4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 18:37:21 +08:00

897 lines
38 KiB
C
Raw Normal View History

2018-12-05 11:44:53 +08:00
/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright (c) 2016 - 2017 , NXP
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name ofcopyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _FSL_CLOCK_H_
#define _FSL_CLOCK_H_
#include "fsl_device_registers.h"
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
/*! @addtogroup clock */
/*! @{ */
/*! @file */
/*******************************************************************************
* Definitions
*****************************************************************************/
/*! @name Driver version */
/*@{*/
/*! @brief CLOCK driver version 2.0.2. */
#define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 0, 2))
/*@}*/
/*!
* @brief User-defined the size of cache for CLOCK_PllGetConfig() function.
*
* Once define this MACRO to be non-zero value, CLOCK_PllGetConfig() function
* would cache the recent calulation and accelerate the execution to get the
* right settings.
*/
#ifndef CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT
#define CLOCK_USR_CFG_PLL_CONFIG_CACHE_COUNT 2U
#endif
/*! @brief Clock ip name array for FLEXCOMM. */
#define FLEXCOMM_CLOCKS \
{ \
kCLOCK_FlexComm0, kCLOCK_FlexComm1, kCLOCK_FlexComm2, kCLOCK_FlexComm3, kCLOCK_FlexComm4, kCLOCK_FlexComm5, \
kCLOCK_FlexComm6, kCLOCK_FlexComm7 \
}
/*! @brief Clock ip name array for LPUART. */
#define LPUART_CLOCKS \
{ \
kCLOCK_MinUart0, kCLOCK_MinUart1, kCLOCK_MinUart2, kCLOCK_MinUart3, kCLOCK_MinUart4, kCLOCK_MinUart5, \
kCLOCK_MinUart6, kCLOCK_MinUart7 \
}
/*! @brief Clock ip name array for BI2C. */
#define BI2C_CLOCKS \
{ \
kCLOCK_BI2c0, kCLOCK_BI2c1, kCLOCK_BI2c2, kCLOCK_BI2c3, kCLOCK_BI2c4, kCLOCK_BI2c5, kCLOCK_BI2c6, kCLOCK_BI2c7 \
}
/*! @brief Clock ip name array for LSPI. */
#define LPSI_CLOCKS \
{ \
kCLOCK_LSpi0, kCLOCK_LSpi1, kCLOCK_LSpi2, kCLOCK_LSpi3, kCLOCK_LSpi4, kCLOCK_LSpi5, kCLOCK_LSpi6, kCLOCK_LSpi7 \
}
/*! @brief Clock ip name array for FLEXI2S. */
#define FLEXI2S_CLOCKS \
{ \
kCLOCK_FlexI2s0, kCLOCK_FlexI2s1, kCLOCK_FlexI2s2, kCLOCK_FlexI2s3, kCLOCK_FlexI2s4, kCLOCK_FlexI2s5, \
kCLOCK_FlexI2s6, kCLOCK_FlexI2s7 \
}
/*! @brief Clock ip name array for UTICK. */
#define UTICK_CLOCKS \
{ \
kCLOCK_Utick \
}
/*! @brief Clock ip name array for DMIC. */
#define DMIC_CLOCKS \
{ \
kCLOCK_DMic \
}
/*! @brief Clock ip name array for DMA. */
#define DMA_CLOCKS \
{ \
kCLOCK_Dma \
}
/*! @brief Clock ip name array for CT32B. */
#define CTIMER_CLOCKS \
{ \
kCLOCK_Ct32b0, kCLOCK_Ct32b1, kCLOCK_Ct32b2, kCLOCK_Ct32b3, kCLOCK_Ct32b4 \
}
/*! @brief Clock ip name array for GPIO. */
#define GPIO_CLOCKS \
{ \
kCLOCK_Gpio0, kCLOCK_Gpio1 \
}
/*! @brief Clock ip name array for ADC. */
#define ADC_CLOCKS \
{ \
kCLOCK_Adc0 \
}
/*! @brief Clock ip name array for MRT. */
#define MRT_CLOCKS \
{ \
kCLOCK_Mrt \
}
/*! @brief Clock ip name array for MRT. */
#define SCT_CLOCKS \
{ \
kCLOCK_Sct0 \
}
/*! @brief Clock ip name array for RTC. */
#define RTC_CLOCKS \
{ \
kCLOCK_Rtc \
}
/*! @brief Clock ip name array for WWDT. */
#define WWDT_CLOCKS \
{ \
kCLOCK_Wwdt \
}
/*! @brief Clock ip name array for CRC. */
#define CRC_CLOCKS \
{ \
kCLOCK_Crc \
}
/*! @brief Clock ip name array for USBD. */
#define USBD_CLOCKS \
{ \
kCLOCK_Usbd0 \
}
/*! @brief Clock ip name array for GINT. GINT0 & GINT1 share same slot */
#define GINT_CLOCKS \
{ \
kCLOCK_Gint, kCLOCK_Gint \
}
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
/*------------------------------------------------------------------------------
clock_ip_name_t definition:
------------------------------------------------------------------------------*/
#define CLK_GATE_REG_OFFSET_SHIFT 8U
#define CLK_GATE_REG_OFFSET_MASK 0xFFFFFF00U
#define CLK_GATE_BIT_SHIFT_SHIFT 0U
#define CLK_GATE_BIT_SHIFT_MASK 0x000000FFU
#define CLK_GATE_DEFINE(reg_offset, bit_shift) \
((((reg_offset) << CLK_GATE_REG_OFFSET_SHIFT) & CLK_GATE_REG_OFFSET_MASK) | \
(((bit_shift) << CLK_GATE_BIT_SHIFT_SHIFT) & CLK_GATE_BIT_SHIFT_MASK))
#define CLK_GATE_ABSTRACT_REG_OFFSET(x) (((uint32_t)(x)&CLK_GATE_REG_OFFSET_MASK) >> CLK_GATE_REG_OFFSET_SHIFT)
#define CLK_GATE_ABSTRACT_BITS_SHIFT(x) (((uint32_t)(x)&CLK_GATE_BIT_SHIFT_MASK) >> CLK_GATE_BIT_SHIFT_SHIFT)
#define AHB_CLK_CTRL0 0
#define AHB_CLK_CTRL1 1
