rt-thread-official/bsp/imxrt/Libraries/imxrt1021/devices/MIMXRT1021/drivers/fsl_semc.c

987 lines
35 KiB
C
Raw Normal View History

/*
* The Clear BSD License
* Copyright 2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_semc.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.semc"
#endif
/*! @brief Define macros for SEMC driver. */
#define SEMC_IPCOMMANDDATASIZEBYTEMAX (4U)
#define SEMC_IPCOMMANDMAGICKEY (0xA55A)
#define SEMC_IOCR_PINMUXBITWIDTH (0x3U)
#define SEMC_IOCR_NAND_CE (4U)
#define SEMC_IOCR_NOR_CE (5U)
#define SEMC_IOCR_NOR_CE_A8 (2U)
#define SEMC_IOCR_PSRAM_CE (6U)
#define SEMC_IOCR_PSRAM_CE_A8 (3U)
#define SEMC_IOCR_DBI_CSX (7U)
#define SEMC_IOCR_DBI_CSX_A8 (4U)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE (24U)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX (28U)
#define SEMC_BMCR0_TYPICAL_WQOS (5U)
#define SEMC_BMCR0_TYPICAL_WAGE (8U)
#define SEMC_BMCR0_TYPICAL_WSH (0x40U)
#define SEMC_BMCR0_TYPICAL_WRWS (0x10U)
#define SEMC_BMCR1_TYPICAL_WQOS (5U)
#define SEMC_BMCR1_TYPICAL_WAGE (8U)
#define SEMC_BMCR1_TYPICAL_WPH (0x60U)
#define SEMC_BMCR1_TYPICAL_WBR (0x40U)
#define SEMC_BMCR1_TYPICAL_WRWS (0x24U)
#define SEMC_STARTADDRESS (0x80000000U)
#define SEMC_ENDADDRESS (0xDFFFFFFFU)
#define SEMC_BR_MEMSIZE_MIN (4)
#define SEMC_BR_MEMSIZE_OFFSET (2)
#define SEMC_BR_MEMSIZE_MAX (4 * 1024 * 1024)
#define SEMC_SDRAM_MODESETCAL_OFFSET (4)
#define SEMC_BR_REG_NUM (9)
#define SEMC_BYTE_NUMBIT (8)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for SEMC module.
*
* @param base SEMC peripheral base address
*/
static uint32_t SEMC_GetInstance(SEMC_Type *base);
/*!
* @brief Covert the input memory size to internal register set value.
*
* @param base SEMC peripheral base address
* @param size_kbytes SEMC memory size in unit of kbytes.
* @param sizeConverted SEMC converted memory size to 0 ~ 0x1F.
* @return Execution status.
*/
static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted);
/*!
* @brief Covert the external timing nanosecond to internal clock cycle.
*
* @param time_ns SEMC external time interval in unit of nanosecond.
* @param clkSrc_Hz SEMC clock source frequency.
* @return The changed internal clock cycle.
*/
static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz);
/*!
* @brief Configure IP command.
*
* @param base SEMC peripheral base address.
* @param size_bytes SEMC IP command data size.
* @return Execution status.
*/
static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes);
/*!
* @brief Check if the IP command has finished.
*
* @param base SEMC peripheral base address.
* @return Execution status.
