rt-thread-official/bsp/imxrt/Libraries/imxrt1050/drivers/drv_i2c.c

463 lines
12 KiB
C
Raw Normal View History

2018-09-20 23:18:14 +08:00
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
2018-09-20 23:18:14 +08:00
*
* SPDX-License-Identifier: Apache-2.0
2018-09-20 23:18:14 +08:00
*
* Change Logs:
* Date Author Notes
* 2017-08-08 Yang the first version
* 2018-03-24 LaiYiKeTang add hardware iic
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "fsl_gpio.h"
#include "fsl_lpi2c.h"
#include "drv_i2c.h"
//#define DRV_I2C_DEBUG
#ifdef RT_USING_I2C
#define I2C1BUS_NAME "i2c1"
#define I2C2BUS_NAME "i2c2"
#define I2C3BUS_NAME "i2c3"
#define I2C4BUS_NAME "i2c4"
#define LPI2C_CLOCK_SOURCE_DIVIDER 4
/* Get frequency of lpi2c clock */
#define LPI2C_CLOCK_FREQUENCY ((CLOCK_GetFreq(kCLOCK_Usb1PllClk) / 8) / (LPI2C_CLOCK_SOURCE_DIVIDER))
#ifdef RT_USING_HW_I2C1
static struct rt1052_i2c_bus lpi2c1 =
{
.I2C = LPI2C1,
.device_name = I2C1BUS_NAME,
};
#endif /* RT_USING_HW_I2C1 */
#ifdef RT_USING_HW_I2C2
static struct rt1052_i2c_bus lpi2c2 =
{
.I2C = LPI2C2,
.device_name = I2C2BUS_NAME,
};
#endif /* RT_USING_HW_I2C2 */
#ifdef RT_USING_HW_I2C3
static struct rt1052_i2c_bus lpi2c3 =
{
.I2C = LPI2C3,
.device_name = I2C3BUS_NAME,
};
#endif /* RT_USING_HW_I2C3 */
#ifdef RT_USING_HW_I2C4
static struct rt1052_i2c_bus lpi2c4 =
{
.I2C = LPI2C4,
.device_name = I2C4BUS_NAME,
};
#endif /* RT_USING_HW_I2C4 */
#if (defined(RT_USING_HW_I2C1) || defined(RT_USING_HW_I2C2) || defined(RT_USING_HW_I2C3) || defined(RT_USING_HW_I2C4))
static rt_size_t imxrt_i2c_mst_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num);
static rt_size_t imxrt_i2c_slv_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num);
static rt_err_t imxrt_i2c_bus_control(struct rt_i2c_bus_device *bus,
rt_uint32_t,
rt_uint32_t);
static const struct rt_i2c_bus_device_ops imxrt_i2c_ops =
{
imxrt_i2c_mst_xfer,
imxrt_i2c_slv_xfer,
imxrt_i2c_bus_control,
};
void imxrt_lpi2c_gpio_init(struct rt1052_i2c_bus *bus)
{
if (bus->I2C == LPI2C1)
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_00_LPI2C1_SCL,
1U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_01_LPI2C1_SDA,
1U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_00_LPI2C1_SCL,
0xD8B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_01_LPI2C1_SDA,
0xD8B0u);
}
else if (bus->I2C == LPI2C2)
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_B0_04_LPI2C2_SCL,
1U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_B0_05_LPI2C2_SDA,
1U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B0_04_LPI2C2_SCL,
0xD8B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_B0_05_LPI2C2_SDA,
0xD8B0u);
}
else if (bus->I2C == LPI2C3)
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_07_LPI2C3_SCL,
1U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B1_06_LPI2C3_SDA,
1U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_07_LPI2C3_SCL,
0xD8B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B1_06_LPI2C3_SDA,
0xD8B0u);
}
else if (bus->I2C == LPI2C4)
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_12_LPI2C4_SCL,
1U);
IOMUXC_SetPinMux(
IOMUXC_GPIO_EMC_11_LPI2C4_SDA,
1U);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_12_LPI2C4_SCL,
0xD8B0u);
IOMUXC_SetPinConfig(
IOMUXC_GPIO_EMC_11_LPI2C4_SDA,
0xD8B0u);
}
else
{
RT_ASSERT(RT_NULL);
}
}
