4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 21:37:19 +08:00

1462 lines
49 KiB
C
Raw Normal View History

/*
* Copyright 2017-2019 NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_dcp.h"
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
#include "fsl_cache.h"
#endif
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcp"
#endif
/*! Compile time sizeof() check */
#define BUILD_ASSURE(condition, msg) extern int msg[1 - 2 * (!(condition))] __attribute__((unused))
#define dcp_memcpy memcpy
/*! Internal states of the HASH creation process */
typedef enum _dcp_hash_algo_state
{
kDCP_StateHashInit = 1u, /*!< Init state. */
kDCP_StateHashUpdate, /*!< Update state. */
} dcp_hash_algo_state_t;
/*! multiple of 64-byte block represented as byte array of 32-bit words */
typedef union _dcp_hash_block
{
uint32_t w[DCP_HASH_BLOCK_SIZE / 4]; /*!< array of 32-bit words */
uint8_t b[DCP_HASH_BLOCK_SIZE]; /*!< byte array */
} dcp_hash_block_t;
/*! internal dcp_hash context structure */
typedef struct _dcp_hash_ctx_internal
{
dcp_hash_block_t blk; /*!< memory buffer. only full blocks are written to DCP during hash updates */
size_t blksz; /*!< number of valid bytes in memory buffer */
dcp_hash_algo_t algo; /*!< selected algorithm from the set of supported algorithms */
dcp_hash_algo_state_t state; /*!< finite machine state of the hash software process */
uint32_t fullMessageSize; /*!< track message size */
uint32_t ctrl0; /*!< HASH_INIT and HASH_TERM flags */
uint32_t runningHash[9]; /*!< running hash. up to SHA-256 plus size, that is 36 bytes. */
dcp_handle_t *handle;
} dcp_hash_ctx_internal_t;
/*!< SHA-1/SHA-2 digest length in bytes */
enum _dcp_hash_digest_len
{
kDCP_OutLenSha1 = 20u,
kDCP_OutLenSha256 = 32u,
kDCP_OutLenCrc32 = 4u,
};
enum _dcp_work_packet_bit_definitions
{
kDCP_CONTROL0_DECR_SEMAPHOR = 1u << 1, /* DECR_SEMAPHOR */
kDCP_CONTROL0_ENABLE_HASH = 1u << 6, /* ENABLE_HASH */
kDCP_CONTROL0_HASH_INIT = 1u << 12, /* HASH_INIT */
kDCP_CONTROL0_HASH_TERM = 1u << 13, /* HASH_TERM */
kDCP_CONTROL1_HASH_SELECT_SHA256 = 2u << 16,
kDCP_CONTROL1_HASH_SELECT_SHA1 = 0u << 16,
kDCP_CONTROL1_HASH_SELECT_CRC32 = 1u << 16,
};
/*! 64-byte block represented as byte array of 16 32-bit words */
typedef union _dcp_sha_block
{
uint32_t w[64 / 4]; /*!< array of 32-bit words */
uint8_t b[64]; /*!< byte array */
} dcp_sha_block_t;
#if defined(DCP_HASH_CAVP_COMPATIBLE)
/* result of sha1 hash for message with zero size */
static uint8_t s_nullSha1[] = {0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55,
0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09};
/* result of sha256 hash for message with zero size */
static uint8_t s_nullSha256[] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
#endif /* DCP_HASH_CAVP_COMPATIBLE */
/*******************************************************************************
* Variables
******************************************************************************/
AT_NONCACHEABLE_SECTION_INIT(static dcp_context_t s_dcpContextSwitchingBuffer);
/*******************************************************************************
* Code
******************************************************************************/
static void dcp_reverse_and_copy(uint8_t *src, uint8_t *dest, size_t src_len)
{
for (uint32_t i = 0; i < src_len; i++)
{
dest[i] = src[src_len - 1U - i];
}
}
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
static inline uint32_t *DCP_FindCacheLine(uint8_t *dcpWorkExt)
{
while (0U != ((uint32_t)dcpWorkExt & ((uint32_t)FSL_FEATURE_L1DCACHE_LINESIZE_BYTE - 1U)))
{
dcpWorkExt++;
}
return (uint32_t *)(uint32_t)dcpWorkExt;
}
#endif
static status_t dcp_get_channel_status(DCP_Type *base, dcp_channel_t channel)
{
uint32_t statReg = 0;
uint32_t semaReg = 0;
status_t status = kStatus_Fail;