#define ASYNC_CLK_CTRL0 2
/*! @brief Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock. */
typedef enum _clock_ip_name
{
kCLOCK_IpInvalid = 0U,
kCLOCK_Rom = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 1),
kCLOCK_Sram1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 3),
kCLOCK_Sram2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 4),
kCLOCK_Regfile = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 6),
kCLOCK_Flash = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 7),
kCLOCK_Fmc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 8),
kCLOCK_InputMux = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 11),
kCLOCK_Iocon = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 13),
kCLOCK_Gpio0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 14),
kCLOCK_Gpio1 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 15),
kCLOCK_Gpio2 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 16),
kCLOCK_Gpio3 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 17),
kCLOCK_Pint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 18),
kCLOCK_Gint = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 19), /* GPIO_GLOBALINT0 and GPIO_GLOBALINT1 share the same slot */
kCLOCK_Dma = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 20),
kCLOCK_Crc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 21),
kCLOCK_Wwdt = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 22),
kCLOCK_Rtc = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 23),
kCLOCK_Mailbox = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 26),
kCLOCK_Adc0 = CLK_GATE_DEFINE(AHB_CLK_CTRL0, 27),
kCLOCK_Mrt = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 0),
kCLOCK_Sct0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 2),
kCLOCK_SctIpu0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 6),
kCLOCK_Utick = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 10),
kCLOCK_FlexComm0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_FlexComm1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_FlexComm2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_FlexComm3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_FlexComm4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_FlexComm5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_FlexComm6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_FlexComm7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_MinUart0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_MinUart1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_MinUart2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_MinUart3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_MinUart4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_MinUart5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_MinUart6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_MinUart7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_LSpi0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_LSpi1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_LSpi2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_LSpi3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_LSpi4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_LSpi5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_LSpi6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_LSpi7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_BI2c0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_BI2c1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_BI2c2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_BI2c3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_BI2c4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_BI2c5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_BI2c6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_BI2c7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_FlexI2s0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 11),
kCLOCK_FlexI2s1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 12),
kCLOCK_FlexI2s2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 13),
kCLOCK_FlexI2s3 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 14),
kCLOCK_FlexI2s4 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 15),
kCLOCK_FlexI2s5 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 16),
kCLOCK_FlexI2s6 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 17),
