2017-10-26 15:39:32 +08:00
|
|
|
/*
|
2018-06-09 11:19:30 +08:00
|
|
|
* The Clear BSD License
|
2017-10-26 15:39:32 +08:00
|
|
|
* Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
|
|
|
|
* Copyright 2016-2017 NXP
|
2018-06-09 11:19:30 +08:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
2017-10-26 15:39:32 +08:00
|
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
2018-06-09 11:19:30 +08:00
|
|
|
* are permitted (subject to the limitations in the disclaimer below) provided
|
|
|
|
* that the following conditions are met:
|
2017-10-26 15:39:32 +08:00
|
|
|
*
|
|
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
|
|
* of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
|
|
* other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from this
|
|
|
|
* software without specific prior written permission.
|
|
|
|
*
|
2018-06-09 11:19:30 +08:00
|
|
|
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
|
2017-10-26 15:39:32 +08:00
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "fsl_flexio_uart.h"
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Definitions
|
|
|
|
******************************************************************************/
|
|
|
|
|
2018-06-09 11:19:30 +08:00
|
|
|
/* Component ID definition, used by tools. */
|
|
|
|
#ifndef FSL_COMPONENT_ID
|
|
|
|
#define FSL_COMPONENT_ID "platform.drivers.flexio_uart"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2017-10-26 15:39:32 +08:00
|
|
|
/*<! @brief uart transfer state. */
|
|
|
|
enum _flexio_uart_transfer_states
|
|
|
|
{
|
|
|
|
kFLEXIO_UART_TxIdle, /* TX idle. */
|
|
|
|
kFLEXIO_UART_TxBusy, /* TX busy. */
|
|
|
|
kFLEXIO_UART_RxIdle, /* RX idle. */
|
|
|
|
kFLEXIO_UART_RxBusy /* RX busy. */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Prototypes
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* @brief Get the length of received data in RX ring buffer.
|
|
|
|
*
|
|
|
|
* @param handle FLEXIO UART handle pointer.
|
|
|
|
* @return Length of received data in RX ring buffer.
|
|
|
|
*/
|
|
|
|
static size_t FLEXIO_UART_TransferGetRxRingBufferLength(flexio_uart_handle_t *handle);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* @brief Check whether the RX ring buffer is full.
|
|
|
|
*
|
|
|
|
* @param handle FLEXIO UART handle pointer.
|
|
|
|
* @retval true RX ring buffer is full.
|
|
|
|
* @retval false RX ring buffer is not full.
|
|
|
|
*/
|
|
|
|
static bool FLEXIO_UART_TransferIsRxRingBufferFull(flexio_uart_handle_t *handle);
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
* Codes
|
|
|
|
******************************************************************************/
|
|
|
|
|
2018-06-09 11:19:30 +08:00
|
|
|
static uint32_t FLEXIO_UART_GetInstance(FLEXIO_UART_Type *base)
|
2017-10-26 15:39:32 +08:00
|
|
|
{
|
|
|
|
return FLEXIO_GetInstance(base->flexioBase);
|
|
|
|
}
|
|
|
|
|
|
|
|
static size_t FLEXIO_UART_TransferGetRxRingBufferLength(flexio_uart_handle_t *handle)
|
|
|
|
{
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
if (handle->rxRingBufferTail > handle->rxRingBufferHead)
|
|
|
|
{
|
|
|
|
size = (size_t)(handle->rxRingBufferHead + handle->rxRingBufferSize - handle->rxRingBufferTail);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
size = (size_t)(handle->rxRingBufferHead - handle->rxRingBufferTail);
|
|
|
|
}
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool FLEXIO_UART_TransferIsRxRingBufferFull(flexio_uart_handle_t *handle)
|
|
|
|
{
|
|
|
|
bool full;
|
|
|
|
|
|
|
|
if (FLEXIO_UART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U))
|
|
|
|
{
|
|
|
|
full = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
full = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return full;
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_Init(FLEXIO_UART_Type *base, const flexio_uart_config_t *userConfig, uint32_t srcClock_Hz)
|
|
|
|
{
|
|
|
|
assert(base && userConfig);
|
|
|
|
|
|
|
|
flexio_shifter_config_t shifterConfig;
|
|
|
|
flexio_timer_config_t timerConfig;
|
|
|
|
uint32_t ctrlReg = 0;
|
|
|
|
uint16_t timerDiv = 0;
|
|
|
|
uint16_t timerCmp = 0;
|
|
|
|
status_t result = kStatus_Success;
|
|
|
|
|
|
|
|
/* Clear the shifterConfig & timerConfig struct. */
|
|
|
|
memset(&shifterConfig, 0, sizeof(shifterConfig));
|
|
|
|
memset(&timerConfig, 0, sizeof(timerConfig));
|
|
|
|
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
|
|
/* Ungate flexio clock. */
|
|
|
|
CLOCK_EnableClock(s_flexioClocks[FLEXIO_UART_GetInstance(base)]);
|
|
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
|
|
|
|
/* Configure FLEXIO UART */
|
|
|
|
ctrlReg = base->flexioBase->CTRL;
|
|
|
|
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
|
|
|
|
ctrlReg |= (FLEXIO_CTRL_DBGE(userConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(userConfig->enableFastAccess) |
|
|
|
|
FLEXIO_CTRL_FLEXEN(userConfig->enableUart));
|
|
|
|
if (!userConfig->enableInDoze)
|
|
|
|
{
|
|
|
|
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
base->flexioBase->CTRL = ctrlReg;
|
|
|
|
|
|
|
|
/* Do hardware configuration. */
|
|
|
|
/* 1. Configure the shifter 0 for tx. */
|
|
|
|
shifterConfig.timerSelect = base->timerIndex[0];
|
|
|
|
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
|
|
|
|
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
|
|
|
|
shifterConfig.pinSelect = base->TxPinIndex;
|
|
|
|
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
|
|
|
|
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
|
|
|
|
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
|
|
|
|
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitHigh;
|
|
|
|
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitLow;
|
|
|
|
|
|
|
|
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
|
|
|
|
|
|
|
|
/*2. Configure the timer 0 for tx. */
|
|
|
|
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
|
|
|
|
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
|
|
|
|
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
|
|
|
|
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
|
|
|
|
timerConfig.pinSelect = base->TxPinIndex;
|
|
|
|
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
|
|
|
|
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
|
|
|
|
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
|
|
|
|
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
|
|
|
|
timerConfig.timerReset = kFLEXIO_TimerResetNever;
|
|
|
|
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
|
|
|
|
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
|
|
|
|
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
|
|
|
|
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
|
|
|
|
|
|
|
|
timerDiv = srcClock_Hz / userConfig->baudRate_Bps;
|
|
|
|
timerDiv = timerDiv / 2 - 1;
|
|
|
|
|
|
|
|
if (timerDiv > 0xFFU)
|
|
|
|
{
|
|
|
|
result = kStatus_InvalidArgument;
|
|
|
|
}
|
|
|
|
|
|
|
|
timerCmp = ((uint32_t)(userConfig->bitCountPerChar * 2 - 1)) << 8U;
|
|
|
|
timerCmp |= timerDiv;
|
|
|
|
|
|
|
|
timerConfig.timerCompare = timerCmp;
|
|
|
|
|
|
|
|
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
|
|
|
|
|
|
|
|
/* 3. Configure the shifter 1 for rx. */
|
|
|
|
shifterConfig.timerSelect = base->timerIndex[1];
|
|
|
|
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
|
|
