rt-thread-official/bsp/imxrt1052-evk/Libraries/drivers/fsl_dcdc.c

352 lines
12 KiB
C
Raw Normal View History

2017-10-26 15:39:32 +08:00
/*
* The Clear BSD License
2017-10-26 15:39:32 +08:00
* Copyright (c) 2017, NXP
* All rights reserved.
*
*
2017-10-26 15:39:32 +08:00
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
2017-10-26 15:39:32 +08:00
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
2017-10-26 15:39:32 +08:00
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dcdc.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcdc_1"
#endif
2017-10-26 15:39:32 +08:00
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DCDC module.
*
* @param base DCDC peripheral base address
*/
static uint32_t DCDC_GetInstance(DCDC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to DCDC bases for each instance. */
static DCDC_Type *const s_dcdcBases[] = DCDC_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to DCDC clocks for each instance. */
static const clock_ip_name_t s_dcdcClocks[] = DCDC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t DCDC_GetInstance(DCDC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dcdcBases); instance++)
{
if (s_dcdcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dcdcBases));
return instance;
}
void DCDC_Init(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void DCDC_Deinit(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void DCDC_SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
{
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_XTAL_24M_OK_MASK | DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_SEL_CLK_MASK |
DCDC_REG0_PWD_OSC_INT_MASK);
switch (clockSource)
{
case kDCDC_ClockInternalOsc:
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK;
break;
case kDCDC_ClockExternalOsc:
/* Choose the external clock and disable the internal clock. */
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_SEL_CLK_MASK | DCDC_REG0_PWD_OSC_INT_MASK;
break;
case kDCDC_ClockAutoSwitch:
/* Set to switch from internal ring osc to xtal 24M if auto mode is enabled. */
tmp32 |= DCDC_REG0_XTAL_24M_OK_MASK;
break;
default:
break;
}
base->REG0 = tmp32;
}
void DCDC_GetDefaultDetectionConfig(dcdc_detection_config_t *config)
{
assert(NULL != config);
config->enableXtalokDetection = false;
config->powerDownOverVoltageDetection = true;
config->powerDownLowVlotageDetection = false;
config->powerDownOverCurrentDetection = true;
config->powerDownPeakCurrentDetection = true;
config->powerDownZeroCrossDetection = true;
config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;
}
void DCDC_SetDetectionConfig(DCDC_Type *base, const dcdc_detection_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_XTALOK_DISABLE_MASK | DCDC_REG0_PWD_HIGH_VOLT_DET_MASK | DCDC_REG0_PWD_CMP_BATT_DET_MASK |
DCDC_REG0_PWD_OVERCUR_DET_MASK | DCDC_REG0_PWD_CUR_SNS_CMP_MASK | DCDC_REG0_PWD_ZCD_MASK |
DCDC_REG0_CUR_SNS_THRSH_MASK | DCDC_REG0_OVERCUR_TRIG_ADJ_MASK);
tmp32 |= DCDC_REG0_CUR_SNS_THRSH(config->PeakCurrentThreshold) |
DCDC_REG0_OVERCUR_TRIG_ADJ(config->OverCurrentThreshold);
if (false == config->enableXtalokDetection)
{
tmp32 |= DCDC_REG0_XTALOK_DISABLE_MASK;
}
if (config->powerDownOverVoltageDetection)
{
tmp32 |= DCDC_REG0_PWD_HIGH_VOLT_DET_MASK;
}
if (config->powerDownLowVlotageDetection)
{
tmp32 |= DCDC_REG0_PWD_CMP_BATT_DET_MASK;
}
if (config->powerDownOverCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_OVERCUR_DET_MASK;
}
if (config->powerDownPeakCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_CUR_SNS_CMP_MASK;
}
if (config->powerDownZeroCrossDetection)
{
tmp32 |= DCDC_REG0_PWD_ZCD_MASK;
}
base->REG0 = tmp32;
}
void DCDC_GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
{
assert(NULL != config);
config->enableOverloadDetection = true;
config->enableAdjustHystereticValue = false;
config->countChargingTimePeriod = kDCDC_CountChargingTimePeriod8Cycle;
config->countChargingTimeThreshold = kDCDC_CountChargingTimeThreshold32;
}
void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK | DCDC_REG0_LP_HIGH_HYS_MASK | DCDC_REG0_LP_OVERLOAD_FREQ_SEL_MASK |