kCLOCK_FlexI2s7 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 18),
kCLOCK_DMic = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 19),
kCLOCK_Ct32b2 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 22),
kCLOCK_Usbd0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 25),
kCLOCK_Ct32b0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 26),
kCLOCK_Ct32b1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 27),
kCLOCK_Pvtvf0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 28),
kCLOCK_Pvtvf1 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 28),
kCLOCK_BodyBias0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 29),
kCLOCK_EzhArchB0 = CLK_GATE_DEFINE(AHB_CLK_CTRL1, 31),
kCLOCK_Ct32b3 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 13),
kCLOCK_Ct32b4 = CLK_GATE_DEFINE(ASYNC_CLK_CTRL0, 14)
} clock_ip_name_t;
/*! @brief Clock name used to get clock frequency. */
typedef enum _clock_name
{
kCLOCK_CoreSysClk, /*!< Core/system clock (aka MAIN_CLK) */
kCLOCK_BusClk, /*!< Bus clock (AHB clock) */
kCLOCK_FroHf, /*!< FRO48/96 */
kCLOCK_Fro12M, /*!< FRO12M */
kCLOCK_ExtClk, /*!< External Clock */
kCLOCK_PllOut, /*!< PLL Output */
kCLOCK_UsbClk, /*!< USB input */
kCLOCK_WdtOsc, /*!< Watchdog Oscillator */
kCLOCK_Frg, /*!< Frg Clock */
kCLOCK_Dmic, /*!< Digital Mic clock */
kCLOCK_AsyncApbClk, /*!< Async APB clock */
kCLOCK_FlexI2S, /*!< FlexI2S clock */
kCLOCK_Flexcomm0, /*!< Flexcomm0Clock */
kCLOCK_Flexcomm1, /*!< Flexcomm1Clock */
kCLOCK_Flexcomm2, /*!< Flexcomm2Clock */
kCLOCK_Flexcomm3, /*!< Flexcomm3Clock */
kCLOCK_Flexcomm4, /*!< Flexcomm4Clock */
kCLOCK_Flexcomm5, /*!< Flexcomm5Clock */
kCLOCK_Flexcomm6, /*!< Flexcomm6Clock */
kCLOCK_Flexcomm7, /*!< Flexcomm7Clock */
} clock_name_t;
/**
* Clock source selections for the asynchronous APB clock
*/
typedef enum _async_clock_src
{
kCLOCK_AsyncMainClk = 0, /*!< Main System clock */
kCLOCK_AsyncFro12Mhz, /*!< 12MHz FRO */
} async_clock_src_t;
/*! @brief Clock Mux Switches
* The encoding is as follows each connection identified is 64bits wide
* starting from LSB upwards
*
* [4 bits for choice, where 1 is A, 2 is B, 3 is C and 4 is D, 0 means end of descriptor] [8 bits mux ID]*
*
*/
#define MUX_A(m, choice) (((m) << 0) | (((choice) + 1) << 8))
#define MUX_B(m, choice) (((m) << 12) | (((choice) + 1) << 20))
#define MUX_C(m, choice) (((m) << 24) | (((choice) + 1) << 32))
#define MUX_D(m, choice) (((m) << 36) | (((choice) + 1) << 44))
#define MUX_E(m, choice) (((m) << 48) | (((choice) + 1) << 56))
#define CM_MAINCLKSELA 0
#define CM_MAINCLKSELB 1
#define CM_CLKOUTCLKSELA 2
#define CM_CLKOUTCLKSELB 3
#define CM_SYSPLLCLKSEL 4
#define CM_USBPLLCLKSEL 5
#define CM_AUDPLLCLKSEL 6
#define CM_SCTPLLCLKSEL 7
#define CM_SPIFICLKSEL 8
#define CM_ADCASYNCCLKSEL 9
#define CM_USBCLKSEL 10
#define CM_USB1CLKSEL 11
#define CM_FXCOMCLKSEL0 12
#define CM_FXCOMCLKSEL1 13
#define CM_FXCOMCLKSEL2 14
#define CM_FXCOMCLKSEL3 15
#define CM_FXCOMCLKSEL4 16
#define CM_FXCOMCLKSEL5 17
#define CM_FXCOMCLKSEL6 18
#define CM_FXCOMCLKSEL7 19
#define CM_FXCOMCLKSEL8 20
#define CM_FXCOMCLKSEL9 21
#define CM_FXCOMCLKSEL10 22
#define CM_FXCOMCLKSEL11 23
#define CM_FXI2S0MCLKCLKSEL 24
#define CM_FXI2S1MCLKCLKSEL 25
#define CM_FRGCLKSEL 26
#define CM_DMICCLKSEL 27
#define CM_ASYNCAPB 28
typedef enum _clock_attach_id
{
kFRO12M_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 0) | MUX_B(CM_MAINCLKSELB, 0),
kEXT_CLK_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 1) | MUX_B(CM_MAINCLKSELB, 0),
kWDT_OSC_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 2) | MUX_B(CM_MAINCLKSELB, 0),
kFRO_HF_to_MAIN_CLK = MUX_A(CM_MAINCLKSELA, 3) | MUX_B(CM_MAINCLKSELB, 0),
kSYS_PLL_to_MAIN_CLK = MUX_A(CM_MAINCLKSELB, 2),
kOSC32K_to_MAIN_CLK = MUX_A(CM_MAINCLKSELB, 3),
kFRO12M_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 0),
kEXT_CLK_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 1),
kWDT_OSC_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 2),
kOSC32K_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 3),
kNONE_to_SYS_PLL = MUX_A(CM_SYSPLLCLKSEL, 7),
kMAIN_CLK_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 0),
kFRO12M_to_ASYNC_APB = MUX_A(CM_ASYNCAPB, 1),
kMAIN_CLK_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 0),
kSYS_PLL_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 1),