switch (channel)
{
case kDCP_Channel0:
statReg = base->CH0STAT;
semaReg = base->CH0SEMA;
break;
case kDCP_Channel1:
statReg = base->CH1STAT;
semaReg = base->CH1SEMA;
break;
case kDCP_Channel2:
statReg = base->CH2STAT;
semaReg = base->CH2SEMA;
break;
case kDCP_Channel3:
statReg = base->CH3STAT;
semaReg = base->CH3SEMA;
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
if (!((0U != (semaReg & DCP_CH0SEMA_VALUE_MASK)) || (0U != (statReg & DCP_CH0STAT_ERROR_CODE_MASK))))
{
status = kStatus_Success;
}
return status;
}
static void dcp_clear_status(DCP_Type *base)
{
volatile uint32_t *dcpStatClrPtr = (volatile uint32_t *)&base->STAT + 2u;
*dcpStatClrPtr = 0xFFu;
while ((base->STAT & 0xffu) != 0U)
{
}
}
static void dcp_clear_channel_status(DCP_Type *base, uint32_t mask)
{
volatile uint32_t *chStatClrPtr;
if (0U != (mask & (uint32_t)kDCP_Channel0))
{
chStatClrPtr = &base->CH0STAT_CLR;
*chStatClrPtr = 0xFFu;
}
if (0U != (mask & (uint32_t)kDCP_Channel1))
{
chStatClrPtr = &base->CH1STAT_CLR;
*chStatClrPtr = 0xFFu;
}
if (0U != (mask & (uint32_t)kDCP_Channel2))
{
chStatClrPtr = &base->CH2STAT_CLR;
*chStatClrPtr = 0xFFu;
}
if (0U != (mask & (uint32_t)kDCP_Channel3))
{
chStatClrPtr = &base->CH3STAT_CLR;
*chStatClrPtr = 0xFFu;
}
}
static status_t dcp_aes_set_sram_based_key(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key)
{
base->KEY = DCP_KEY_INDEX(handle->keySlot) | DCP_KEY_SUBWORD(0);
/* move the key by 32-bit words */
int i = 0;
size_t keySize = 16u;
while (keySize != 0U)
{
keySize -= sizeof(uint32_t);
base->KEYDATA = ((uint32_t *)(uintptr_t)key)[i];
i++;
}
return kStatus_Success;
}
/* Disable optimizations for GCC to prevent instruction reordering */
#if defined(__GNUC__)
#pragma GCC push_options
#pragma GCC optimize("O0")
#endif
static status_t dcp_schedule_work(DCP_Type *base, dcp_handle_t *handle, dcp_work_packet_t *dcpPacket)
{
status_t status;
/* check if our channel is active */
if ((base->STAT & (uint32_t)handle->channel) != (uint32_t)handle->channel)
{
/* disable global interrupt */
uint32_t currPriMask = DisableGlobalIRQ();
/* re-check if our channel is still available */
if ((base->STAT & (uint32_t)handle->channel) == 0U)
{
volatile uint32_t *cmdptr = NULL;
volatile uint32_t *chsema = NULL;
switch (handle->channel)
{
case kDCP_Channel0:
cmdptr = &base->CH0CMDPTR;
chsema = &base->CH0SEMA;
break;
case kDCP_Channel1:
cmdptr = &base->CH1CMDPTR;
chsema = &base->CH1SEMA;
break;
case kDCP_Channel2:
cmdptr = &base->CH2CMDPTR;
chsema = &base->CH2SEMA;
break;
case kDCP_Channel3:
cmdptr = &base->CH3CMDPTR;
chsema = &base->CH3SEMA;
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
if ((NULL != cmdptr) && (NULL != chsema))
{
/* set out packet to DCP CMDPTR */
*cmdptr = (uint32_t)dcpPacket;
#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
/* Clean DCACHE before sending DCP packet to engine */
DCACHE_CleanByRange((uint32_t)dcpPacket, sizeof(dcp_work_packet_t));
#endif
/* Make sure that all data memory accesses are completed before starting of the job */
__DSB();
__ISB();
/* set the channel semaphore to start the job */
*chsema = 1u;
}
status = kStatus_Success;
}
else
{
status = (int32_t)kStatus_DCP_Again;
}
/* global interrupt enable */
EnableGlobalIRQ(currPriMask);
}
else
{
return (int32_t)kStatus_DCP_Again;
}
return status;
}
#if defined(__GNUC__)
#pragma GCC pop_options
#endif
/*!
* brief Set AES key to dcp_handle_t struct and optionally to DCP.
*
* Sets the AES key for encryption/decryption with the dcp_handle_t structure.
* The dcp_handle_t input argument specifies keySlot.
* If the keySlot is kDCP_OtpKey, the function will check the OTP_KEY_READY bit and will return it's ready to use
* status.
* For other keySlot selections, the function will copy and hold the key in dcp_handle_t struct.
