rt-thread-official/bsp/imxrt/Libraries/imxrt1021/devices/MIMXRT1021/drivers/fsl_pwm.c

694 lines
25 KiB
C
Raw Normal View History

/*
* The Clear BSD License
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_pwm.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.pwm"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance from the base address
*
* @param base PWM peripheral base address
*
* @return The PWM module instance
*/
static uint32_t PWM_GetInstance(PWM_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to PWM bases for each instance. */
static PWM_Type *const s_pwmBases[] = PWM_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to PWM clocks for each PWM submodule. */
static const clock_ip_name_t s_pwmClocks[][FSL_FEATURE_PWM_SUBMODULE_COUNT] = PWM_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t PWM_GetInstance(PWM_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_pwmBases); instance++)
{
if (s_pwmBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_pwmBases));
return instance;
}
status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t *config)
{
assert(config);
uint16_t reg;
/* Source clock for submodule 0 cannot be itself */
if ((config->clockSource == kPWM_Submodule0Clock) && (subModule == kPWM_Module_0))
{
return kStatus_Fail;
}
/* Reload source select clock for submodule 0 cannot be master reload */
if ((config->reloadSelect == kPWM_MasterReload) && (subModule == kPWM_Module_0))
{
return kStatus_Fail;
}
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate the PWM submodule clock*/
CLOCK_EnableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Clear the fault status flags */
base->FSTS |= PWM_FSTS_FFLAG_MASK;
reg = base->SM[subModule].CTRL2;
/* Setup the submodule clock-source, control source of the INIT signal,
* source of the force output signal, operation in debug & wait modes and reload source select
*/
reg &= ~(PWM_CTRL2_CLK_SEL_MASK | PWM_CTRL2_FORCE_SEL_MASK | PWM_CTRL2_INIT_SEL_MASK | PWM_CTRL2_INDEP_MASK |
PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK | PWM_CTRL2_RELOAD_SEL_MASK);
reg |= (PWM_CTRL2_CLK_SEL(config->clockSource) | PWM_CTRL2_FORCE_SEL(config->forceTrigger) |
PWM_CTRL2_INIT_SEL(config->initializationControl) | PWM_CTRL2_DBGEN(config->enableDebugMode) |
PWM_CTRL2_WAITEN(config->enableWait) | PWM_CTRL2_RELOAD_SEL(config->reloadSelect));
/* Setup PWM A & B to be independent or a complementary-pair */
switch (config->pairOperation)
{
case kPWM_Independent:
reg |= PWM_CTRL2_INDEP_MASK;
break;
case kPWM_ComplementaryPwmA:
base->MCTRL &= ~(1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
break;
case kPWM_ComplementaryPwmB:
base->MCTRL |= (1U << (PWM_MCTRL_IPOL_SHIFT + subModule));
break;
default:
break;
}
base->SM[subModule].CTRL2 = reg;
reg = base->SM[subModule].CTRL;
/* Setup the clock prescale, load mode and frequency */
reg &= ~(PWM_CTRL_PRSC_MASK | PWM_CTRL_LDFQ_MASK | PWM_CTRL_LDMOD_MASK);
reg |= (PWM_CTRL_PRSC(config->prescale) | PWM_CTRL_LDFQ(config->reloadFrequency));
/* Setup register reload logic */
switch (config->reloadLogic)
{
case kPWM_ReloadImmediate:
reg |= PWM_CTRL_LDMOD_MASK;
break;
case kPWM_ReloadPwmHalfCycle:
reg |= PWM_CTRL_HALF_MASK;
reg &= ~PWM_CTRL_FULL_MASK;
break;
case kPWM_ReloadPwmFullCycle:
reg &= ~PWM_CTRL_HALF_MASK;
reg |= PWM_CTRL_FULL_MASK;
break;
case kPWM_ReloadPwmHalfAndFullCycle:
reg |= PWM_CTRL_HALF_MASK;
reg |= PWM_CTRL_FULL_MASK;
break;
default:
break;
}
