
}
/* Close I2S if record and playback path. */
if (!((inpw(REG_ACTL_RESET)&I2S_RESET_PLAY_Msk) || (inpw(REG_ACTL_RESET)&I2S_RESET_RECORD_Msk)))
{
i2sClose();
LOG_I("Close I2S.");
}
/* Silence */
rt_memset((void *)psNuI2sDai->fifo, 0, NU_I2S_DMA_FIFO_SIZE);
return RT_EOK;
}
static void nu_i2s_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
{
nu_i2s_t psNuI2s;
RT_ASSERT(audio != RT_NULL);
RT_ASSERT(info != RT_NULL);
psNuI2s = (nu_i2s_t)audio;
/* Define it a NONCACHEABLE address. */
info->buffer = (rt_uint8_t *)((uint32_t)psNuI2s->i2s_dais[NU_I2S_DAI_PLAYBACK].fifo | NONCACHEABLE) ;
info->total_size = NU_I2S_DMA_FIFO_SIZE;
info->block_size = NU_I2S_DMA_BUF_BLOCK_SIZE;
info->block_count = NU_I2S_DMA_BUF_BLOCK_NUMBER;
return;
}
static struct rt_audio_ops nu_i2s_audio_ops =
{
.getcaps = nu_i2s_getcaps,
.configure = nu_i2s_configure,
.init = nu_i2s_init,
.start = nu_i2s_start,
.stop = nu_i2s_stop,
.transmit = RT_NULL,
.buffer_info = nu_i2s_buffer_info
};
int rt_hw_i2s_init(void)
{
int i = 0;
nu_i2s_dai_t psNuI2sDai;
for (i = 0; i < NU_I2S_DAI_CNT; i++)
{
psNuI2sDai = &g_nu_i2s_dev.i2s_dais[i];
/* Allocate playback and record FIFO buffer. */
psNuI2sDai->fifo = (uint8_t *)rt_malloc_align(NU_I2S_DMA_FIFO_SIZE, 32);
RT_ASSERT(psNuI2sDai->fifo != RT_NULL);
rt_memset(psNuI2sDai->fifo, 0, NU_I2S_DMA_FIFO_SIZE);
}
/* Register ops of audio device */
g_nu_i2s_dev.audio.ops = &nu_i2s_audio_ops;
/* Register device, RW: it is with replay and record functions. */
rt_audio_register(&g_nu_i2s_dev.audio, g_nu_i2s_dev.name, RT_DEVICE_FLAG_RDWR, &g_nu_i2s_dev);
/* Register I2S ISR */
rt_hw_interrupt_install(g_nu_i2s_dev.irqn, nu_i2s_isr, &g_nu_i2s_dev, g_nu_i2s_dev.name);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_i2s_init);
#endif //#if defined(BSP_USING_I2S)