* If the keySlot is one of the four DCP SRAM-based keys (one of kDCP_KeySlot0, kDCP_KeySlot1, kDCP_KeySlot2,
* kDCP_KeySlot3),
* this function will also load the supplied key to the specified keySlot in DCP.
*
* param base DCP peripheral base address.
* param handle Handle used for the request.
* param key 0-mod-4 aligned pointer to AES key.
* param keySize AES key size in bytes. Shall equal 16.
* return status from set key operation
*/
status_t DCP_AES_SetKey(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key, size_t keySize)
{
status_t status = kStatus_Fail;
if ((kDCP_OtpKey == handle->keySlot) || (kDCP_OtpUniqueKey == handle->keySlot))
{
/* for AES OTP and unique key, check and return read from fuses status */
if ((base->STAT & DCP_STAT_OTP_KEY_READY_MASK) == DCP_STAT_OTP_KEY_READY_MASK)
{
status = kStatus_Success;
}
}
else
{
/* only work with aligned key[] */
if ((0x3U & (uintptr_t)key) != 0U)
{
return kStatus_InvalidArgument;
}
/* keySize must be 16. */
if (keySize != 16U)
{
return kStatus_InvalidArgument;
}
/* move the key by 32-bit words */
int i = 0;
while (keySize != 0U)
{
keySize -= sizeof(uint32_t);
handle->keyWord[i] = ((uint32_t *)(uintptr_t)key)[i];
i++;
}
if (kDCP_PayloadKey != handle->keySlot)
{
/* move the key by 32-bit words to DCP SRAM-based key storage */
status = dcp_aes_set_sram_based_key(base, handle, key);
}
else
{
/* for PAYLOAD_KEY, just return Ok status now */
status = kStatus_Success;
}
}
return status;
}
/*!
* brief Encrypts AES on one or multiple 128-bit block(s).
*
* Encrypts AES.
* The source plaintext and destination ciphertext can overlap in system memory.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* return Status from encrypt operation
*/
status_t DCP_AES_EncryptEcb(
DCP_Type *base, dcp_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size)
{
status_t completionStatus = kStatus_Fail;
/* Use extended DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
dcp_work_packet_t *dcpWork;
uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
dcpWork = (dcp_work_packet_t *)(uint32_t)DCP_FindCacheLine(dcpWorkExt);
#else
dcp_work_packet_t dcpWorkPacket = {0};
dcp_work_packet_t *dcpWork = &dcpWorkPacket;
#endif
do
{
completionStatus = DCP_AES_EncryptEcbNonBlocking(base, handle, dcpWork, plaintext, ciphertext, size);
} while (completionStatus == (int32_t)kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
/*!
* brief Encrypts AES using the ECB block mode.
*
* Puts AES ECB encrypt work packet to DCP channel.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param[out] dcpPacket Memory for the DCP work packet.
* param plaintext Input plain text to encrypt.
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* return kStatus_Success The work packet has been scheduled at DCP channel.
* return kStatus_DCP_Again The DCP channel is busy processing previous request.
*/
status_t DCP_AES_EncryptEcbNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (0U != (size % 16u)))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 =
0x122u | (handle->swapConfig & 0xFC0000u); /* CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->sourceBufferAddress = (uint32_t)plaintext;
dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 = ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 = ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->control1 = ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
/*!
* brief Decrypts AES on one or multiple 128-bit block(s).
*
* Decrypts AES.
* The source ciphertext and destination plaintext can overlap in system memory.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param ciphertext Input plain text to encrypt
* param[out] plaintext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* return Status from decrypt operation
*/
status_t DCP_AES_DecryptEcb(
DCP_Type *base, dcp_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size)
{
status_t completionStatus = kStatus_Fail;
/* Use extended DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
dcp_work_packet_t *dcpWork;
uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
dcpWork = (dcp_work_packet_t *)(uint32_t)DCP_FindCacheLine(dcpWorkExt);
#else
dcp_work_packet_t dcpWorkPacket = {0};
dcp_work_packet_t *dcpWork = &dcpWorkPacket;
#endif
do
{
completionStatus = DCP_AES_DecryptEcbNonBlocking(base, handle, dcpWork, ciphertext, plaintext, size);
} while (completionStatus == (int32_t)(kStatus_DCP_Again));
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
/*!
* brief Decrypts AES using ECB block mode.
*
* Puts AES ECB decrypt dcpPacket to DCP input job ring.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param[out] dcpPacket Memory for the DCP work packet.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* return kStatus_Success The work packet has been scheduled at DCP channel.
* return kStatus_DCP_Again The DCP channel is busy processing previous request.