|
|
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
|
|
|
|
shifterConfig.pinSelect = base->RxPinIndex;
|
|
|
|
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
|
|
|
|
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
|
|
|
|
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
|
|
|
|
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitHigh;
|
|
|
|
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitLow;
|
|
|
|
|
|
|
|
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
|
|
|
|
|
|
|
|
/* 4. Configure the timer 1 for rx. */
|
|
|
|
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->RxPinIndex);
|
|
|
|
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh;
|
|
|
|
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceExternal;
|
|
|
|
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
|
|
|
|
timerConfig.pinSelect = base->RxPinIndex;
|
|
|
|
timerConfig.pinPolarity = kFLEXIO_PinActiveLow;
|
|
|
|
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
|
|
|
|
timerConfig.timerOutput = kFLEXIO_TimerOutputOneAffectedByReset;
|
|
|
|
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
|
|
|
|
timerConfig.timerReset = kFLEXIO_TimerResetOnTimerPinRisingEdge;
|
|
|
|
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
|
|
|
|
timerConfig.timerEnable = kFLEXIO_TimerEnableOnPinRisingEdge;
|
|
|
|
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
|
|
|
|
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
|
|
|
|
|
|
|
|
timerConfig.timerCompare = timerCmp;
|
|
|
|
|
|
|
|
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[1], &timerConfig);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_Deinit(FLEXIO_UART_Type *base)
|
|
|
|
{
|
|
|
|
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = 0;
|
|
|
|
base->flexioBase->SHIFTCTL[base->shifterIndex[0]] = 0;
|
|
|
|
base->flexioBase->SHIFTCFG[base->shifterIndex[1]] = 0;
|
|
|
|
base->flexioBase->SHIFTCTL[base->shifterIndex[1]] = 0;
|
|
|
|
base->flexioBase->TIMCFG[base->timerIndex[0]] = 0;
|
|
|
|
base->flexioBase->TIMCMP[base->timerIndex[0]] = 0;
|
|
|
|
base->flexioBase->TIMCTL[base->timerIndex[0]] = 0;
|
|
|
|
base->flexioBase->TIMCFG[base->timerIndex[1]] = 0;
|
|
|
|
base->flexioBase->TIMCMP[base->timerIndex[1]] = 0;
|
|
|
|
base->flexioBase->TIMCTL[base->timerIndex[1]] = 0;
|
|
|
|
/* Clear the shifter flag. */
|
|
|
|
base->flexioBase->SHIFTSTAT = (1U << base->shifterIndex[0]);
|
|
|
|
base->flexioBase->SHIFTSTAT = (1U << base->shifterIndex[1]);
|
|
|
|
/* Clear the timer flag. */
|
|
|
|
base->flexioBase->TIMSTAT = (1U << base->timerIndex[0]);
|
|
|
|
base->flexioBase->TIMSTAT = (1U << base->timerIndex[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_GetDefaultConfig(flexio_uart_config_t *userConfig)
|
|
|
|
{
|
|
|
|
assert(userConfig);
|
|
|
|
|
|
|
|
userConfig->enableUart = true;
|
|
|
|
userConfig->enableInDoze = false;
|
|
|
|
userConfig->enableInDebug = true;
|
|
|
|
userConfig->enableFastAccess = false;
|
|
|
|
/* Default baud rate 115200. */
|
|
|
|
userConfig->baudRate_Bps = 115200U;
|
|
|
|
/* Default bit count at 8. */
|
|
|
|
userConfig->bitCountPerChar = kFLEXIO_UART_8BitsPerChar;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_EnableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
|
|
|
|
{
|
|
|
|
if (mask & kFLEXIO_UART_TxDataRegEmptyInterruptEnable)
|
|
|
|
{
|
|
|
|
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[0]);
|
|
|
|
}
|
|
|
|
if (mask & kFLEXIO_UART_RxDataRegFullInterruptEnable)
|
|
|
|
{
|
|
|
|
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_DisableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
|
|
|
|