kFRO_HF_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 2),
kNONE_to_ADC_CLK = MUX_A(CM_ADCASYNCCLKSEL, 7),
kMAIN_CLK_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 0),
kSYS_PLL_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 1),
kFRO_HF_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 3),
kNONE_to_SPIFI_CLK = MUX_A(CM_SPIFICLKSEL, 7),
kFRO12M_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 0),
kFRO_HF_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 1),
kSYS_PLL_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 2),
kMCLK_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 3),
kFRG_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 4),
kNONE_to_FLEXCOMM0 = MUX_A(CM_FXCOMCLKSEL0, 7),
kFRO12M_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 0),
kFRO_HF_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 1),
kSYS_PLL_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 2),
kMCLK_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 3),
kFRG_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 4),
kNONE_to_FLEXCOMM1 = MUX_A(CM_FXCOMCLKSEL1, 7),
kFRO12M_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 0),
kFRO_HF_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 1),
kSYS_PLL_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 2),
kMCLK_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 3),
kFRG_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 4),
kNONE_to_FLEXCOMM2 = MUX_A(CM_FXCOMCLKSEL2, 7),
kFRO12M_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 0),
kFRO_HF_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 1),
kSYS_PLL_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 2),
kMCLK_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 3),
kFRG_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 4),
kNONE_to_FLEXCOMM3 = MUX_A(CM_FXCOMCLKSEL3, 7),
kFRO12M_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 0),
kFRO_HF_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 1),
kSYS_PLL_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 2),
kMCLK_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 3),
kFRG_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 4),
kNONE_to_FLEXCOMM4 = MUX_A(CM_FXCOMCLKSEL4, 7),
kFRO12M_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 0),
kFRO_HF_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 1),
kSYS_PLL_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 2),
kMCLK_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 3),
kFRG_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 4),
kNONE_to_FLEXCOMM5 = MUX_A(CM_FXCOMCLKSEL5, 7),
kFRO12M_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 0),
kFRO_HF_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 1),
kSYS_PLL_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 2),
kMCLK_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 3),
kFRG_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 4),
kNONE_to_FLEXCOMM6 = MUX_A(CM_FXCOMCLKSEL6, 7),
kFRO12M_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 0),
kFRO_HF_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 1),
kSYS_PLL_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 2),
kMCLK_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 3),
kFRG_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 4),
kNONE_to_FLEXCOMM7 = MUX_A(CM_FXCOMCLKSEL7, 7),
kMAIN_CLK_to_FRG = MUX_A(CM_FRGCLKSEL, 0),
kSYS_PLL_to_FRG = MUX_A(CM_FRGCLKSEL, 1),
kFRO12M_to_FRG = MUX_A(CM_FRGCLKSEL, 2),
kFRO_HF_to_FRG = MUX_A(CM_FRGCLKSEL, 3),
kNONE_to_FRG = MUX_A(CM_FRGCLKSEL, 7),
kFRO_HF_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 0),
kSYS_PLL_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 1),
kNONE_to_MCLK = MUX_A(CM_FXI2S0MCLKCLKSEL, 7),
kFRO12M_to_DMIC = MUX_A(CM_DMICCLKSEL, 0),
kFRO_HF_to_DMIC = MUX_A(CM_DMICCLKSEL, 1),
kSYS_PLL_to_DMIC = MUX_A(CM_DMICCLKSEL, 2),
kMCLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 3),
kMAIN_CLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 4),
kWDT_CLK_to_DMIC = MUX_A(CM_DMICCLKSEL, 5),
kNONE_to_DMIC = MUX_A(CM_DMICCLKSEL, 7),
kFRO_HF_to_USB_CLK = MUX_A(CM_USBCLKSEL, 0),
kSYS_PLL_to_USB_CLK = MUX_A(CM_USBCLKSEL, 1),
kMAIN_CLK_to_USB_CLK = MUX_A(CM_USBCLKSEL, 2),
kNONE_to_USB_CLK = MUX_A(CM_USBCLKSEL, 7),
kMAIN_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 0),