*/
status_t DCP_AES_DecryptEcbNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (0U != (size % 16u)))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x22u | (handle->swapConfig & 0xFC0000u); /* ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->sourceBufferAddress = (uint32_t)ciphertext;
dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 = ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 = ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->control1 = ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
/*!
* brief Encrypts AES using CBC block mode.
*
* Encrypts AES using CBC block mode.
* The source plaintext and destination ciphertext can overlap in system memory.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* return Status from encrypt operation
*/
status_t DCP_AES_EncryptCbc(DCP_Type *base,
dcp_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[16])
{
status_t completionStatus = kStatus_Fail;
/* Use extended DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
dcp_work_packet_t *dcpWork;
uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
dcpWork = (dcp_work_packet_t *)(uint32_t)DCP_FindCacheLine(dcpWorkExt);
#else
dcp_work_packet_t dcpWorkPacket = {0};
dcp_work_packet_t *dcpWork = &dcpWorkPacket;
#endif
do
{
completionStatus = DCP_AES_EncryptCbcNonBlocking(base, handle, dcpWork, plaintext, ciphertext, size, iv);
} while (completionStatus == (int32_t)kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
/*!
* brief Encrypts AES using CBC block mode.
*
* Puts AES CBC encrypt dcpPacket to DCP input job ring.
*
* param base DCP peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] dcpPacket Memory for the DCP work packet.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* return kStatus_Success The work packet has been scheduled at DCP channel.
* return kStatus_DCP_Again The DCP channel is busy processing previous request.
*/
status_t DCP_AES_EncryptCbcNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (0U != (size % 16u)))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 =
0x322u | (handle->swapConfig & 0xFC0000u); /* CIPHER_INIT | CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->control1 = 0x10u; /* CBC */
dcpPacket->sourceBufferAddress = (uint32_t)plaintext;
dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 |= ((uint32_t)0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 |= ((uint32_t)0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* In this case payload must contain key & iv in one array. */
/* Copy iv into handle right behind the keyWord[] so we can point payload to keyWord[]. */
(void)dcp_memcpy(handle->iv, (const uint32_t *)(uintptr_t)iv, 16);
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
/*!
* brief Decrypts AES using CBC block mode.
*
* Decrypts AES using CBC block mode.
* The source ciphertext and destination plaintext can overlap in system memory.
*
* param base DCP peripheral base address
* param handle Handle used for this request.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* return Status from decrypt operation
*/
status_t DCP_AES_DecryptCbc(DCP_Type *base,
dcp_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[16])
{
status_t completionStatus = kStatus_Fail;
/* Use extended DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
dcp_work_packet_t *dcpWork;
uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
dcpWork = (dcp_work_packet_t *)(uint32_t)DCP_FindCacheLine(dcpWorkExt);
#else
dcp_work_packet_t dcpWorkPacket = {0};
dcp_work_packet_t *dcpWork = &dcpWorkPacket;
#endif
do
{
completionStatus = DCP_AES_DecryptCbcNonBlocking(base, handle, dcpWork, ciphertext, plaintext, size, iv);
} while (completionStatus == (int32_t)kStatus_DCP_Again);
if (completionStatus != (int32_t)kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
/*!
* brief Decrypts AES using CBC block mode.
*
* Puts AES CBC decrypt dcpPacket to DCP input job ring.
*
* param base DCP peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] dcpPacket Memory for the DCP work packet.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* return kStatus_Success The work packet has been scheduled at DCP channel.
* return kStatus_DCP_Again The DCP channel is busy processing previous request.
*/
status_t DCP_AES_DecryptCbcNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (0U != (size % 16u)))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x222u | (handle->swapConfig & 0xFC0000u); /* CIPHER_INIT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->control1 = 0x10u; /* CBC */
dcpPacket->sourceBufferAddress = (uint32_t)ciphertext;
dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 |= ((uint32_t)0xFFu << 8); /* OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= ((uint32_t)1u << 10); /* OTP_KEY */
dcpPacket->control1 |= ((uint32_t)0xFEu << 8); /* UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* in this case payload must contain KEY + IV together */
/* copy iv into handle struct so we can point payload directly to keyWord[]. */
(void)dcp_memcpy(handle->iv, (const uint32_t *)(uintptr_t)iv, 16);
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= ((uint32_t)1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
/*!
* brief Gets the default configuration structure.
*
* This function initializes the DCP configuration structure to a default value. The default
* values are as follows.
* dcpConfig->gatherResidualWrites = true;
* dcpConfig->enableContextCaching = true;
* dcpConfig->enableContextSwitching = true;
* dcpConfig->enableChannnel = kDCP_chEnableAll;
* dcpConfig->enableChannelInterrupt = kDCP_chIntDisable;
*
* param[out] config Pointer to configuration structure.