{
|
|
|
|
if (mask & kFLEXIO_UART_TxDataRegEmptyInterruptEnable)
|
|
|
|
{
|
|
|
|
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[0]);
|
|
|
|
}
|
|
|
|
if (mask & kFLEXIO_UART_RxDataRegFullInterruptEnable)
|
|
|
|
{
|
|
|
|
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->shifterIndex[1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t FLEXIO_UART_GetStatusFlags(FLEXIO_UART_Type *base)
|
|
|
|
{
|
|
|
|
uint32_t status = 0;
|
|
|
|
status =
|
|
|
|
((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0])) >> base->shifterIndex[0]);
|
|
|
|
status |=
|
|
|
|
(((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[1])) >> (base->shifterIndex[1]))
|
|
|
|
<< 1U);
|
|
|
|
status |=
|
|
|
|
(((FLEXIO_GetShifterErrorFlags(base->flexioBase) & (1U << base->shifterIndex[1])) >> (base->shifterIndex[1]))
|
|
|
|
<< 2U);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_ClearStatusFlags(FLEXIO_UART_Type *base, uint32_t mask)
|
|
|
|
{
|
|
|
|
if (mask & kFLEXIO_UART_TxDataRegEmptyFlag)
|
|
|
|
{
|
|
|
|
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[0]);
|
|
|
|
}
|
|
|
|
if (mask & kFLEXIO_UART_RxDataRegFullFlag)
|
|
|
|
{
|
|
|
|
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[1]);
|
|
|
|
}
|
|
|
|
if (mask & kFLEXIO_UART_RxOverRunFlag)
|
|
|
|
{
|
|
|
|
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1U << base->shifterIndex[1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_WriteBlocking(FLEXIO_UART_Type *base, const uint8_t *txData, size_t txSize)
|
|
|
|
{
|
|
|
|
assert(txData);
|
|
|
|
assert(txSize);
|
|
|
|
|
|
|
|
while (txSize--)
|
|
|
|
{
|
|
|
|
/* Wait until data transfer complete. */
|
|
|
|
while (!(FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->shifterIndex[0])))
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
base->flexioBase->SHIFTBUF[base->shifterIndex[0]] = *txData++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_ReadBlocking(FLEXIO_UART_Type *base, uint8_t *rxData, size_t rxSize)
|
|
|
|
{
|
|
|
|
assert(rxData);
|
|
|
|
assert(rxSize);
|
|
|
|
|
|
|
|
while (rxSize--)
|
|
|
|
{
|
|
|
|
/* Wait until data transfer complete. */
|
|
|
|
while (!(FLEXIO_UART_GetStatusFlags(base) & kFLEXIO_UART_RxDataRegFullFlag))
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
*rxData++ = base->flexioBase->SHIFTBUFBYS[base->shifterIndex[1]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_TransferCreateHandle(FLEXIO_UART_Type *base,
|
|
|
|
flexio_uart_handle_t *handle,
|
|
|
|
flexio_uart_transfer_callback_t callback,
|
|
|
|
void *userData)
|
|
|
|
{
|
|
|
|
assert(handle);
|
|
|
|
|
|
|
|
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
|
|
|
|
|
|
|
|
/* Zero the handle. */
|
|
|
|
memset(handle, 0, sizeof(*handle));
|
|
|
|
|
|
|
|
/* Set the TX/RX state. */
|
|
|
|
handle->rxState = kFLEXIO_UART_RxIdle;
|
|
|
|
handle->txState = kFLEXIO_UART_TxIdle;
|
|
|
|
|
|
|
|
/* Set the callback and user data. */
|
|
|
|
handle->callback = callback;
|
|
|
|
handle->userData = userData;
|
|
|
|
|
|
|
|
/* Enable interrupt in NVIC. */
|
|
|
|
EnableIRQ(flexio_irqs[FLEXIO_UART_GetInstance(base)]);
|
|
|
|
|
|
|
|
/* Save the context in global variables to support the double weak mechanism. */
|
|
|
|
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_UART_TransferHandleIRQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_TransferStartRingBuffer(FLEXIO_UART_Type *base,
|
|
|
|
flexio_uart_handle_t *handle,
|
|
|
|
uint8_t *ringBuffer,
|
|
|
|
size_t ringBufferSize)
|
|
|
|
{
|
|
|
|
assert(handle);
|
|
|
|
|
|
|
|
/* Setup the ringbuffer address */
|
|
|
|
if (ringBuffer)
|
|
|
|
{
|
|
|
|
