rt-thread-official/bsp/stm32f10x-HAL/drivers/drv_spi.c

376 lines
10 KiB
C
Raw Normal View History

/*
* File : dev_gpio.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2015, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2017-10-20 ZYH the first version
* 2017-11-35 ZYH update to 3.0.0
*/
#include <board.h>
#include <drv_spi.h>
#ifdef RT_USING_SPI
#define SPIRXEVENT 0x01
#define SPITXEVENT 0x02
#define SPITIMEOUT 2
#define SPICRCEN 0
struct stm32_hw_spi_cs
{
rt_uint32_t pin;
};
struct stm32_spi
{
SPI_TypeDef *Instance;
struct rt_spi_configuration *cfg;
};
static rt_err_t stm32_spi_init(SPI_TypeDef *spix, struct rt_spi_configuration *cfg)
{
SPI_HandleTypeDef hspi;
hspi.Instance = spix;
if (cfg->mode & RT_SPI_SLAVE)
{
hspi.Init.Mode = SPI_MODE_SLAVE;
}
else
{
hspi.Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
hspi.Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
hspi.Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
hspi.Init.DataSize = SPI_DATASIZE_8BIT;
}
else if (cfg->data_width == 16)
{
hspi.Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
hspi.Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
hspi.Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
hspi.Init.CLKPolarity = SPI_POLARITY_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
hspi.Init.NSS = SPI_NSS_SOFT;
}
else
{
hspi.Init.NSS = SPI_NSS_SOFT;
// hspi.Init.NSS = SPI_NSS_HARD_OUTPUT;
}
if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 2)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 4)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 8)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 16)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 32)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 64)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= HAL_RCC_GetPCLK2Freq() / 128)
{
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
if (cfg->mode & RT_SPI_MSB)
{
hspi.Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
hspi.Init.FirstBit = SPI_FIRSTBIT_LSB;
}
hspi.Init.TIMode = SPI_TIMODE_DISABLE;
hspi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi.Init.CRCPolynomial = 7;
hspi.State = HAL_SPI_STATE_RESET;
if (HAL_SPI_Init(&hspi) != HAL_OK)
{
return RT_EIO;
}
__HAL_SPI_ENABLE(&hspi);
return RT_EOK;
}
2018-04-17 17:26:59 +08:00
#define SPISTEP(datalen) (((datalen) == 8) ? 1 : 2)
#define SPISEND_1(reg, ptr, datalen) \
do \
{ \
if (datalen == 8) \
{ \
(reg) = *(rt_uint8_t *)(ptr); \
} \
else \
{ \
(reg) = *(rt_uint16_t *)(ptr); \
} \
} while (0)
#define SPIRECV_1(reg, ptr, datalen) \
do \
{ \
if (datalen == 8) \
{ \
*(rt_uint8_t *)(ptr) = (reg); \
} \
else \
{ \
*(rt_uint16_t *)(ptr) = reg; \
} \
} while (0)
static rt_err_t spitxrx1b(struct stm32_spi *hspi, void *rcvb, const void *sndb)
{
rt_uint32_t padrcv = 0;
rt_uint32_t padsnd = 0xFF;
if (!rcvb && !sndb)
{
return RT_ERROR;
}
if (!rcvb)
{
rcvb = &padrcv;
}
if (!sndb)
{
sndb = &padsnd;
}
while (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) == RESET)
;
SPISEND_1(hspi->Instance->DR, sndb, hspi->cfg->data_width);
while (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) == RESET)
;
SPIRECV_1(hspi->Instance->DR, rcvb, hspi->cfg->data_width);
return RT_EOK;
}
2018-04-17 17:26:59 +08:00
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_err_t res;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct stm32_spi *hspi = (struct stm32_spi *)device->bus->parent.user_data;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
rt_pin_write(cs->pin, 0);
}
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
while (length)
{
res = spitxrx1b(hspi, rcvb, sndb);
if (rcvb)
{
rcvb += SPISTEP(hspi->cfg->data_width);
}
if (sndb)
{
sndb += SPISTEP(hspi->cfg->data_width);
}
if (res != RT_EOK)
{
break;
}
length--;
}
/* Wait until Busy flag is reset before disabling SPI */
while (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_BSY) == SET)
;
if (message->cs_release)
{
rt_pin_write(cs->pin, 1);
}
return message->length - length;
}
rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct stm32_spi *hspi = (struct stm32_spi *)device->bus->parent.user_data;
hspi->cfg = configuration;
return stm32_spi_init(hspi->Instance, configuration);
}
const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
struct rt_spi_bus _spi_bus1, _spi_bus2;
struct stm32_spi _spi1, _spi2;
int stm32_spi_register_bus(SPI_TypeDef *SPIx, const char *name)
{
struct rt_spi_bus *spi_bus;
struct stm32_spi *spi;
if (SPIx == SPI1)
{
spi_bus = &_spi_bus1;
spi = &_spi1;
}
else if (SPIx == SPI2)
{
spi_bus = &_spi_bus2;
spi = &_spi2;
}
else
{
return -1;
}
spi->Instance = SPIx;
spi_bus->parent.user_data = spi;
return rt_spi_bus_register(spi_bus, name, &stm_spi_ops);
}
rt_err_t stm32_spi_bus_attach_device(rt_uint32_t pin, const char *bus_name, const char *device_name)
{
struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
struct stm32_hw_spi_cs *cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->pin = pin;
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, 1);
return rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
}
int stm32_hw_spi_init(void)
{
int result = 0;
#ifdef RT_USING_SPI1
result = stm32_spi_register_bus(SPI1, "spi1");
#endif
#ifdef RT_USING_SPI2
result = stm32_spi_register_bus(SPI2, "spi2");
#endif
return result;
}
INIT_BOARD_EXPORT(stm32_hw_spi_init);
void HAL_SPI_MspInit(SPI_HandleTypeDef *spiHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if (spiHandle->Instance == SPI1)
{
/* SPI1 clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
else if (spiHandle->Instance == SPI2)
{
/* SPI2 clock enable */
__HAL_RCC_SPI2_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**SPI2 GPIO Configuration
PB13 ------> SPI2_SCK
PB14 ------> SPI2_MISO
PB15 ------> SPI2_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_13 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_14;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
}
void HAL_SPI_MspDeInit(SPI_HandleTypeDef *spiHandle)
{
if (spiHandle->Instance == SPI1)
{
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);
}
else if (spiHandle->Instance == SPI2)
{
/* Peripheral clock disable */
__HAL_RCC_SPI2_CLK_DISABLE();
/**SPI2 GPIO Configuration
PB13 ------> SPI2_SCK
PB14 ------> SPI2_MISO
PB15 ------> SPI2_MOSI
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15);
}
}
#endif /*RT_USING_SPI*/