*/
void DCP_GetDefaultConfig(dcp_config_t *config)
{
/* ENABLE_CONTEXT_CACHING is disabled by default as the DCP Hash driver uses
* dcp_hash_save_running_hash() and dcp_hash_restore_running_hash() to support
* Hash context switch (different messages interleaved) on the same channel.
*/
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
dcp_config_t userConfig = {
true, false, true, (uint8_t)kDCP_chEnableAll, (uint8_t)kDCP_chIntDisable,
};
*config = userConfig;
}
/*!
* brief Enables clock to and enables DCP
*
* Enable DCP clock and configure DCP.
*
* param base DCP base address
* param config Pointer to configuration structure.
*/
void DCP_Init(DCP_Type *base, const dcp_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_EnableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
base->CTRL = 0xF0800000u; /* reset value */
base->CTRL = 0x30800000u; /* default value */
dcp_clear_status(base);
dcp_clear_channel_status(
base, (uint32_t)kDCP_Channel0 | (uint32_t)kDCP_Channel1 | (uint32_t)kDCP_Channel2 | (uint32_t)kDCP_Channel3);
base->CTRL = DCP_CTRL_GATHER_RESIDUAL_WRITES(config->gatherResidualWrites) |
DCP_CTRL_ENABLE_CONTEXT_CACHING(config->enableContextCaching) |
DCP_CTRL_ENABLE_CONTEXT_SWITCHING(config->enableContextSwitching) |
DCP_CTRL_CHANNEL_INTERRUPT_ENABLE(config->enableChannelInterrupt);
/* enable DCP channels */
base->CHANNELCTRL = DCP_CHANNELCTRL_ENABLE_CHANNEL(config->enableChannel);
/* use context switching buffer */
base->CONTEXT = (uint32_t)&s_dcpContextSwitchingBuffer;
}
/*!
* brief Disable DCP clock
*
* Reset DCP and Disable DCP clock.
*
* param base DCP base address
*/
void DCP_Deinit(DCP_Type *base)
{
base->CTRL = 0xF0800000u; /* reset value */
(void)memset(&s_dcpContextSwitchingBuffer, 0, sizeof(s_dcpContextSwitchingBuffer));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Poll and wait on DCP channel.
*
* Polls the specified DCP channel until current it completes activity.
*
* param base DCP peripheral base address.
* param handle Specifies DCP channel.
* return kStatus_Success When data processing completes without error.
* return kStatus_Fail When error occurs.
*/
status_t DCP_WaitForChannelComplete(DCP_Type *base, dcp_handle_t *handle)
{
/* wait if our channel is still active */
while ((base->STAT & (uint32_t)handle->channel) == (uint32_t)handle->channel)
{
}
if (dcp_get_channel_status(base, handle->channel) != kStatus_Success)
{
dcp_clear_status(base);
dcp_clear_channel_status(base, (uint32_t)handle->channel);
return kStatus_Fail;
}
dcp_clear_status(base);
return kStatus_Success;
}
/*!
* @brief Check validity of algoritm.
*
* This function checks the validity of input argument.
*
* @param algo Tested algorithm value.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_input_alg(dcp_hash_algo_t algo)
{
if ((algo != kDCP_Sha256) && (algo != kDCP_Sha1) && (algo != kDCP_Crc32))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Check validity of input arguments.
*
* This function checks the validity of input arguments.
*
* @param base DCP peripheral base address.
* @param ctx Memory buffer given by user application where the DCP_HASH_Init/DCP_HASH_Update/DCP_HASH_Finish store
* context.
* @param algo Tested algorithm value.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_input_args(DCP_Type *base, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
/* Check validity of input algorithm */
if (kStatus_Success != dcp_hash_check_input_alg(algo))
{
return kStatus_InvalidArgument;
}
if ((NULL == ctx) || (NULL == base))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Check validity of internal software context.
*
* This function checks if the internal context structure looks correct.
*
* @param ctxInternal Internal context.
* @param message Input message address.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_context(dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *message)
{
if ((NULL == message) || (NULL == ctxInternal) || (kStatus_Success != dcp_hash_check_input_alg(ctxInternal->algo)))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Initialize the SHA engine for new hash.
*
* This function sets kDCP_CONTROL0_HASH_INIT for control0 in work packet to start a new hash.
*
* @param base SHA peripheral base address.
* @param ctxInternal Internal context.