handle->rxRingBuffer = ringBuffer;
|
|
|
|
handle->rxRingBufferSize = ringBufferSize;
|
|
|
|
handle->rxRingBufferHead = 0U;
|
|
|
|
handle->rxRingBufferTail = 0U;
|
|
|
|
|
|
|
|
/* Enable the interrupt to accept the data when user need the ring buffer. */
|
|
|
|
FLEXIO_UART_EnableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_TransferStopRingBuffer(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
|
|
|
|
{
|
|
|
|
assert(handle);
|
|
|
|
|
|
|
|
if (handle->rxState == kFLEXIO_UART_RxIdle)
|
|
|
|
{
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
|
|
|
|
handle->rxRingBuffer = NULL;
|
|
|
|
handle->rxRingBufferSize = 0U;
|
|
|
|
handle->rxRingBufferHead = 0U;
|
|
|
|
handle->rxRingBufferTail = 0U;
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_TransferSendNonBlocking(FLEXIO_UART_Type *base,
|
|
|
|
flexio_uart_handle_t *handle,
|
|
|
|
flexio_uart_transfer_t *xfer)
|
|
|
|
{
|
|
|
|
status_t status;
|
|
|
|
|
|
|
|
/* Return error if xfer invalid. */
|
|
|
|
if ((0U == xfer->dataSize) || (NULL == xfer->data))
|
|
|
|
{
|
|
|
|
return kStatus_InvalidArgument;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return error if current TX busy. */
|
|
|
|
if (kFLEXIO_UART_TxBusy == handle->txState)
|
|
|
|
{
|
|
|
|
status = kStatus_FLEXIO_UART_TxBusy;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handle->txData = xfer->data;
|
|
|
|
handle->txDataSize = xfer->dataSize;
|
|
|
|
handle->txDataSizeAll = xfer->dataSize;
|
|
|
|
handle->txState = kFLEXIO_UART_TxBusy;
|
|
|
|
|
|
|
|
/* Enable transmiter interrupt. */
|
|
|
|
FLEXIO_UART_EnableInterrupts(base, kFLEXIO_UART_TxDataRegEmptyInterruptEnable);
|
|
|
|
|
|
|
|
status = kStatus_Success;
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_TransferAbortSend(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
|
|
|
|
{
|
|
|
|
/* Disable the transmitter and disable the interrupt. */
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_TxDataRegEmptyInterruptEnable);
|
|
|
|
|
|
|
|
handle->txDataSize = 0;
|
|
|
|
handle->txState = kFLEXIO_UART_TxIdle;
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_TransferGetSendCount(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, size_t *count)
|
|
|
|
{
|
|
|
|
assert(handle);
|
|
|
|
assert(count);
|
|
|
|
|
|
|
|
if (kFLEXIO_UART_TxIdle == handle->txState)
|
|
|
|
{
|
|
|
|
return kStatus_NoTransferInProgress;
|
|
|
|
}
|
|
|
|
|
|
|
|
*count = handle->txDataSizeAll - handle->txDataSize;
|
|
|
|
|
|
|
|
return kStatus_Success;
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_TransferReceiveNonBlocking(FLEXIO_UART_Type *base,
|
|
|
|
flexio_uart_handle_t *handle,
|
|
|
|
flexio_uart_transfer_t *xfer,
|
|
|
|
size_t *receivedBytes)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
|
|
|
status_t status;
|
|
|
|
/* How many bytes to copy from ring buffer to user memory. */
|
|
|
|
size_t bytesToCopy = 0U;
|
|
|
|
/* How many bytes to receive. */
|
|
|
|
size_t bytesToReceive;
|
|
|
|
/* How many bytes currently have received. */
|
|
|
|
size_t bytesCurrentReceived;
|
|
|
|
|
|
|
|
/* Return error if xfer invalid. */
|
|
|
|
if ((0U == xfer->dataSize) || (NULL == xfer->data))
|
|
|
|
{
|
|
|
|
return kStatus_InvalidArgument;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* How to get data:
|
|
|
|
1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
|
|
|
|
to uart handle, enable interrupt to store received data to xfer->data. When
|
|
|
|
all data received, trigger callback.
|
|
|
|
2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
|
|
|
|
If there are enough data in ring buffer, copy them to xfer->data and return.