base->SM[subModule].CTRL = reg;
/* Setup the fault filter */
if (base->FFILT & PWM_FFILT_FILT_PER_MASK)
{
/* When changing values for fault period from a non-zero value, first write a value of 0
* to clear the filter
*/
base->FFILT &= ~(PWM_FFILT_FILT_PER_MASK);
}
base->FFILT = (PWM_FFILT_FILT_CNT(config->faultFilterCount) | PWM_FFILT_FILT_PER(config->faultFilterPeriod));
/* Issue a Force trigger event when configured to trigger locally */
if (config->forceTrigger == kPWM_Force_Local)
{
base->SM[subModule].CTRL2 |= PWM_CTRL2_FORCE(1U);
}
return kStatus_Success;
}
void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
{
/* Stop the submodule */
base->MCTRL &= ~(1U << (PWM_MCTRL_RUN_SHIFT + subModule));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Gate the PWM submodule clock*/
CLOCK_DisableClock(s_pwmClocks[PWM_GetInstance(base)][subModule]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void PWM_GetDefaultConfig(pwm_config_t *config)
{
assert(config);
/* PWM is paused in debug mode */
config->enableDebugMode = false;
/* PWM is paused in wait mode */
config->enableWait = false;
/* PWM module uses the local reload signal to reload registers */
config->reloadSelect = kPWM_LocalReload;
/* Fault filter count is set to 0 */
config->faultFilterCount = 0;
/* Fault filter period is set to 0 which disables the fault filter */
config->faultFilterPeriod = 0;
/* Use the IP Bus clock as source clock for the PWM submodule */
config->clockSource = kPWM_BusClock;
/* Clock source prescale is set to divide by 1*/
config->prescale = kPWM_Prescale_Divide_1;
/* Local sync causes initialization */
config->initializationControl = kPWM_Initialize_LocalSync;
/* The local force signal, CTRL2[FORCE], from the submodule is used to force updates */
config->forceTrigger = kPWM_Force_Local;
/* PWM reload frequency, reload opportunity is PWM half cycle or full cycle.
* This field is not used in Immediate reload mode
*/
config->reloadFrequency = kPWM_LoadEveryOportunity;
/* Buffered-registers get loaded with new values as soon as LDOK bit is set */
config->reloadLogic = kPWM_ReloadImmediate;
/* PWM A & PWM B operate as 2 independent channels */
config->pairOperation = kPWM_Independent;
}
status_t PWM_SetupPwm(PWM_Type *base,
pwm_submodule_t subModule,
const pwm_signal_param_t *chnlParams,
uint8_t numOfChnls,
pwm_mode_t mode,
uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)
{
assert(chnlParams);
assert(pwmFreq_Hz);
assert(numOfChnls);
assert(srcClock_Hz);
uint32_t pwmClock;
uint16_t pulseCnt = 0, pwmHighPulse = 0;
int16_t modulo = 0;
uint8_t i, polarityShift = 0, outputEnableShift = 0;
if (numOfChnls > 2)
{
/* Each submodule has 2 signals; PWM A & PWM B */
return kStatus_Fail;
}
/* Divide the clock by the prescale value */
pwmClock = (srcClock_Hz / (1U << ((base->SM[subModule].CTRL & PWM_CTRL_PRSC_MASK) >> PWM_CTRL_PRSC_SHIFT)));
pulseCnt = (pwmClock / pwmFreq_Hz);
/* Setup each PWM channel */
for (i = 0; i < numOfChnls; i++)
{
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * chnlParams->dutyCyclePercent) / 100;
/* Setup the different match registers to generate the PWM signal */
switch (mode)
{
case kPWM_SignedCenterAligned:
/* Setup the PWM period for a signed center aligned signal */
modulo = pulseCnt >> 1;
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = (-modulo);
/* Indicates the center value */
base->SM[subModule].VAL0 = 0;
/* Indicates the end of the PWM period */