*/
static status_t dcp_hash_engine_init(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
status_t status;
status = kStatus_InvalidArgument;
if ((kDCP_Sha256 == ctxInternal->algo) || (kDCP_Sha1 == ctxInternal->algo) || (kDCP_Crc32 == ctxInternal->algo))
{
ctxInternal->ctrl0 = (uint32_t)kDCP_CONTROL0_HASH_INIT;
status = kStatus_Success;
}
return status;
}
static status_t dcp_hash_update_non_blocking(
DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, dcp_work_packet_t *dcpPacket, const uint8_t *msg, size_t size)
{
dcpPacket->control0 = ctxInternal->ctrl0 | (ctxInternal->handle->swapConfig & 0xFC0000u) |
(uint32_t)kDCP_CONTROL0_ENABLE_HASH | (uint32_t)kDCP_CONTROL0_DECR_SEMAPHOR;
if (ctxInternal->algo == kDCP_Sha256)
{
dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_SHA256;
}
else if (ctxInternal->algo == kDCP_Sha1)
{
dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_SHA1;
}
else if (ctxInternal->algo == kDCP_Crc32)
{
/* In CRC-32 case if size is zero, do not schedule other computing */
if (size == 0U)
{
#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
/* Clear DCACHE memory before starting the engine */
DCACHE_CleanByRange((uint32_t)ctxInternal, sizeof(dcp_hash_ctx_internal_t));
#endif
/* Make sure that all data memory accesses are completed before starting of the job */
__DSB();
__ISB();
return kStatus_Success;
}
dcpPacket->control1 = (uint32_t)kDCP_CONTROL1_HASH_SELECT_CRC32;
}
else
{
return kStatus_Fail;
}
dcpPacket->sourceBufferAddress = (uint32_t)msg;
dcpPacket->destinationBufferAddress = 0;
dcpPacket->bufferSize = size;
dcpPacket->payloadPointer = (uint32_t)ctxInternal->runningHash;
#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
/* Clear DCACHE memory before starting the engine */
DCACHE_CleanByRange((uint32_t)ctxInternal, sizeof(dcp_hash_ctx_internal_t));
#endif
/* Make sure that all data memory accesses are completed before starting of the job */
__DSB();
__ISB();
return dcp_schedule_work(base, ctxInternal->handle, dcpPacket);
}
static status_t dcp_hash_update(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *msg, size_t size)
{
status_t completionStatus = kStatus_Fail;
/* Use extended DCACHE line size aligned structure */
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
dcp_work_packet_t *dcpWork;
uint8_t dcpWorkExt[sizeof(dcp_work_packet_t) + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE] = {0U};
dcpWork = (dcp_work_packet_t *)(uint32_t)DCP_FindCacheLine(dcpWorkExt);
#else
dcp_work_packet_t dcpWorkPacket = {0};
dcp_work_packet_t *dcpWork = &dcpWorkPacket;
#endif
do
{
completionStatus = dcp_hash_update_non_blocking(base, ctxInternal, dcpWork, msg, size);
} while (completionStatus == (int32_t)kStatus_DCP_Again);
completionStatus = DCP_WaitForChannelComplete(base, ctxInternal->handle);
ctxInternal->ctrl0 = 0; /* clear kDCP_CONTROL0_HASH_INIT and kDCP_CONTROL0_HASH_TERM flags */
return (completionStatus);
}
/*!
* @brief Adds message to current hash.
*
* This function merges the message to fill the internal buffer, empties the internal buffer if
* it becomes full, then process all remaining message data.
*
*
* @param base DCP peripheral base address.
* @param ctxInternal Internal context.
* @param message Input message.
* @param messageSize Size of input message in bytes.
* @return kStatus_Success.
*/
static status_t dcp_hash_process_message_data(DCP_Type *base,
dcp_hash_ctx_internal_t *ctxInternal,
const uint8_t *message,
size_t messageSize)
{
status_t status = kStatus_Fail;
/* if there is partially filled internal buffer, fill it to full block */
if (ctxInternal->blksz > 0U)
{
size_t toCopy = DCP_HASH_BLOCK_SIZE - ctxInternal->blksz;
(void)dcp_memcpy(&ctxInternal->blk.b[ctxInternal->blksz], message, toCopy);
message += toCopy;
messageSize -= toCopy;
/* process full internal block */
status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], DCP_HASH_BLOCK_SIZE);
if (kStatus_Success != status)
{
return status;
}
}
/* process all full blocks in message[] */
uint32_t fullBlocksSize = ((messageSize >> 6) << 6); /* (X / 64) * 64 */
if (fullBlocksSize > 0U)
{
status = dcp_hash_update(base, ctxInternal, message, fullBlocksSize);
if (kStatus_Success != status)
{
return status;
}
message += fullBlocksSize;
messageSize -= fullBlocksSize;
}
/* copy last incomplete message bytes into internal block */
(void)dcp_memcpy(&ctxInternal->blk.b[0], message, messageSize);
ctxInternal->blksz = messageSize;
return status;
}
/*!