*/
static status_t SEMC_IsIPCommandDone(SEMC_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to SEMC clocks for each instance. */
static const clock_ip_name_t s_semcClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_CLOCKS;
static const clock_ip_name_t s_semcExtClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_EXSC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to SEMC bases for each instance. */
static SEMC_Type *const s_semcBases[] = SEMC_BASE_PTRS;
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t SEMC_GetInstance(SEMC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_semcBases); instance++)
{
if (s_semcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_semcBases));
return instance;
}
static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted)
{
assert(sizeConverted);
uint32_t memsize;
if ((size_kbytes < SEMC_BR_MEMSIZE_MIN) || (size_kbytes > SEMC_BR_MEMSIZE_MAX))
{
return kStatus_SEMC_InvalidMemorySize;
}
*sizeConverted = 0;
memsize = size_kbytes / 8;
while (memsize)
{
memsize >>= 1;
(*sizeConverted)++;
}
return kStatus_Success;
}
static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz)
{
assert(clkSrc_Hz);
uint8_t clockCycles = 0;
uint32_t tClk_us;
clkSrc_Hz /= 1000000;
tClk_us = 1000000 / clkSrc_Hz;
while (tClk_us * clockCycles < (time_ns * 1000))
{
clockCycles++;
}
return clockCycles;
}
static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes)
{
if ((size_bytes > SEMC_IPCOMMANDDATASIZEBYTEMAX) || (!size_bytes))
{
return kStatus_SEMC_InvalidIpcmdDataSize;
}
/* Set data size. */
/* Note: It is better to set data size as the device data port width when transfering
* device command data. but for device memory data transfer, it can be set freely.
* Note: If the data size is greater than data port width, for example, datsz = 4, data port = 16bit,
* then the 4-byte data transfer will be split into two 2-byte transfer, the slave address
* will be switched automatically according to connected device type*/
base->IPCR1 = SEMC_IPCR1_DATSZ(size_bytes);
/* Clear data size. */
base->IPCR2 = 0;
/* Set data size. */
if (size_bytes < 4)
{
base->IPCR2 |= SEMC_IPCR2_BM3_MASK;
}
if (size_bytes < 3)
{
base->IPCR2 |= SEMC_IPCR2_BM2_MASK;
}
if (size_bytes < 2)
{
base->IPCR2 |= SEMC_IPCR2_BM1_MASK;
}
return kStatus_Success;
}
static status_t SEMC_IsIPCommandDone(SEMC_Type *base)
{
/* Poll status bit till command is done*/
while (!(base->INTR & SEMC_INTR_IPCMDDONE_MASK))
{
};
/* Clear status bit */
base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
/* Check error status */
if (base->INTR & SEMC_INTR_IPCMDERR_MASK)
{
base->INTR |= SEMC_INTR_IPCMDERR_MASK;
return kStatus_SEMC_IpCommandExecutionError;
}
return kStatus_Success;
}
void SEMC_GetDefaultConfig(semc_config_t *config)
{
assert(config);
semc_axi_queueweight_t queueWeight; /*!< AXI queue weight. */
semc_queuea_weight_t queueaWeight;
semc_queueb_weight_t queuebWeight;
/* Get default settings. */
config->dqsMode = kSEMC_Loopbackinternal;
config->cmdTimeoutCycles = 0;
config->busTimeoutCycles = 0x1F;
/* Set a typical weight settings. */
memset((void *)&queueWeight, 0, sizeof(semc_axi_queueweight_t));
queueaWeight.qos = SEMC_BMCR0_TYPICAL_WQOS;
queueaWeight.aging = SEMC_BMCR0_TYPICAL_WAGE;
queueaWeight.slaveHitSwith = SEMC_BMCR0_TYPICAL_WSH;
queueaWeight.slaveHitNoswitch = SEMC_BMCR0_TYPICAL_WRWS;
queuebWeight.qos = SEMC_BMCR1_TYPICAL_WQOS;
queuebWeight.aging = SEMC_BMCR1_TYPICAL_WAGE;
queuebWeight.slaveHitSwith = SEMC_BMCR1_TYPICAL_WRWS;
queuebWeight.weightPagehit = SEMC_BMCR1_TYPICAL_WPH;
queuebWeight.bankRotation = SEMC_BMCR1_TYPICAL_WBR;