base->SM[subModule].VAL1 = modulo;
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
base->SM[subModule].VAL3 = (pwmHighPulse / 2);
}
else
{
base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
base->SM[subModule].VAL5 = (pwmHighPulse / 2);
}
break;
case kPWM_CenterAligned:
/* Setup the PWM period for an unsigned center aligned signal */
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = 0;
/* Indicates the center value */
base->SM[subModule].VAL0 = (pulseCnt / 2);
/* Indicates the end of the PWM period */
base->SM[subModule].VAL1 = pulseCnt;
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
}
else
{
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
}
break;
case kPWM_SignedEdgeAligned:
/* Setup the PWM period for a signed edge aligned signal */
modulo = pulseCnt >> 1;
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = (-modulo);
/* Indicates the center value */
base->SM[subModule].VAL0 = 0;
/* Indicates the end of the PWM period */
base->SM[subModule].VAL1 = modulo;
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = (-modulo);
base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
}
else
{
base->SM[subModule].VAL4 = (-modulo);
base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
}
break;
case kPWM_EdgeAligned:
/* Setup the PWM period for a unsigned edge aligned signal */
/* Indicates the start of the PWM period */
base->SM[subModule].INIT = 0;
/* Indicates the center value */
base->SM[subModule].VAL0 = (pulseCnt / 2);
/* Indicates the end of the PWM period */
base->SM[subModule].VAL1 = pulseCnt;
/* Setup the PWM dutycycle */
if (chnlParams->pwmChannel == kPWM_PwmA)
{
base->SM[subModule].VAL2 = 0;
base->SM[subModule].VAL3 = pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = 0;
base->SM[subModule].VAL5 = pwmHighPulse;
}
break;
default:
break;
}
/* Setup register shift values based on the channel being configured.
* Also setup the deadtime value
*/
if (chnlParams->pwmChannel == kPWM_PwmA)
{
polarityShift = PWM_OCTRL_POLA_SHIFT;
outputEnableShift = PWM_OUTEN_PWMA_EN_SHIFT;
base->SM[subModule].DTCNT0 = PWM_DTCNT0_DTCNT0(chnlParams->deadtimeValue);
}
else
{
polarityShift = PWM_OCTRL_POLB_SHIFT;
outputEnableShift = PWM_OUTEN_PWMB_EN_SHIFT;
base->SM[subModule].DTCNT1 = PWM_DTCNT1_DTCNT1(chnlParams->deadtimeValue);
}
/* Setup signal active level */
if (chnlParams->level == kPWM_HighTrue)
{
base->SM[subModule].OCTRL &= ~(1U << polarityShift);
}
else
{
base->SM[subModule].OCTRL |= (1U << polarityShift);
}
/* Enable PWM output */
base->OUTEN |= (1U << (outputEnableShift + subModule));
/* Get the next channel parameters */
chnlParams++;
}
return kStatus_Success;
}
void PWM_UpdatePwmDutycycle(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmSignal,
pwm_mode_t currPwmMode,
uint8_t dutyCyclePercent)
{
assert(dutyCyclePercent <= 100);
assert(pwmSignal < 2);
uint16_t pulseCnt = 0, pwmHighPulse = 0;
int16_t modulo = 0;
switch (currPwmMode)
{
case kPWM_SignedCenterAligned:
modulo = base->SM[subModule].VAL1;
pulseCnt = modulo * 2;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = (-(pwmHighPulse / 2));
base->SM[subModule].VAL3 = (pwmHighPulse / 2);
}
else
{
base->SM[subModule].VAL4 = (-(pwmHighPulse / 2));
base->SM[subModule].VAL5 = (pwmHighPulse / 2);
}
break;
case kPWM_CenterAligned:
pulseCnt = base->SM[subModule].VAL1;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = ((pulseCnt - pwmHighPulse) / 2);
base->SM[subModule].VAL3 = ((pulseCnt + pwmHighPulse) / 2);