static rt_err_t imxrt_lpi2c_configure(struct rt1052_i2c_bus *bus, lpi2c_master_config_t *cfg)
{
RT_ASSERT(bus != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
imxrt_lpi2c_gpio_init(bus);
bus->parent.ops = &imxrt_i2c_ops;
LPI2C_MasterInit(bus->I2C, cfg, LPI2C_CLOCK_FREQUENCY);
return RT_EOK;
}
status_t LPI2C_MasterCheck(LPI2C_Type *base, uint32_t status)
{
status_t result = kStatus_Success;
/* Check for error. These errors cause a stop to automatically be sent. We must */
/* clear the errors before a new transfer can start. */
status &= 0x3c00;
if (status)
{
/* Select the correct error code. Ordered by severity, with bus issues first. */
if (status & kLPI2C_MasterPinLowTimeoutFlag)
{
result = kStatus_LPI2C_PinLowTimeout;
}
else if (status & kLPI2C_MasterArbitrationLostFlag)
{
result = kStatus_LPI2C_ArbitrationLost;
}
else if (status & kLPI2C_MasterNackDetectFlag)
{
result = kStatus_LPI2C_Nak;
}
else if (status & kLPI2C_MasterFifoErrFlag)
{
result = kStatus_LPI2C_FifoError;
}
else
{
assert(false);
}
/* Clear the flags. */
LPI2C_MasterClearStatusFlags(base, status);
/* Reset fifos. These flags clear automatically. */
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
}
return result;
}
/*!
* @brief Wait until the tx fifo all empty.
* @param base The LPI2C peripheral base address.
* @retval #kStatus_Success
* @retval #kStatus_LPI2C_PinLowTimeout
* @retval #kStatus_LPI2C_ArbitrationLost
* @retval #kStatus_LPI2C_Nak
* @retval #kStatus_LPI2C_FifoError
*/
static status_t LPI2C_MasterWaitForTxFifoAllEmpty(LPI2C_Type *base)
{
uint32_t status;
size_t txCount;
do
{
status_t result;
/* Get the number of words in the tx fifo and compute empty slots. */
LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
/* Check for error flags. */
status = LPI2C_MasterGetStatusFlags(base);
result = LPI2C_MasterCheck(base, status);
if (result)
{
return result;
}
}
while (txCount);
return kStatus_Success;
}
static rt_size_t imxrt_i2c_mst_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num)
{
struct rt1052_i2c_bus *rt1052_i2c;
rt_size_t i;
RT_ASSERT(bus != RT_NULL);
rt1052_i2c = (struct rt1052_i2c_bus *) bus;
rt1052_i2c->msg = msgs;
rt1052_i2c->msg_ptr = 0;
rt1052_i2c->msg_cnt = num;
rt1052_i2c->dptr = 0;
for (i = 0; i < num; i++)
{
if (rt1052_i2c->msg[i].flags & RT_I2C_RD)
{
if (LPI2C_MasterStart(rt1052_i2c->I2C, rt1052_i2c->msg[i].addr, kLPI2C_Read) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1052_i2c->I2C) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterReceive(rt1052_i2c->I2C, rt1052_i2c->msg[i].buf, rt1052_i2c->msg[i].len) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1052_i2c->I2C) != kStatus_Success)
{
i = 0;
break;
}
}
else
{
if (LPI2C_MasterStart(rt1052_i2c->I2C, rt1052_i2c->msg[i].addr, kLPI2C_Write) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1052_i2c->I2C) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterSend(rt1052_i2c->I2C, rt1052_i2c->msg[i].buf, rt1052_i2c->msg[i].len) != kStatus_Success)
{
i = 0;
break;
}
if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1052_i2c->I2C) != kStatus_Success)
{
i = 0;
break;
}
}
}
i2c_dbg("send stop condition\n");
if (LPI2C_MasterStop(rt1052_i2c->I2C) != kStatus_Success)
{
i = 0;
}
rt1052_i2c->msg = RT_NULL;
rt1052_i2c->msg_ptr = 0;
rt1052_i2c->msg_cnt = 0;
rt1052_i2c->dptr = 0;
return i;
}