config->queueWeight.queueaWeight = &queueaWeight;
config->queueWeight.queuebWeight = &queuebWeight;
}
void SEMC_Init(SEMC_Type *base, semc_config_t *configure)
{
assert(configure);
uint8_t index = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Un-gate sdram controller clock. */
CLOCK_EnableClock(s_semcClock[SEMC_GetInstance(base)]);
CLOCK_EnableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Initialize all BR to zero due to the default base address set. */
for (index = 0; index < SEMC_BR_REG_NUM; index++)
{
base->BR[index] = 0;
}
/* Software reset for SEMC internal logical . */
base->MCR = SEMC_MCR_SWRST_MASK;
while (base->MCR & SEMC_MCR_SWRST_MASK)
{
}
/* Configure, disable module first. */
base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_BTO(configure->busTimeoutCycles) |
SEMC_MCR_CTO(configure->cmdTimeoutCycles) | SEMC_MCR_DQSMD(configure->dqsMode);
/* Configure Queue 0/1 for AXI bus. */
if (configure->queueWeight.queueaWeight)
{
base->BMCR0 = (uint32_t)(configure->queueWeight.queueaWeight);
}
if (configure->queueWeight.queuebWeight)
{
base->BMCR1 = (uint32_t)(configure->queueWeight.queuebWeight);
}
/* Enable SEMC. */
base->MCR &= ~SEMC_MCR_MDIS_MASK;
}
void SEMC_Deinit(SEMC_Type *base)
{
/* Disable module. Check there is no pending command before disable module. */
while (!(base->STS0 & SEMC_STS0_IDLE_MASK))
{
;
}
base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_SWRST_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable SDRAM clock. */
CLOCK_DisableClock(s_semcClock[SEMC_GetInstance(base)]);
CLOCK_DisableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
status_t SEMC_ConfigureSDRAM(SEMC_Type *base, semc_sdram_cs_t cs, semc_sdram_config_t *config, uint32_t clkSrc_Hz)
{
assert(config);
assert(clkSrc_Hz);
assert(config->refreshBurstLen);
uint8_t memsize;
status_t result = kStatus_Success;
uint16_t prescale = config->tPrescalePeriod_Ns / 16 / (1000000000 / clkSrc_Hz);
uint16_t refresh;
uint16_t urgentRef;
uint16_t idle;
uint16_t mode;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
if (config->csxPinMux == kSEMC_MUXA8)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (prescale > 256)
{
return kStatus_SEMC_InvalidTimerSetting;
}
refresh = config->refreshPeriod_nsPerRow / config->tPrescalePeriod_Ns;
urgentRef = config->refreshUrgThreshold / config->tPrescalePeriod_Ns;
idle = config->tIdleTimeout_Ns / config->tPrescalePeriod_Ns;
uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->csxPinMux);
/* Base control. */
result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[cs] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
SEMC_SDRAMCR0_COL(config->columnAddrBitNum) | SEMC_SDRAMCR0_CL(config->casLatency);
/* IOMUX setting. */
if (cs)
{
base->IOCR = iocReg | (cs << config->csxPinMux);
}
base->IOCR &= ~SEMC_IOCR_MUX_A8_MASK;
/* Timing setting. */
base->SDRAMCR1 = SEMC_SDRAMCR1_PRE2ACT(SEMC_ConvertTiming(config->tPrecharge2Act_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR1_ACT2RW(SEMC_ConvertTiming(config->tAct2ReadWrite_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR1_RFRC(SEMC_ConvertTiming(config->tRefreshRecovery_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR1_WRC(SEMC_ConvertTiming(config->tWriteRecovery_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR1_CKEOFF(SEMC_ConvertTiming(config->tCkeOff_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR1_ACT2PRE(SEMC_ConvertTiming(config->tAct2Prechage_Ns, clkSrc_Hz) - 1);
base->SDRAMCR2 =
SEMC_SDRAMCR2_SRRC(SEMC_ConvertTiming(config->tSelfRefRecovery_Ns, clkSrc_Hz) - 1) |
SEMC_SDRAMCR2_REF2REF(