|
|
|
|
If there are not enough data in ring buffer, copy all of them to xfer->data,
|
|
|
|
save the xfer->data remained empty space to uart handle, receive data
|
|
|
|
to this empty space and trigger callback when finished. */
|
|
|
|
|
|
|
|
if (kFLEXIO_UART_RxBusy == handle->rxState)
|
|
|
|
{
|
|
|
|
status = kStatus_FLEXIO_UART_RxBusy;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
bytesToReceive = xfer->dataSize;
|
|
|
|
bytesCurrentReceived = 0U;
|
|
|
|
|
|
|
|
/* If RX ring buffer is used. */
|
|
|
|
if (handle->rxRingBuffer)
|
|
|
|
{
|
|
|
|
/* Disable FLEXIO_UART RX IRQ, protect ring buffer. */
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
|
|
|
|
/* How many bytes in RX ring buffer currently. */
|
|
|
|
bytesToCopy = FLEXIO_UART_TransferGetRxRingBufferLength(handle);
|
|
|
|
|
|
|
|
if (bytesToCopy)
|
|
|
|
{
|
|
|
|
bytesToCopy = MIN(bytesToReceive, bytesToCopy);
|
|
|
|
|
|
|
|
bytesToReceive -= bytesToCopy;
|
|
|
|
|
|
|
|
/* Copy data from ring buffer to user memory. */
|
|
|
|
for (i = 0U; i < bytesToCopy; i++)
|
|
|
|
{
|
|
|
|
xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail];
|
|
|
|
|
|
|
|
/* Wrap to 0. Not use modulo (%) because it might be large and slow. */
|
|
|
|
if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
|
|
|
|
{
|
|
|
|
handle->rxRingBufferTail = 0U;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handle->rxRingBufferTail++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If ring buffer does not have enough data, still need to read more data. */
|
|
|
|
if (bytesToReceive)
|
|
|
|
{
|
|
|
|
/* No data in ring buffer, save the request to UART handle. */
|
|
|
|
handle->rxData = xfer->data + bytesCurrentReceived;
|
|
|
|
handle->rxDataSize = bytesToReceive;
|
|
|
|
handle->rxDataSizeAll = bytesToReceive;
|
|
|
|
handle->rxState = kFLEXIO_UART_RxBusy;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable FLEXIO_UART RX IRQ if previously enabled. */
|
|
|
|
FLEXIO_UART_EnableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
/* Ring buffer not used. */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handle->rxData = xfer->data + bytesCurrentReceived;
|
|
|
|
handle->rxDataSize = bytesToReceive;
|
|
|
|
handle->rxDataSizeAll = bytesToReceive;
|
|
|
|
handle->rxState = kFLEXIO_UART_RxBusy;
|
|
|
|
|
|
|
|
/* Enable RX interrupt. */
|
|
|
|
FLEXIO_UART_EnableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the how many bytes have read. */
|
|
|
|
if (receivedBytes)
|
|
|
|
{
|
|
|
|
*receivedBytes = bytesCurrentReceived;
|
|
|
|
}
|
|
|
|
|
|
|
|
status = kStatus_Success;
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_TransferAbortReceive(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle)
|
|
|
|
{
|
|
|
|
/* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
|
|
|
|
if (!handle->rxRingBuffer)
|
|
|
|
{
|
|
|
|
/* Disable RX interrupt. */
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
|
|
|
|
handle->rxDataSize = 0U;
|
|
|
|
handle->rxState = kFLEXIO_UART_RxIdle;
|
|
|
|
}
|
|
|
|
|
|
|
|
status_t FLEXIO_UART_TransferGetReceiveCount(FLEXIO_UART_Type *base, flexio_uart_handle_t *handle, size_t *count)
|
|
|
|
{
|
|
|
|
assert(handle);
|
|
|
|
assert(count);
|
|
|
|
|
|
|
|
if (kFLEXIO_UART_RxIdle == handle->rxState)
|
|
|
|
{
|
|
|
|
return kStatus_NoTransferInProgress;
|
|
|
|
}
|
|
|
|
|
|
|
|
*count = handle->rxDataSizeAll - handle->rxDataSize;
|
|
|
|
|
|
|
|
return kStatus_Success;
|
|
|
|
}
|
|
|
|
|
|
|
|
void FLEXIO_UART_TransferHandleIRQ(void *uartType, void *uartHandle)
|
|
|
|
{
|
|
|
|
uint8_t count = 1;
|
|
|
|
FLEXIO_UART_Type *base = (FLEXIO_UART_Type *)uartType;
|
|
|
|
flexio_uart_handle_t *handle = (flexio_uart_handle_t *)uartHandle;
|
|
|
|
|
|
|
|
/* Read the status back. */
|
|
|
|
uint8_t status = FLEXIO_UART_GetStatusFlags(base);