* @brief Finalize the running hash to make digest.
*
* This function empties the internal buffer, adds padding bits, and generates final digest.
*
* @param base SHA peripheral base address.
* @param ctxInternal Internal context.
* @return kStatus_Success.
*/
static status_t dcp_hash_finalize(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
status_t status;
ctxInternal->ctrl0 |= (uint32_t)kDCP_CONTROL0_HASH_TERM;
status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], ctxInternal->blksz);
return status;
}
static void dcp_hash_save_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
uint32_t *srcAddr = NULL;
switch (ctxInternal->handle->channel)
{
case kDCP_Channel0:
srcAddr = &s_dcpContextSwitchingBuffer.x[43];
break;
case kDCP_Channel1:
srcAddr = &s_dcpContextSwitchingBuffer.x[30];
break;
case kDCP_Channel2:
srcAddr = &s_dcpContextSwitchingBuffer.x[17];
break;
case kDCP_Channel3:
srcAddr = &s_dcpContextSwitchingBuffer.x[4];
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
if (srcAddr != NULL)
{
DCACHE_InvalidateByRange((uint32_t)srcAddr, sizeof(ctxInternal->runningHash));
(void)dcp_memcpy(ctxInternal->runningHash, srcAddr, sizeof(ctxInternal->runningHash));
}
}
static void dcp_hash_restore_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
uint32_t *destAddr = NULL;
switch (ctxInternal->handle->channel)
{
case kDCP_Channel0:
destAddr = &s_dcpContextSwitchingBuffer.x[43];
break;
case kDCP_Channel1:
destAddr = &s_dcpContextSwitchingBuffer.x[30];
break;
case kDCP_Channel2:
destAddr = &s_dcpContextSwitchingBuffer.x[17];
break;
case kDCP_Channel3:
destAddr = &s_dcpContextSwitchingBuffer.x[4];
break;
default:
/* No valid channel */
break;
}
if (destAddr != NULL)
{
(void)dcp_memcpy(destAddr, ctxInternal->runningHash, sizeof(ctxInternal->runningHash));
}
}
/*!
* brief Initialize HASH context
*
* This function initializes the HASH.
*
* param base DCP peripheral base address
* param handle Specifies the DCP channel used for hashing.
* param[out] ctx Output hash context
* param algo Underlaying algorithm to use for hash computation.
* return Status of initialization
*/
status_t DCP_HASH_Init(DCP_Type *base, dcp_handle_t *handle, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
/* Align structure on DCACHE line*/
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)((uint8_t *)ctx + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE);
#else
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
#endif
/* compile time check for the correct structure size */
BUILD_ASSURE(sizeof(dcp_hash_ctx_t) >= sizeof(dcp_hash_ctx_internal_t), dcp_hash_ctx_t_size);
uint32_t i;
status = dcp_hash_check_input_args(base, ctx, algo);
if (status != kStatus_Success)
{
return status;
}
/* set algorithm in context struct for later use */
ctxInternal->algo = algo;
ctxInternal->blksz = 0u;
const uint32_t j = sizeof(ctxInternal->blk.w) / sizeof(ctxInternal->blk.w[0]);
for (i = 0; i < j; i++)
{
ctxInternal->blk.w[i] = 0u;
}
ctxInternal->state = kDCP_StateHashInit;
ctxInternal->fullMessageSize = 0;
ctxInternal->handle = handle;
return status;
}
/*!
* brief Add data to current HASH
*
* Add data to current HASH. This can be called repeatedly with an arbitrary amount of data to be
* hashed. The functions blocks. If it returns kStatus_Success, the running hash
* has been updated (DCP has processed the input data), so the memory at ref input pointer
* can be released back to system. The DCP context buffer is updated with the running hash
* and with all necessary information to support possible context switch.
*
* param base DCP peripheral base address
* param[in,out] ctx HASH context
* param input Input data
* param inputSize Size of input data in bytes
* return Status of the hash update operation
*/
status_t DCP_HASH_Update(DCP_Type *base, dcp_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
{
bool isUpdateState;
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
size_t blockSize;
/* Align structure on DCACHE line*/
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)((uint8_t *)ctx + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE);
#else
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
#endif
if (inputSize == 0U)
{
return kStatus_Success;
}
status = dcp_hash_check_context(ctxInternal, input);
if (kStatus_Success != status)
{
return status;
}
ctxInternal->fullMessageSize += inputSize;
blockSize = DCP_HASH_BLOCK_SIZE;
/* if we are still less than DCP_HASH_BLOCK_SIZE bytes, keep only in context */
if ((ctxInternal->blksz + inputSize) <= blockSize)
{
(void)dcp_memcpy((&ctxInternal->blk.b[0]) + ctxInternal->blksz, input, inputSize);
ctxInternal->blksz += inputSize;
return status;
}
else
{
isUpdateState = ctxInternal->state == kDCP_StateHashUpdate;
if (!isUpdateState)
{
/* start NEW hash */
status = dcp_hash_engine_init(base, ctxInternal);
if (status != kStatus_Success)
{
return status;
}
ctxInternal->state = kDCP_StateHashUpdate;
}
else
{
dcp_hash_restore_running_hash(ctxInternal);
}
}
/* process input data */
status = dcp_hash_process_message_data(base, ctxInternal, input, inputSize);
dcp_hash_save_running_hash(ctxInternal);
return status;
}
/*!