SEMC_ConvertTiming(config->tRefresh2Refresh_Ns, clkSrc_Hz)) | /* No Minus one to keep with RM */
SEMC_SDRAMCR2_ACT2ACT(SEMC_ConvertTiming(config->tAct2Act_Ns, clkSrc_Hz)) | /* No Minus one to keep with RM */
SEMC_SDRAMCR2_ITO(idle);
base->SDRAMCR3 = SEMC_SDRAMCR3_REBL(config->refreshBurstLen - 1) |
/* N * 16 * 1s / clkSrc_Hz = config->tPrescalePeriod_Ns */
SEMC_SDRAMCR3_PRESCALE(prescale) | SEMC_SDRAMCR3_RT(refresh) | SEMC_SDRAMCR3_UT(urgentRef);
SEMC->IPCR1 = 0x2;
SEMC->IPCR2 = 0;
result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_Prechargeall, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
if (result != kStatus_Success)
{
return result;
}
/* Mode setting value. */
mode = (uint16_t)config->burstLen | (uint16_t)(config->casLatency << SEMC_SDRAM_MODESETCAL_OFFSET);
result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_Modeset, mode, NULL);
if (result != kStatus_Success)
{
return result;
}
/* Enables refresh */
base->SDRAMCR3 |= SEMC_SDRAMCR3_REN_MASK;
return kStatus_Success;
}
status_t SEMC_ConfigureNAND(SEMC_Type *base, semc_nand_config_t *config, uint32_t clkSrc_Hz)
{
assert(config);
assert(config->timingConfig);
uint8_t memsize;
status_t result;
if ((config->axiAddress < SEMC_STARTADDRESS) || (config->axiAddress > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
if (config->cePinMux == kSEMC_MUXRDY)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
uint32_t iocReg = base->IOCR & ~((SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux) | SEMC_IOCR_MUX_RDY_MASK);
/* Base control. */
if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
{
base->MCR |= SEMC_MCR_WPOL1_MASK;
}
else
{
base->MCR &= ~SEMC_MCR_WPOL1_MASK;
}
result = SEMC_CovertMemorySize(base, config->axiMemsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[4] = (config->axiAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
result = SEMC_CovertMemorySize(base, config->ipgMemsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[8] = (config->ipgAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
/* IOMUX setting. */
if (config->cePinMux)
{
base->IOCR = iocReg | (SEMC_IOCR_NAND_CE << config->cePinMux);
}
else
{
base->IOCR = iocReg | (1U << config->cePinMux);
}
base->NANDCR0 = SEMC_NANDCR0_PS(config->portSize) | SEMC_NANDCR0_BL(config->burstLen) |
SEMC_NANDCR0_EDO(config->edoModeEnabled) | SEMC_NANDCR0_COL(config->columnAddrBitNum);
/* Timing setting. */
base->NANDCR1 = SEMC_NANDCR1_CES(SEMC_ConvertTiming(config->timingConfig->tCeSetup_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_CEH(SEMC_ConvertTiming(config->timingConfig->tCeHold_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_WEL(SEMC_ConvertTiming(config->timingConfig->tWeLow_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_WEH(SEMC_ConvertTiming(config->timingConfig->tWeHigh_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_REL(SEMC_ConvertTiming(config->timingConfig->tReLow_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_REH(SEMC_ConvertTiming(config->timingConfig->tReHigh_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_TA(SEMC_ConvertTiming(config->timingConfig->tTurnAround_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR1_CEITV(SEMC_ConvertTiming(config->timingConfig->tCeInterval_Ns, clkSrc_Hz) - 1);
base->NANDCR2 = SEMC_NANDCR2_TWHR(SEMC_ConvertTiming(config->timingConfig->tWehigh2Relow_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR2_TRHW(SEMC_ConvertTiming(config->timingConfig->tRehigh2Welow_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR2_TADL(SEMC_ConvertTiming(config->timingConfig->tAle2WriteStart_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR2_TRR(SEMC_ConvertTiming(config->timingConfig->tReady2Relow_Ns, clkSrc_Hz) - 1) |