static rt_size_t imxrt_i2c_slv_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num)
{
return 0;
}
static rt_err_t imxrt_i2c_bus_control(struct rt_i2c_bus_device *bus,
rt_uint32_t cmd,
rt_uint32_t arg)
{
return RT_ERROR;
}
#endif
int rt_hw_i2c_init(void)
{
#if (defined(RT_USING_HW_I2C1) || defined(RT_USING_HW_I2C2) || defined(RT_USING_HW_I2C3) || defined(RT_USING_HW_I2C4))
lpi2c_master_config_t masterConfig = {0};
/*Clock setting for LPI2C*/
CLOCK_SetMux(kCLOCK_Lpi2cMux, 0);
CLOCK_SetDiv(kCLOCK_Lpi2cDiv, LPI2C_CLOCK_SOURCE_DIVIDER - 1);
#endif
#if defined(RT_USING_HW_I2C1)
LPI2C_MasterGetDefaultConfig(&masterConfig);
#if defined(HW_I2C1_BADURATE_400kHZ)
masterConfig.baudRate_Hz = 400000U;
#elif defined(HW_I2C1_BADURATE_100kHZ)
masterConfig.baudRate_Hz = 100000U;
#endif
imxrt_lpi2c_configure(&lpi2c1, &masterConfig);
rt_i2c_bus_device_register(&lpi2c1.parent, lpi2c1.device_name);
#endif
#if defined(RT_USING_HW_I2C2)
LPI2C_MasterGetDefaultConfig(&masterConfig);
#if defined(HW_I2C2_BADURATE_400kHZ)
masterConfig.baudRate_Hz = 400000U;
#elif defined(HW_I2C2_BADURATE_100kHZ)
masterConfig.baudRate_Hz = 100000U;
#endif
imxrt_lpi2c_configure(&lpi2c2, &masterConfig);
rt_i2c_bus_device_register(&lpi2c2.parent, lpi2c2.device_name);
#endif
#if defined(RT_USING_HW_I2C3)
LPI2C_MasterGetDefaultConfig(&masterConfig);
#if defined(HW_I2C3_BADURATE_400kHZ)
masterConfig.baudRate_Hz = 400000U;
#elif defined(HW_I2C3_BADURATE_100kHZ)
masterConfig.baudRate_Hz = 100000U;
#endif
imxrt_lpi2c_configure(&lpi2c3, &masterConfig);
rt_i2c_bus_device_register(&lpi2c3.parent, lpi2c3.device_name);
#endif
#if defined(RT_USING_HW_I2C4)
LPI2C_MasterGetDefaultConfig(&masterConfig);
#if defined(HW_I2C4_BADURATE_400kHZ)
masterConfig.baudRate_Hz = 400000U;
#elif defined(HW_I2C4_BADURATE_100kHZ)
masterConfig.baudRate_Hz = 100000U;
#endif
imxrt_lpi2c_configure(&lpi2c4, &masterConfig);
rt_i2c_bus_device_register(&lpi2c4.parent, lpi2c4.device_name);
#endif
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_i2c_init);
#if defined(RT_USING_FINSH) && defined(DRV_I2C_DEBUG)
#include <finsh.h>
static rt_device_t _i2c_find(const char *name)
{
rt_device_t dev;
dev = rt_device_find(name);
if (!dev)
{
rt_kprintf("search device failed: %s\n", name);
return RT_NULL;
}
if (rt_device_open(dev, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
rt_kprintf("open device failed: %s\n", name);
return RT_NULL;
}
rt_kprintf("open i2c bus: %s\n", name);
return dev;
}
static void _search_i2c_device(rt_device_t dev, uint8_t cmd)
{
int count = 0;
struct rt_i2c_msg msgs[2];
uint8_t buf = 0;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &cmd;
msgs[0].len = sizeof(cmd);
msgs[1].flags = RT_I2C_RD;
msgs[1].buf = &buf;
msgs[1].len = 1;
for (int i = 0; i <= 0x7f; i++)
{
int len;
msgs[0].addr = i;
msgs[1].addr = i;
len = rt_i2c_transfer((struct rt_i2c_bus_device *)dev, msgs, 2);
if (len == 2)
{
count++;
rt_kprintf("add:%02X transfer success, id: %02X\n", i, buf);
}
}
rt_kprintf("i2c device: %d\n", count);
}
static int i2c_test(const char *name, uint8_t cmd)
{
rt_device_t dev = _i2c_find(name);
if (dev == RT_NULL)
{
rt_kprintf("search i2c device faild\n");
return -1;
}
_search_i2c_device(dev, cmd);
rt_device_close(dev);
return 0;
}
FINSH_FUNCTION_EXPORT(i2c_test, e.g: i2c_test("i2c1", 0xA3));
#endif
#endif /* RT_USING_I2C */