}
else
{
base->SM[subModule].VAL4 = ((pulseCnt - pwmHighPulse) / 2);
base->SM[subModule].VAL5 = ((pulseCnt + pwmHighPulse) / 2);
}
break;
case kPWM_SignedEdgeAligned:
modulo = base->SM[subModule].VAL1;
pulseCnt = modulo * 2;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = (-modulo);
base->SM[subModule].VAL3 = (-modulo + pwmHighPulse);
}
else
{
base->SM[subModule].VAL4 = (-modulo);
base->SM[subModule].VAL5 = (-modulo + pwmHighPulse);
}
break;
case kPWM_EdgeAligned:
pulseCnt = base->SM[subModule].VAL1;
/* Calculate pulse width */
pwmHighPulse = (pulseCnt * dutyCyclePercent) / 100;
/* Setup the PWM dutycycle */
if (pwmSignal == kPWM_PwmA)
{
base->SM[subModule].VAL2 = 0;
base->SM[subModule].VAL3 = pwmHighPulse;
}
else
{
base->SM[subModule].VAL4 = 0;
base->SM[subModule].VAL5 = pwmHighPulse;
}
break;
default:
break;
}
}
void PWM_SetupInputCapture(PWM_Type *base,
pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
const pwm_input_capture_param_t *inputCaptureParams)
{
uint32_t reg = 0;
switch (pwmChannel)
{
case kPWM_PwmA:
/* Setup the capture paramters for PWM A pin */
reg = (PWM_CAPTCTRLA_INP_SELA(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLA_EDGA0(inputCaptureParams->edge0) | PWM_CAPTCTRLA_EDGA1(inputCaptureParams->edge1) |
PWM_CAPTCTRLA_ONESHOTA(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLA_CFAWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLA_EDGCNTA_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLA_ARMA_MASK;
base->SM[subModule].CAPTCTRLA = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPA = PWM_CAPTCOMPA_EDGCMPA(inputCaptureParams->edgeCompareValue);
/* Setup PWM A pin for input capture */
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMA_EN_SHIFT + subModule));
break;
case kPWM_PwmB:
/* Setup the capture paramters for PWM B pin */
reg = (PWM_CAPTCTRLB_INP_SELB(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLB_EDGB0(inputCaptureParams->edge0) | PWM_CAPTCTRLB_EDGB1(inputCaptureParams->edge1) |
PWM_CAPTCTRLB_ONESHOTB(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLB_CFBWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLB_EDGCNTB_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLB_ARMB_MASK;
base->SM[subModule].CAPTCTRLB = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPB = PWM_CAPTCOMPB_EDGCMPB(inputCaptureParams->edgeCompareValue);
/* Setup PWM B pin for input capture */
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMB_EN_SHIFT + subModule));
break;
case kPWM_PwmX:
reg = (PWM_CAPTCTRLX_INP_SELX(inputCaptureParams->captureInputSel) |
PWM_CAPTCTRLX_EDGX0(inputCaptureParams->edge0) | PWM_CAPTCTRLX_EDGX1(inputCaptureParams->edge1) |
PWM_CAPTCTRLX_ONESHOTX(inputCaptureParams->enableOneShotCapture) |
PWM_CAPTCTRLX_CFXWM(inputCaptureParams->fifoWatermark));
/* Enable the edge counter if using the output edge counter */
if (inputCaptureParams->captureInputSel)
{
reg |= PWM_CAPTCTRLX_EDGCNTX_EN_MASK;
}
/* Enable input capture operation */
reg |= PWM_CAPTCTRLX_ARMX_MASK;
base->SM[subModule].CAPTCTRLX = reg;
/* Setup the compare value when using the edge counter as source */
base->SM[subModule].CAPTCOMPX = PWM_CAPTCOMPX_EDGCMPX(inputCaptureParams->edgeCompareValue);
/* Setup PWM X pin for input capture */
base->OUTEN &= ~(1U << (PWM_OUTEN_PWMX_EN_SHIFT + subModule));
break;
default:
break;
}
}
void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const pwm_fault_param_t *faultParams)
{
assert(faultParams);