SEMC_NANDCR2_TWB(SEMC_ConvertTiming(config->timingConfig->tWehigh2Busy_Ns, clkSrc_Hz) - 1);
base->NANDCR3 = config->arrayAddrOption;
return kStatus_Success;
}
status_t SEMC_ConfigureNOR(SEMC_Type *base, semc_nor_config_t *config, uint32_t clkSrc_Hz)
{
assert(config);
uint8_t memsize;
status_t result;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux);
uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
SEMC_IOCR_NOR_CE - 1 :
((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_NOR_CE_A8 : SEMC_IOCR_NOR_CE);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCe << config->cePinMux);
/* Address bit setting. */
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
{
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1)
{
/* Address bit 24 (A24) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX0_MASK;
if (config->cePinMux == kSEMC_MUXCSX0)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2)
{
/* Address bit 25 (A25) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX1_MASK;
if (config->cePinMux == kSEMC_MUXCSX1)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3)
{
/* Address bit 26 (A26) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX2_MASK;
if (config->cePinMux == kSEMC_MUXCSX2)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4)
{
if (config->addr27 == kSEMC_NORA27_MUXCSX3)
{
/* Address bit 27 (A27) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX3_MASK;
}
else if (config->addr27 == kSEMC_NORA27_MUXRDY)
{
base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
}
else
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (config->cePinMux == kSEMC_MUXCSX3)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
{
return kStatus_SEMC_InvalidAddressPortWidth;
}
}
/* Base control. */
if (config->rdyactivePolarity == kSEMC_RdyActivehigh)
{
base->MCR |= SEMC_MCR_WPOL0_MASK;
}
else
{
base->MCR &= ~SEMC_MCR_WPOL0_MASK;
}
result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[5] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
base->NORCR0 = SEMC_NORCR0_PS(config->portSize) | SEMC_NORCR0_BL(config->burstLen) |
SEMC_NORCR0_AM(config->addrMode) | SEMC_NORCR0_ADVP(config->advActivePolarity) |
SEMC_NORCR0_COL(config->columnAddrBitNum);
/* Timing setting. */
base->NORCR1 = SEMC_NORCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz)) |
SEMC_NORCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz)) |
SEMC_NORCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz)) |
SEMC_NORCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz)) |
SEMC_NORCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz)) |
SEMC_NORCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz)) |
SEMC_NORCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz)) |
SEMC_NORCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
base->NORCR2 = SEMC_NORCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz)) |
SEMC_NORCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz)) |
SEMC_NORCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz)) |
SEMC_NORCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 1) |
SEMC_NORCR2_LC(config->latencyCount) | SEMC_NORCR2_RD(config->readCycle) |
SEMC_NORCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
return SEMC_ConfigureIPCommand(base, (config->portSize + 1));
}
status_t SEMC_ConfigureSRAM(SEMC_Type *base, semc_sram_config_t *config, uint32_t clkSrc_Hz)
{
assert(config);
uint8_t memsize;
status_t result = kStatus_Success;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux);
uint32_t muxCe = (config->cePinMux == kSEMC_MUXRDY) ?