kEXT_CLK_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 1),
kWDT_OSC_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 2),
kFRO_HF_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 3),
kSYS_PLL_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 4),
kFRO12M_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 5),
kOSC32K_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 6),
kNONE_to_CLKOUT = MUX_A(CM_CLKOUTCLKSELA, 7),
kNONE_to_NONE = 0x80000000U,
} clock_attach_id_t;
/* Clock dividers */
typedef enum _clock_div_name
{
kCLOCK_DivSystickClk = 0,
kCLOCK_DivTraceClk = 1,
kCLOCK_DivAhbClk = 32,
kCLOCK_DivClkOut = 33,
kCLOCK_DivSpifiClk = 36,
kCLOCK_DivAdcAsyncClk = 37,
kCLOCK_DivUsbClk = 38,
kCLOCK_DivFrg = 40,
kCLOCK_DivDmicClk = 42,
kCLOCK_DivFxI2s0MClk = 43
} clock_div_name_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
static inline void CLOCK_EnableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
if (index < 2)
{
SYSCON->AHBCLKCTRLSET[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
else
{
ASYNC_SYSCON->ASYNCAPBCLKCTRLSET = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
}
static inline void CLOCK_DisableClock(clock_ip_name_t clk)
{
uint32_t index = CLK_GATE_ABSTRACT_REG_OFFSET(clk);
if (index < 2)
{
SYSCON->AHBCLKCTRLCLR[index] = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
else
{
ASYNC_SYSCON->ASYNCAPBCLKCTRLCLR = (1U << CLK_GATE_ABSTRACT_BITS_SHIFT(clk));
}
}
/**
* @brief FLASH Access time definitions
*/
typedef enum _clock_flashtim
{
kCLOCK_Flash1Cycle = 0, /*!< Flash accesses use 1 CPU clock */
kCLOCK_Flash2Cycle, /*!< Flash accesses use 2 CPU clocks */
kCLOCK_Flash3Cycle, /*!< Flash accesses use 3 CPU clocks */
kCLOCK_Flash4Cycle, /*!< Flash accesses use 4 CPU clocks */
kCLOCK_Flash5Cycle, /*!< Flash accesses use 5 CPU clocks */
kCLOCK_Flash6Cycle, /*!< Flash accesses use 6 CPU clocks */
kCLOCK_Flash7Cycle, /*!< Flash accesses use 7 CPU clocks */
kCLOCK_Flash8Cycle /*!< Flash accesses use 8 CPU clocks */
} clock_flashtim_t;
/**
* @brief Set FLASH memory access time in clocks
* @param clks : Clock cycles for FLASH access
* @return Nothing
*/
static inline void CLOCK_SetFLASHAccessCycles(clock_flashtim_t clks)
{
uint32_t tmp;
tmp = SYSCON->FLASHCFG & ~(SYSCON_FLASHCFG_FLASHTIM_MASK);
/* Don't alter lower bits */
SYSCON->FLASHCFG = tmp | ((uint32_t)clks << SYSCON_FLASHCFG_FLASHTIM_SHIFT);
}
/**
* @brief Initialize the Core clock to given frequency (12, 48 or 96 MHz).
* Turns on FRO and uses default CCO, if freq is 12000000, then high speed output is off, else high speed output is
* enabled.
* @param iFreq : Desired frequency (must be one of CLK_FRO_12MHZ or CLK_FRO_48MHZ or CLK_FRO_96MHZ)
* @return returns success or fail status.
*/
status_t CLOCK_SetupFROClocking(uint32_t iFreq);
/**
* @brief Configure the clock selection muxes.
* @param connection : Clock to be configured.
* @return Nothing
*/
void CLOCK_AttachClk(clock_attach_id_t connection);
/**
* @brief Setup peripheral clock dividers.
* @param div_name : Clock divider name
* @param divided_by_value: Value to be divided
* @param reset : Whether to reset the divider counter.
* @return Nothing
*/
void CLOCK_SetClkDiv(clock_div_name_t div_name, uint32_t divided_by_value, bool reset);
/**
* @brief Set the flash wait states for the input freuqency.
* @param iFreq : Input frequency
* @return Nothing
*/
void CLOCK_SetFLASHAccessCyclesForFreq(uint32_t iFreq);
/*! @brief Return Frequency of selected clock
* @return Frequency of selected clock
*/
uint32_t CLOCK_GetFreq(clock_name_t clockName);
/*! @brief Return Input frequency for the Fractional baud rate generator
* @return Input Frequency for FRG
*/
uint32_t CLOCK_GetFRGInputClock(void);
/*! @brief Return Input frequency for the DMIC
* @return Input Frequency for DMIC
*/
uint32_t CLOCK_GetDmicClkFreq(void);
/*! @brief Return Input frequency for the FRG
* @return Input Frequency for FRG
*/
uint32_t CLOCK_GetFrgClkFreq(void);
/*! @brief Set output of the Fractional baud rate generator
* @param freq : Desired output frequency
* @return Error Code 0 - fail 1 - success
*/
uint32_t CLOCK_SetFRGClock(uint32_t freq);
/*! @brief Return Frequency of FRO 12MHz
* @return Frequency of FRO 12MHz
*/
uint32_t CLOCK_GetFro12MFreq(void);
/*! @brief Return Frequency of External Clock
* @return Frequency of External Clock. If no external clock is used returns 0.