* brief Finalize hashing
*
* Outputs the final hash (computed by DCP_HASH_Update()) and erases the context.
*
* param[in,out] ctx Input hash context
* param[out] output Output hash data
* param[in,out] outputSize Optional parameter (can be passed as NULL). On function entry, it specifies the size of
* output[] buffer. On function return, it stores the number of updated output bytes.
* return Status of the hash finish operation
*/
status_t DCP_HASH_Finish(DCP_Type *base, dcp_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
{
size_t algOutSize = 0;
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
/* Align structure on DCACHE line*/
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U) && defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)((uint8_t *)ctx + FSL_FEATURE_L1DCACHE_LINESIZE_BYTE);
#else
ctxInternal = (dcp_hash_ctx_internal_t *)(uint32_t)ctx;
#endif
status = dcp_hash_check_context(ctxInternal, output);
if (kStatus_Success != status)
{
return status;
}
if (ctxInternal->state == kDCP_StateHashInit)
{
status = dcp_hash_engine_init(base, ctxInternal);
if (status != kStatus_Success)
{
return status;
}
}
else
{
dcp_hash_restore_running_hash(ctxInternal);
}
size_t outSize = 0u;
/* compute algorithm output length */
switch (ctxInternal->algo)
{
case kDCP_Sha256:
outSize = (uint32_t)kDCP_OutLenSha256;
break;
case kDCP_Sha1:
outSize = (uint32_t)kDCP_OutLenSha1;
break;
case kDCP_Crc32:
outSize = (uint32_t)kDCP_OutLenCrc32;
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
algOutSize = outSize;
#if defined(DCP_HASH_CAVP_COMPATIBLE)
if (ctxInternal->fullMessageSize == 0U)
{
switch (ctxInternal->algo)
{
case kDCP_Sha256:
(void)dcp_memcpy(&output[0], &s_nullSha256, 32);
break;
case kDCP_Sha1:
(void)dcp_memcpy(&output[0], &s_nullSha1, 20);
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
return kStatus_Success;
}
#endif /* DCP_HASH_CAVP_COMPATIBLE */
/* flush message last incomplete block, if there is any, and add padding bits */
status = dcp_hash_finalize(base, ctxInternal);
if (outputSize != NULL)
{
if (algOutSize < *outputSize)
{
*outputSize = algOutSize;
}
else
{
algOutSize = *outputSize;
}
}
#if defined(DCP_USE_DCACHE) && (DCP_USE_DCACHE == 1U)
DCACHE_InvalidateByRange((uint32_t)ctxInternal->runningHash, sizeof(ctxInternal->runningHash));
#endif
/* Reverse and copy result to output[] */
dcp_reverse_and_copy((uint8_t *)ctxInternal->runningHash, &output[0], algOutSize);
(void)memset(ctx, 0, sizeof(dcp_hash_ctx_t));
return status;
}
/*!
* brief Create HASH on given data
*
* Perform the full SHA or CRC32 in one function call. The function is blocking.
*
* param base DCP peripheral base address
* param handle Handle used for the request.
* param algo Underlaying algorithm to use for hash computation.
* param input Input data
* param inputSize Size of input data in bytes
* param[out] output Output hash data
* param[out] outputSize Output parameter storing the size of the output hash in bytes
* return Status of the one call hash operation.
*/
status_t DCP_HASH(DCP_Type *base,
dcp_handle_t *handle,
dcp_hash_algo_t algo,
const uint8_t *input,
size_t inputSize,
uint8_t *output,
size_t *outputSize)
{
dcp_hash_ctx_t hashCtx = {0};
status_t status;
status = DCP_HASH_Init(base, handle, &hashCtx, algo);
if (status != kStatus_Success)
{
return status;
}
status = DCP_HASH_Update(base, &hashCtx, input, inputSize);
if (status != kStatus_Success)
{
return status;
}
status = DCP_HASH_Finish(base, &hashCtx, output, outputSize);
return status;
}