SEMC_IOCR_PSRAM_CE - 1 :
((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_PSRAM_CE_A8 : SEMC_IOCR_PSRAM_CE);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCe << config->cePinMux);
/* Address bit setting. */
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE)
{
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1)
{
/* Address bit 24 (A24) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX0_MASK;
if (config->cePinMux == kSEMC_MUXCSX0)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2)
{
/* Address bit 25 (A25) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX1_MASK;
if (config->cePinMux == kSEMC_MUXCSX1)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3)
{
/* Address bit 26 (A26) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX2_MASK;
if (config->cePinMux == kSEMC_MUXCSX2)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4)
{
if (config->addr27 == kSEMC_NORA27_MUXCSX3)
{
/* Address bit 27 (A27) */
base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX3_MASK;
}
else if (config->addr27 == kSEMC_NORA27_MUXRDY)
{
base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
}
else
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
if (config->cePinMux == kSEMC_MUXCSX3)
{
return kStatus_SEMC_InvalidSwPinmuxSelection;
}
}
if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX)
{
return kStatus_SEMC_InvalidAddressPortWidth;
}
}
/* Base control. */
result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[6] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
base->SRAMCR0 = SEMC_SRAMCR0_PS(config->portSize) | SEMC_SRAMCR0_BL(config->burstLen) |
SEMC_SRAMCR0_AM(config->addrMode) | SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
SEMC_SRAMCR0_COL_MASK;
/* Timing setting. */
base->SRAMCR1 = SEMC_SRAMCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz)) |
SEMC_SRAMCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
base->SRAMCR2 = SEMC_SRAMCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz)) |
SEMC_SRAMCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz)) |
SEMC_SRAMCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz)) |
SEMC_SRAMCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 1) |
SEMC_SRAMCR2_LC(config->latencyCount) | SEMC_SRAMCR2_RD(config->readCycle) |
SEMC_SRAMCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));
return result;
}
status_t SEMC_ConfigureDBI(SEMC_Type *base, semc_dbi_config_t *config, uint32_t clkSrc_Hz)
{
assert(config);
uint8_t memsize;
status_t result;
if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS))
{
return kStatus_SEMC_InvalidBaseAddress;
}
uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->csxPinMux);
uint32_t muxCsx = (config->csxPinMux == kSEMC_MUXRDY) ?
SEMC_IOCR_DBI_CSX - 1 :
((config->csxPinMux == kSEMC_MUXA8) ? SEMC_IOCR_DBI_CSX_A8 : SEMC_IOCR_DBI_CSX);
/* IOMUX setting. */
base->IOCR = iocReg | (muxCsx << config->csxPinMux);
/* Base control. */
result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
if (result != kStatus_Success)
{
return result;
}
base->BR[7] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
base->DBICR0 =
SEMC_DBICR0_PS(config->portSize) | SEMC_DBICR0_BL(config->burstLen) | SEMC_DBICR0_COL(config->columnAddrBitNum);
/* Timing setting. */
base->DBICR1 = SEMC_DBICR1_CES(SEMC_ConvertTiming(config->tCsxSetup_Ns, clkSrc_Hz)) |
SEMC_DBICR1_CEH(SEMC_ConvertTiming(config->tCsxHold_Ns, clkSrc_Hz)) |
SEMC_DBICR1_WEL(SEMC_ConvertTiming(config->tWexLow_Ns, clkSrc_Hz)) |
SEMC_DBICR1_WEH(SEMC_ConvertTiming(config->tWexHigh_Ns, clkSrc_Hz)) |
SEMC_DBICR1_REL(SEMC_ConvertTiming(config->tRdxLow_Ns, clkSrc_Hz)) |
SEMC_DBICR1_REH(SEMC_ConvertTiming(config->tRdxHigh_Ns, clkSrc_Hz)) |
SEMC_DBICR1_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
return SEMC_ConfigureIPCommand(base, (config->portSize + 1));
}
status_t SEMC_SendIPCommand(
SEMC_Type *base, semc_mem_type_t type, uint32_t address, uint16_t command, uint32_t write, uint32_t *read)
{
uint32_t cmdMode;
bool readCmd = 0;
bool writeCmd = 0;
status_t result;
/* Clear status bit */
base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
/* Set address. */
base->IPCR0 = address;
/* Check command mode. */
cmdMode = command & 0xFU;
switch (type)
{
case kSEMC_MemType_NAND:
readCmd = (cmdMode == kSEMC_NANDCM_CommandAddressRead) ||
(cmdMode == kSEMC_NANDCM_CommandRead) || (cmdMode == kSEMC_NANDCM_Read);
writeCmd = (cmdMode == kSEMC_NANDCM_CommandAddressWrite) ||
(cmdMode == kSEMC_NANDCM_CommandWrite) || (cmdMode == kSEMC_NANDCM_Write);
break;
case kSEMC_MemType_NOR:
case kSEMC_MemType_8080:
readCmd = (cmdMode == kSEMC_NORDBICM_Read);
writeCmd = (cmdMode == kSEMC_NORDBICM_Write);
break;
case kSEMC_MemType_SRAM:
readCmd = (cmdMode == kSEMC_SRAMCM_ArrayRead) || (cmdMode == kSEMC_SRAMCM_RegRead);
writeCmd = (cmdMode == kSEMC_SRAMCM_ArrayWrite) || (cmdMode == kSEMC_SRAMCM_RegWrite);
break;
case kSEMC_MemType_SDRAM:
readCmd = (cmdMode == kSEMC_SDRAMCM_Read);
writeCmd = (cmdMode == kSEMC_SDRAMCM_Write) || (cmdMode == kSEMC_SDRAMCM_Modeset);
break;
default:
break;
}
if (writeCmd)
{
/* Set data. */
base->IPTXDAT = write;
}
/* Set command code. */
base->IPCMD = command | SEMC_IPCMD_KEY(SEMC_IPCOMMANDMAGICKEY);
/* Wait for command done. */
result = SEMC_IsIPCommandDone(base);
if (result != kStatus_Success)
{
return result;
}
if (readCmd)
{
/* Get the read data */
*read = base->IPRXDAT;
}
return kStatus_Success;
}
status_t SEMC_IPCommandNandWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data);
status_t result = kStatus_Success;
uint16_t ipCmd;
uint32_t tempData = 0;
/* Write command built */
ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Write);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
/* Configure IP command data size. */
SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, *(uint32_t *)data, NULL);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && size_bytes)
{
SEMC_ConfigureIPCommand(base, size_bytes);
while (size_bytes)
{
tempData |= ((uint32_t) * (data + size_bytes - 1) << ((size_bytes - 1) * SEMC_BYTE_NUMBIT));
size_bytes--;
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, tempData, NULL);
}
return result;
}
status_t SEMC_IPCommandNandRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data);
status_t result = kStatus_Success;
uint16_t ipCmd;
uint32_t tempData = 0;
/* Configure IP command data size. */
SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
/* Read command built */
ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Read);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, (uint32_t *)data);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && size_bytes)
{
SEMC_ConfigureIPCommand(base, size_bytes);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, &tempData);
while (size_bytes)
{
size_bytes--;
*(data + size_bytes) = (tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU;
}
}
return result;
}
status_t SEMC_IPCommandNorRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data);
uint32_t tempData = 0;
status_t result = kStatus_Success;
uint8_t dataSize = base->NORCR0 & SEMC_NORCR0_PS_MASK;
/* Configure IP command data size. */
SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Read, 0, (uint32_t *)data);
if (result != kStatus_Success)
{
break;
}
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && size_bytes)
{
SEMC_ConfigureIPCommand(base, size_bytes);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Read, 0, &tempData);
while (size_bytes)
{
size_bytes--;
*(data + size_bytes) = (tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU;
}
}
SEMC_ConfigureIPCommand(base, dataSize);
return result;
}
status_t SEMC_IPCommandNorWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
assert(data);
uint32_t tempData = 0;
status_t result = kStatus_Success;
uint8_t dataSize = base->NORCR0 & SEMC_NORCR0_PS_MASK;
/* Write command built */
while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX)
{
/* Configure IP command data size. */
SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Write, *(uint32_t *)data, NULL);
if (result != kStatus_Success)
{
break;
}
size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
}
if ((result == kStatus_Success) && size_bytes)
{
SEMC_ConfigureIPCommand(base, size_bytes);
while (size_bytes)
{
tempData |= ((uint32_t) * (data + size_bytes - 1) << ((size_bytes - 1) * SEMC_BYTE_NUMBIT));
size_bytes--;
}
result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Write, tempData, NULL);
}
SEMC_ConfigureIPCommand(base, dataSize);
return result;
}