*/
uint32_t CLOCK_GetExtClkFreq(void);
/*! @brief Return Frequency of Watchdog Oscillator
* @return Frequency of Watchdog Oscillator
*/
uint32_t CLOCK_GetWdtOscFreq(void);
/*! @brief Return Frequency of High-Freq output of FRO
* @return Frequency of High-Freq output of FRO
*/
uint32_t CLOCK_GetFroHfFreq(void);
/*! @brief Return Frequency of USB
* @return Frequency of USB
*/
uint32_t CLOCK_GetUsbClkFreq(void);
/*! @brief Return Frequency of PLL
* @return Frequency of PLL
*/
uint32_t CLOCK_GetPllOutFreq(void);
/*! @brief Return Frequency of 32kHz osc
* @return Frequency of 32kHz osc
*/
uint32_t CLOCK_GetOsc32KFreq(void);
/*! @brief Return Frequency of Core System
* @return Frequency of Core System
*/
uint32_t CLOCK_GetCoreSysClkFreq(void);
/*! @brief Return Frequency of I2S MCLK Clock
* @return Frequency of I2S MCLK Clock
*/
uint32_t CLOCK_GetI2SMClkFreq(void);
/*! @brief Return Frequency of Flexcomm functional Clock
* @return Frequency of Flexcomm functional Clock
*/
uint32_t CLOCK_GetFlexCommClkFreq(uint32_t id);
/*! @brief Return Asynchronous APB Clock source
* @return Asynchronous APB CLock source
*/
__STATIC_INLINE async_clock_src_t CLOCK_GetAsyncApbClkSrc(void)
{
return (async_clock_src_t)(ASYNC_SYSCON->ASYNCAPBCLKSELA & 0x3);
}
/*! @brief Return Frequency of Asynchronous APB Clock
* @return Frequency of Asynchronous APB Clock Clock
*/
uint32_t CLOCK_GetAsyncApbClkFreq(void);
/*! @brief Return System PLL input clock rate
* @return System PLL input clock rate
*/
uint32_t CLOCK_GetSystemPLLInClockRate(void);
/*! @brief Return System PLL output clock rate
* @param recompute : Forces a PLL rate recomputation if true
* @return System PLL output clock rate
* @note The PLL rate is cached in the driver in a variable as
* the rate computation function can take some time to perform. It
* is recommended to use 'false' with the 'recompute' parameter.
*/
uint32_t CLOCK_GetSystemPLLOutClockRate(bool recompute);
/*! @brief Enables and disables PLL bypass mode
* @brief bypass : true to bypass PLL (PLL output = PLL input, false to disable bypass
* @return System PLL output clock rate
*/
__STATIC_INLINE void CLOCK_SetBypassPLL(bool bypass)
{
if (bypass)
{
SYSCON->SYSPLLCTRL |= (1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
}
else
{
SYSCON->SYSPLLCTRL &= ~(1UL << SYSCON_SYSPLLCTRL_BYPASS_SHIFT);
}
}
/*! @brief Check if PLL is locked or not
* @return true if the PLL is locked, false if not locked
*/
__STATIC_INLINE bool CLOCK_IsSystemPLLLocked(void)
{
return (bool)((SYSCON->SYSPLLSTAT & SYSCON_SYSPLLSTAT_LOCK_MASK) != 0);
}
/*! @brief Store the current PLL rate
* @param rate: Current rate of the PLL
* @return Nothing
**/
void CLOCK_SetStoredPLLClockRate(uint32_t rate);
/*! @brief PLL configuration structure flags for 'flags' field
* These flags control how the PLL configuration function sets up the PLL setup structure.<br>
*
* When the PLL_CONFIGFLAG_USEINRATE flag is selected, the 'InputRate' field in the
* configuration structure must be assigned with the expected PLL frequency. If the
* PLL_CONFIGFLAG_USEINRATE is not used, 'InputRate' is ignored in the configuration
* function and the driver will determine the PLL rate from the currently selected
* PLL source. This flag might be used to configure the PLL input clock more accurately
* when using the WDT oscillator or a more dyanmic CLKIN source.<br>
*
* When the PLL_CONFIGFLAG_FORCENOFRACT flag is selected, the PLL hardware for the
* automatic bandwidth selection, Spread Spectrum (SS) support, and fractional M-divider
* are not used.<br>
*/
#define PLL_CONFIGFLAG_USEINRATE (1 << 0) /*!< Flag to use InputRate in PLL configuration structure for setup */
#define PLL_CONFIGFLAG_FORCENOFRACT \
(1 << 2) /*!< Force non-fractional output mode, PLL output will not use the fractional, automatic bandwidth, or SS \
\ \ \
\ \ \ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \
hardware */
/*! @brief PLL Spread Spectrum (SS) Programmable modulation frequency
* See (MF) field in the SYSPLLSSCTRL1 register in the UM.