|
|
|
|
|
|
|
|
/* If RX overrun. */
|
|
|
|
if (kFLEXIO_UART_RxOverRunFlag & status)
|
|
|
|
{
|
|
|
|
/* Clear Overrun flag. */
|
|
|
|
FLEXIO_UART_ClearStatusFlags(base, kFLEXIO_UART_RxOverRunFlag);
|
|
|
|
|
|
|
|
/* Trigger callback. */
|
|
|
|
if (handle->callback)
|
|
|
|
{
|
|
|
|
handle->callback(base, handle, kStatus_FLEXIO_UART_RxHardwareOverrun, handle->userData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Receive data register full */
|
|
|
|
if ((kFLEXIO_UART_RxDataRegFullFlag & status) && (base->flexioBase->SHIFTSIEN & (1U << base->shifterIndex[1])))
|
|
|
|
{
|
|
|
|
/* If handle->rxDataSize is not 0, first save data to handle->rxData. */
|
|
|
|
if (handle->rxDataSize)
|
|
|
|
{
|
|
|
|
/* Using non block API to read the data from the registers. */
|
|
|
|
FLEXIO_UART_ReadByte(base, handle->rxData);
|
|
|
|
handle->rxDataSize--;
|
|
|
|
handle->rxData++;
|
|
|
|
count--;
|
|
|
|
|
|
|
|
/* If all the data required for upper layer is ready, trigger callback. */
|
|
|
|
if (!handle->rxDataSize)
|
|
|
|
{
|
|
|
|
handle->rxState = kFLEXIO_UART_RxIdle;
|
|
|
|
|
|
|
|
if (handle->callback)
|
|
|
|
{
|
|
|
|
handle->callback(base, handle, kStatus_FLEXIO_UART_RxIdle, handle->userData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (handle->rxRingBuffer)
|
|
|
|
{
|
|
|
|
if (count)
|
|
|
|
{
|
|
|
|
/* If RX ring buffer is full, trigger callback to notify over run. */
|
|
|
|
if (FLEXIO_UART_TransferIsRxRingBufferFull(handle))
|
|
|
|
{
|
|
|
|
if (handle->callback)
|
|
|
|
{
|
|
|
|
handle->callback(base, handle, kStatus_FLEXIO_UART_RxRingBufferOverrun, handle->userData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If ring buffer is still full after callback function, the oldest data is overrided. */
|
|
|
|
if (FLEXIO_UART_TransferIsRxRingBufferFull(handle))
|
|
|
|
{
|
|
|
|
/* Increase handle->rxRingBufferTail to make room for new data. */
|
|
|
|
if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
|
|
|
|
{
|
|
|
|
handle->rxRingBufferTail = 0U;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handle->rxRingBufferTail++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read data. */
|
|
|
|
handle->rxRingBuffer[handle->rxRingBufferHead] = base->flexioBase->SHIFTBUFBYS[base->shifterIndex[1]];
|
|
|
|
|
|
|
|
/* Increase handle->rxRingBufferHead. */
|
|
|
|
if (handle->rxRingBufferHead + 1U == handle->rxRingBufferSize)
|
|
|
|
{
|
|
|
|
handle->rxRingBufferHead = 0U;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
handle->rxRingBufferHead++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* If no receive requst pending, stop RX interrupt. */
|
|
|
|
else if (!handle->rxDataSize)
|
|
|
|
{
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_RxDataRegFullInterruptEnable);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Send data register empty and the interrupt is enabled. */
|
|
|
|
if ((kFLEXIO_UART_TxDataRegEmptyFlag & status) && (base->flexioBase->SHIFTSIEN & (1U << base->shifterIndex[0])))
|
|
|
|
{
|
|
|
|
if (handle->txDataSize)
|
|
|
|
{
|
|
|
|
/* Using non block API to write the data to the registers. */
|
|
|
|
FLEXIO_UART_WriteByte(base, handle->txData);
|
|
|
|
handle->txData++;
|
|
|
|
handle->txDataSize--;
|
|
|
|
count--;
|
|
|
|
|
|
|
|
/* If all the data are written to data register, TX finished. */
|
|
|
|
if (!handle->txDataSize)
|
|
|
|
{
|
|
|
|
handle->txState = kFLEXIO_UART_TxIdle;
|
|
|
|
|
|
|
|
/* Disable TX register empty interrupt. */
|
|
|
|
FLEXIO_UART_DisableInterrupts(base, kFLEXIO_UART_TxDataRegEmptyInterruptEnable);
|
|
|
|
|
|
|
|
/* Trigger callback. */
|
|
|
|
if (handle->callback)
|
|
|
|
{
|
|
|
|
handle->callback(base, handle, kStatus_FLEXIO_UART_TxIdle, handle->userData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|