DCDC_REG0_LP_OVERLOAD_THRSH_MASK);
tmp32 |= DCDC_REG0_LP_OVERLOAD_FREQ_SEL(config->countChargingTimePeriod) |
DCDC_REG0_LP_OVERLOAD_THRSH(config->countChargingTimeThreshold);
if (config->enableOverloadDetection)
{
tmp32 |= DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK;
}
if (config->enableAdjustHystereticValue)
{
tmp32 |= DCDC_REG0_LP_HIGH_HYS_MASK;
}
base->REG0 = tmp32;
}
uint32_t DCDC_GetstatusFlags(DCDC_Type *base)
{
uint32_t tmp32 = 0U;
if (DCDC_REG0_STS_DC_OK_MASK == (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
tmp32 |= kDCDC_LockedOKStatus;
}
return tmp32;
}
void DCDC_ResetCurrentAlertSignal(DCDC_Type *base, bool enable)
{
if (enable)
{
base->REG0 |= DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
else
{
base->REG0 &= ~DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
}
void DCDC_GetDefaultLoopControlConfig(dcdc_loop_control_config_t *config)
{
assert(NULL != config);
config->enableCommonHysteresis = false;
config->enableCommonThresholdDetection = false;
config->enableInvertHysteresisSign = false;
config->enableRCThresholdDetection = false;
config->enableRCScaleCircuit = 0U;
config->complementFeedForwardStep = 0U;
config->controlParameterMagnitude = 2U;
config->integralProportionalRatio = 2U;
}
void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG1 register. */
tmp32 = base->REG1 & ~(DCDC_REG1_LOOPCTRL_EN_HYST_MASK | DCDC_REG1_LOOPCTRL_HST_THRESH_MASK);
if (config->enableCommonHysteresis)
{
tmp32 |= DCDC_REG1_LOOPCTRL_EN_HYST_MASK;
}
if (config->enableCommonThresholdDetection)
{
tmp32 |= DCDC_REG1_LOOPCTRL_HST_THRESH_MASK;
}
base->REG1 = tmp32;
/* configure the DCDC_REG2 register. */
tmp32 = base->REG2 &
~(DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK | DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK |
DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK | DCDC_REG2_LOOPCTRL_DC_FF_MASK | DCDC_REG2_LOOPCTRL_DC_R_MASK |
DCDC_REG2_LOOPCTRL_DC_C_MASK);
tmp32 |= DCDC_REG2_LOOPCTRL_DC_FF(config->complementFeedForwardStep) |
DCDC_REG2_LOOPCTRL_DC_R(config->controlParameterMagnitude) |
DCDC_REG2_LOOPCTRL_DC_C(config->integralProportionalRatio) |
DCDC_REG2_LOOPCTRL_EN_RCSCALE(config->enableRCScaleCircuit);
if (config->enableInvertHysteresisSign)
{
tmp32 |= DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK;
}
if (config->enableRCThresholdDetection)
{
tmp32 |= DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK;
}
base->REG2 = tmp32;
}
void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
tmp32 = base->REG3 & ~DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
if (config->enableUseHalfFreqForContinuous)
{
tmp32 |= DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
}
base->REG3 = tmp32;
}
void DCDC_AdjustTargetVoltage(DCDC_Type *base, uint32_t VDDRun, uint32_t VDDStandby)
{
uint32_t tmp32;
/* Unlock the step for the output. */
base->REG3 &= ~DCDC_REG3_DISABLE_STEP_MASK;
/* Configure the DCDC_REG3 register. */
tmp32 = base->REG3 & ~(DCDC_REG3_TARGET_LP_MASK | DCDC_REG3_TRG_MASK);
tmp32 |= DCDC_REG3_TARGET_LP(VDDStandby) | DCDC_REG3_TRG(VDDRun);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage settling to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
void DCDC_SetInternalRegulatorConfig(DCDC_Type *base, const dcdc_internal_regulator_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG1 register. */
tmp32 = base->REG1 & ~(DCDC_REG1_REG_FBK_SEL_MASK | DCDC_REG1_REG_RLOAD_SW_MASK);
tmp32 |= DCDC_REG1_REG_FBK_SEL(config->feedbackPoint);
if (config->enableLoadResistor)
{
tmp32 |= DCDC_REG1_REG_RLOAD_SW_MASK;
}
base->REG1 = tmp32;
}
void DCDC_BootIntoDCM(DCDC_Type *base)
{
base->REG0 &= ~(DCDC_REG0_PWD_ZCD_MASK | DCDC_REG0_PWD_CMP_OFFSET_MASK);
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x4U) |
2017-10-26 15:39:32 +08:00
DCDC_REG2_DCM_SET_CTRL_MASK;
}
void DCDC_BootIntoCCM(DCDC_Type *base)
{
base->REG0 = (~DCDC_REG0_PWD_CMP_OFFSET_MASK & base->REG0) | DCDC_REG0_PWD_ZCD_MASK;
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x3U);
2017-10-26 15:39:32 +08:00
}