*/
typedef enum _ss_progmodfm
{
kSS_MF_512 = (0 << 20), /*!< Nss = 512 (fm ? 3.9 - 7.8 kHz) */
kSS_MF_384 = (1 << 20), /*!< Nss ?= 384 (fm ? 5.2 - 10.4 kHz) */
kSS_MF_256 = (2 << 20), /*!< Nss = 256 (fm ? 7.8 - 15.6 kHz) */
kSS_MF_128 = (3 << 20), /*!< Nss = 128 (fm ? 15.6 - 31.3 kHz) */
kSS_MF_64 = (4 << 20), /*!< Nss = 64 (fm ? 32.3 - 64.5 kHz) */
kSS_MF_32 = (5 << 20), /*!< Nss = 32 (fm ? 62.5- 125 kHz) */
kSS_MF_24 = (6 << 20), /*!< Nss ?= 24 (fm ? 83.3- 166.6 kHz) */
kSS_MF_16 = (7 << 20) /*!< Nss = 16 (fm ? 125- 250 kHz) */
} ss_progmodfm_t;
/*! @brief PLL Spread Spectrum (SS) Programmable frequency modulation depth
* See (MR) field in the SYSPLLSSCTRL1 register in the UM.
*/
typedef enum _ss_progmoddp
{
kSS_MR_K0 = (0 << 23), /*!< k = 0 (no spread spectrum) */
kSS_MR_K1 = (1 << 23), /*!< k = 1 */
kSS_MR_K1_5 = (2 << 23), /*!< k = 1.5 */
kSS_MR_K2 = (3 << 23), /*!< k = 2 */
kSS_MR_K3 = (4 << 23), /*!< k = 3 */
kSS_MR_K4 = (5 << 23), /*!< k = 4 */
kSS_MR_K6 = (6 << 23), /*!< k = 6 */
kSS_MR_K8 = (7 << 23) /*!< k = 8 */
} ss_progmoddp_t;
/*! @brief PLL Spread Spectrum (SS) Modulation waveform control
* See (MC) field in the SYSPLLSSCTRL1 register in the UM.<br>
* Compensation for low pass filtering of the PLL to get a triangular
* modulation at the output of the PLL, giving a flat frequency spectrum.
*/
typedef enum _ss_modwvctrl
{
kSS_MC_NOC = (0 << 26), /*!< no compensation */
kSS_MC_RECC = (2 << 26), /*!< recommended setting */
kSS_MC_MAXC = (3 << 26), /*!< max. compensation */
} ss_modwvctrl_t;
/*! @brief PLL configuration structure
*
* This structure can be used to configure the settings for a PLL
* setup structure. Fill in the desired configuration for the PLL
* and call the PLL setup function to fill in a PLL setup structure.
*/
typedef struct _pll_config
{
uint32_t desiredRate; /*!< Desired PLL rate in Hz */
uint32_t inputRate; /*!< PLL input clock in Hz, only used if PLL_CONFIGFLAG_USEINRATE flag is set */
uint32_t flags; /*!< PLL configuration flags, Or'ed value of PLL_CONFIGFLAG_* definitions */
ss_progmodfm_t ss_mf; /*!< SS Programmable modulation frequency, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
ss_progmoddp_t ss_mr; /*!< SS Programmable frequency modulation depth, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
ss_modwvctrl_t
ss_mc; /*!< SS Modulation waveform control, only applicable when not using PLL_CONFIGFLAG_FORCENOFRACT flag */
bool mfDither; /*!< false for fixed modulation frequency or true for dithering, only applicable when not using
PLL_CONFIGFLAG_FORCENOFRACT flag */
} pll_config_t;
/*! @brief PLL setup structure flags for 'flags' field
* These flags control how the PLL setup function sets up the PLL
*/
#define PLL_SETUPFLAG_POWERUP (1 << 0) /*!< Setup will power on the PLL after setup */
#define PLL_SETUPFLAG_WAITLOCK (1 << 1) /*!< Setup will wait for PLL lock, implies the PLL will be pwoered on */
#define PLL_SETUPFLAG_ADGVOLT (1 << 2) /*!< Optimize system voltage for the new PLL rate */
#define PLL_SETUPFLAG_USEFEEDBACKDIV2 (1 << 3) /*!< Use feedback divider by 2 in divider path */
/*! @brief PLL setup structure
* This structure can be used to pre-build a PLL setup configuration
* at run-time and quickly set the PLL to the configuration. It can be
* populated with the PLL setup function. If powering up or waiting
* for PLL lock, the PLL input clock source should be configured prior
* to PLL setup.