uint16_t reg;
reg = base->FCTRL;
/* Set the faults level-settting */
if (faultParams->faultLevel)
{
reg |= (1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
}
else
{
reg &= ~(1U << (PWM_FCTRL_FLVL_SHIFT + faultNum));
}
/* Set the fault clearing mode */
if (faultParams->faultClearingMode)
{
/* Use manual fault clearing */
reg &= ~(1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
if (faultParams->faultClearingMode == kPWM_ManualSafety)
{
/* Use manual fault clearing with safety mode enabled */
reg |= (1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
}
else
{
/* Use manual fault clearing with safety mode disabled */
reg &= ~(1U << (PWM_FCTRL_FSAFE_SHIFT + faultNum));
}
}
else
{
/* Use automatic fault clearing */
reg |= (1U << (PWM_FCTRL_FAUTO_SHIFT + faultNum));
}
base->FCTRL = reg;
/* Set the combinational path option */
if (faultParams->enableCombinationalPath)
{
/* Combinational path from the fault input to the PWM output is available */
base->FCTRL2 &= ~(1U << faultNum);
}
else
{
/* No combinational path available, only fault filter & latch signal can disable PWM output */
base->FCTRL2 |= (1U << faultNum);
}
/* Initially clear both recovery modes */
reg = base->FSTS;
reg &= ~((1U << (PWM_FSTS_FFULL_SHIFT + faultNum)) | (1U << (PWM_FSTS_FHALF_SHIFT + faultNum)));
/* Setup fault recovery */
switch (faultParams->recoverMode)
{
case kPWM_NoRecovery:
break;
case kPWM_RecoverHalfCycle:
reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
break;
case kPWM_RecoverFullCycle:
reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
break;
case kPWM_RecoverHalfAndFullCycle:
reg |= (1U << (PWM_FSTS_FHALF_SHIFT + faultNum));
reg |= (1U << (PWM_FSTS_FFULL_SHIFT + faultNum));
break;
default:
break;
}
base->FSTS = reg;
}
void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t pwmChannel, pwm_force_signal_t mode)
{
uint16_t shift;
uint16_t reg;
/* DTSRCSEL register has 4 bits per submodule; 2 bits for PWM A and 2 bits for PWM B */
shift = subModule * 4 + pwmChannel * 2;
/* Setup the signal to be passed upon occurrence of a FORCE_OUT signal */
reg = base->DTSRCSEL;
reg &= ~(0x3U << shift);
reg |= (uint16_t)((uint16_t)mode << shift);
base->DTSRCSEL = reg;
}
void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
/* Upper 16 bits are for related to the submodule */
base->SM[subModule].INTEN |= (mask & 0xFFFFU);
/* Fault related interrupts */
base->FCTRL |= ((mask >> 16U) & PWM_FCTRL_FIE_MASK);
}
void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
base->SM[subModule].INTEN &= ~(mask & 0xFFFF);
base->FCTRL &= ~((mask >> 16U) & PWM_FCTRL_FIE_MASK);
}
uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t subModule)
{
uint32_t enabledInterrupts;
enabledInterrupts = base->SM[subModule].INTEN;
enabledInterrupts |= ((uint32_t)(base->FCTRL & PWM_FCTRL_FIE_MASK) << 16U);
return enabledInterrupts;
}
uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
{
uint32_t statusFlags;
statusFlags = base->SM[subModule].STS;
statusFlags |= ((uint32_t)(base->FSTS & PWM_FSTS_FFLAG_MASK) << 16U);
return statusFlags;
}
void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule, uint32_t mask)
{
uint16_t reg;
base->SM[subModule].STS = (mask & 0xFFFFU);
reg = base->FSTS;
/* Clear the fault flags and set only the ones we wish to clear as the fault flags are cleared
* by writing a login one
*/
reg &= ~(PWM_FSTS_FFLAG_MASK);
reg |= ((mask >> 16U) & PWM_FSTS_FFLAG_MASK);
base->FSTS = reg;
}