*/
typedef struct _pll_setup
{
uint32_t syspllctrl; /*!< PLL control register SYSPLLCTRL */
uint32_t syspllndec; /*!< PLL NDEC register SYSPLLNDEC */
uint32_t syspllpdec; /*!< PLL PDEC register SYSPLLPDEC */
uint32_t syspllssctrl[2]; /*!< PLL SSCTL registers SYSPLLSSCTRL */
uint32_t pllRate; /*!< Acutal PLL rate */
uint32_t flags; /*!< PLL setup flags, Or'ed value of PLL_SETUPFLAG_* definitions */
} pll_setup_t;
/*! @brief PLL status definitions
*/
typedef enum _pll_error
{
kStatus_PLL_Success = MAKE_STATUS(kStatusGroup_Generic, 0), /*!< PLL operation was successful */
kStatus_PLL_OutputTooLow = MAKE_STATUS(kStatusGroup_Generic, 1), /*!< PLL output rate request was too low */
kStatus_PLL_OutputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 2), /*!< PLL output rate request was too high */
kStatus_PLL_InputTooLow = MAKE_STATUS(kStatusGroup_Generic, 3), /*!< PLL input rate is too low */
kStatus_PLL_InputTooHigh = MAKE_STATUS(kStatusGroup_Generic, 4), /*!< PLL input rate is too high */
kStatus_PLL_OutsideIntLimit = MAKE_STATUS(kStatusGroup_Generic, 5) /*!< Requested output rate isn't possible */
} pll_error_t;
/*! @brief USB clock source definition. */
typedef enum _clock_usb_src
{
kCLOCK_UsbSrcFro = (uint32_t)kCLOCK_FroHf, /*!< Use FRO 96 or 48 MHz. */
kCLOCK_UsbSrcSystemPll = (uint32_t)kCLOCK_PllOut, /*!< Use System PLL output. */
kCLOCK_UsbSrcMainClock = (uint32_t)kCLOCK_CoreSysClk, /*!< Use Main clock. */
kCLOCK_UsbSrcNone = SYSCON_USBCLKSEL_SEL(
7) /*!< Use None, this may be selected in order to reduce power when no output is needed. */
} clock_usb_src_t;
/*! @brief Return System PLL output clock rate from setup structure
* @param pSetup : Pointer to a PLL setup structure
* @return System PLL output clock rate calculated from the setup structure
*/
uint32_t CLOCK_GetSystemPLLOutFromSetup(pll_setup_t *pSetup);
/*! @brief Set PLL output based on the passed PLL setup data
* @param pControl : Pointer to populated PLL control structure to generate setup with
* @param pSetup : Pointer to PLL setup structure to be filled
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note Actual frequency for setup may vary from the desired frequency based on the
* accuracy of input clocks, rounding, non-fractional PLL mode, etc.
*/
pll_error_t CLOCK_SetupPLLData(pll_config_t *pControl, pll_setup_t *pSetup);
/*! @brief Set PLL output from PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @param flagcfg : Flag configuration for PLL config structure
* @return PLL_ERROR_SUCCESS on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the PLL, wait for PLL lock,
* and adjust system voltages to the new PLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetupSystemPLLPrec(pll_setup_t *pSetup, uint32_t flagcfg);
/**
* @brief Set PLL output from PLL setup structure (precise frequency)
* @param pSetup : Pointer to populated PLL setup structure
* @return kStatus_PLL_Success on success, or PLL setup error code
* @note This function will power off the PLL, setup the PLL with the
* new setup data, and then optionally powerup the PLL, wait for PLL lock,
* and adjust system voltages to the new PLL rate. The function will not
* alter any source clocks (ie, main systen clock) that may use the PLL,
* so these should be setup prior to and after exiting the function.
*/
pll_error_t CLOCK_SetPLLFreq(const pll_setup_t *pSetup);
/*! @brief Set PLL output based on the multiplier and input frequency
* @param multiply_by : multiplier
* @param input_freq : Clock input frequency of the PLL
* @return Nothing
* @note Unlike the Chip_Clock_SetupSystemPLLPrec() function, this
* function does not disable or enable PLL power, wait for PLL lock,
* or adjust system voltages. These must be done in the application.
* The function will not alter any source clocks (ie, main systen clock)
* that may use the PLL, so these should be setup prior to and after
* exiting the function.
*/
void CLOCK_SetupSystemPLLMult(uint32_t multiply_by, uint32_t input_freq);
/*! @brief Disable USB FS clock.
*
* Disable USB FS clock.
*/
static inline void CLOCK_DisableUsbfs0Clock(void)
{
CLOCK_DisableClock(kCLOCK_Usbd0);
}
bool CLOCK_EnableUsbfs0Clock(clock_usb_src_t src, uint32_t freq);
#if defined(__cplusplus)
}
#endif /* __cplusplus */
/*! @} */
#endif /* _FSL_CLOCK_H_ */