4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 12:07:23 +08:00

1175 lines
37 KiB
C
Raw Normal View History

2017-08-30 12:18:28 +08:00
/**
* \file
*
* \brief Commonly used includes, types and macros.
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef UTILS_COMPILER_H_INCLUDED
#define UTILS_COMPILER_H_INCLUDED
/**
* \defgroup group_sam0_utils Compiler abstraction layer and code utilities
*
* Compiler abstraction layer and code utilities for Cortex-M0+ based Atmel SAM devices.
* This module provides various abstraction layers and utilities to make code compatible between different compilers.
*
* @{
*/
#if (defined __ICCARM__)
# include <intrinsics.h>
#endif
#include <stddef.h>
#include <parts.h>
#include <status_codes.h>
#include <preprocessor.h>
#include <io.h>
#ifndef __ASSEMBLY__
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
/**
* \def UNUSED
* \brief Marking \a v as a unused parameter or value.
*/
#define UNUSED(v) (void)(v)
/**
* \def barrier
* \brief Memory barrier
*/
#ifdef __GNUC__
# define barrier() asm volatile("" ::: "memory")
#else
# define barrier() asm ("")
#endif
/**
* \brief Emit the compiler pragma \a arg.
*
* \param[in] arg The pragma directive as it would appear after \e \#pragma
* (i.e. not stringified).
*/
#define COMPILER_PRAGMA(arg) _Pragma(#arg)
/**
* \def COMPILER_PACK_SET(alignment)
* \brief Set maximum alignment for subsequent struct and union definitions to \a alignment.
*/
#define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment))
/**
* \def COMPILER_PACK_RESET()
* \brief Set default alignment for subsequent struct and union definitions.
*/
#define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack())
/**
* \brief Set aligned boundary.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define COMPILER_ALIGNED(a) __attribute__((__aligned__(a)))
#elif (defined __ICCARM__)
# define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a)
#endif
/**
* \brief Set word-aligned boundary.
*/
#if (defined __GNUC__) || defined(__CC_ARM)
#define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4)))
#elif (defined __ICCARM__)
#define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4)
#endif
/**
* \def __always_inline
* \brief The function should always be inlined.
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and inline the function no matter how big it thinks it
* becomes.
*/
#if defined(__CC_ARM)
# define __always_inline __forceinline
#elif (defined __GNUC__)
# define __always_inline __attribute__((__always_inline__))
#elif (defined __ICCARM__)
# define __always_inline _Pragma("inline=forced")
#endif
/**
* \def __no_inline
* \brief The function should never be inlined
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and not inline the function no matter how small it thinks it
* becomes.
*/
#if defined(__CC_ARM)
# define __no_inline __attribute__((noinline))
#elif (defined __GNUC__)
# define __no_inline __attribute__((noinline))
#elif (defined __ICCARM__)
# define __no_inline _Pragma("inline=never")
#endif
/** \brief This macro is used to test fatal errors.
*
* The macro tests if the expression is false. If it is, a fatal error is
* detected and the application hangs up. If \c TEST_SUITE_DEFINE_ASSERT_MACRO
* is defined, a unit test version of the macro is used, to allow execution
* of further tests after a false expression.
*
* \param[in] expr Expression to evaluate and supposed to be nonzero.
*/
#if defined(_ASSERT_ENABLE_)
# if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
# include "unit_test/suite.h"
# else
# undef TEST_SUITE_DEFINE_ASSERT_MACRO
# define Assert(expr) \
{\
if (!(expr)) asm("BKPT #0");\
}
# endif
#else
# define Assert(expr) ((void) 0)
#endif
/* Define WEAK attribute */
#if defined ( __CC_ARM )
# define WEAK __attribute__ ((weak))
#elif defined ( __ICCARM__ )
# define WEAK __weak
#elif defined ( __GNUC__ )
# define WEAK __attribute__ ((weak))
#endif
/* Define NO_INIT attribute */
#if defined ( __CC_ARM )
# define NO_INIT __attribute__((zero_init))
#elif defined ( __ICCARM__ )
# define NO_INIT __no_init
#elif defined ( __GNUC__ )
# define NO_INIT __attribute__((section(".no_init")))
#endif
#include "interrupt.h"
/** \name Usual Types
* @{ */
#ifndef __cplusplus
# if !defined(__bool_true_false_are_defined)
typedef unsigned char bool;
# endif
#endif
typedef uint16_t le16_t;
typedef uint16_t be16_t;
typedef uint32_t le32_t;
typedef uint32_t be32_t;
typedef uint32_t iram_size_t;
/** @} */
/** \name Aliasing Aggregate Types
* @{ */
/** 16-bit union. */
typedef union
{
int16_t s16;
uint16_t u16;
int8_t s8[2];
uint8_t u8[2];
} Union16;
/** 32-bit union. */
typedef union
{
int32_t s32;
uint32_t u32;
int16_t s16[2];
uint16_t u16[2];
int8_t s8[4];
uint8_t u8[4];
} Union32;
/** 64-bit union. */
typedef union
{
int64_t s64;
uint64_t u64;
int32_t s32[2];
uint32_t u32[2];
int16_t s16[4];
uint16_t u16[4];
int8_t s8[8];
uint8_t u8[8];
} Union64;
/** Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
int64_t *s64ptr;
uint64_t *u64ptr;
int32_t *s32ptr;
uint32_t *u32ptr;
int16_t *s16ptr;
uint16_t *u16ptr;
int8_t *s8ptr;
uint8_t *u8ptr;
} UnionPtr;
/** Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
volatile int64_t *s64ptr;
volatile uint64_t *u64ptr;
volatile int32_t *s32ptr;
volatile uint32_t *u32ptr;
volatile int16_t *s16ptr;
volatile uint16_t *u16ptr;
volatile int8_t *s8ptr;
volatile uint8_t *u8ptr;
} UnionVPtr;
/** Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
const int64_t *s64ptr;
const uint64_t *u64ptr;
const int32_t *s32ptr;
const uint32_t *u32ptr;
const int16_t *s16ptr;
const uint16_t *u16ptr;
const int8_t *s8ptr;
const uint8_t *u8ptr;
} UnionCPtr;
/** Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
const volatile int64_t *s64ptr;
const volatile uint64_t *u64ptr;
const volatile int32_t *s32ptr;
const volatile uint32_t *u32ptr;
const volatile int16_t *s16ptr;
const volatile uint16_t *u16ptr;
const volatile int8_t *s8ptr;
const volatile uint8_t *u8ptr;
} UnionCVPtr;
/** Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
int64_t *s64ptr;
uint64_t *u64ptr;
int32_t *s32ptr;
uint32_t *u32ptr;
int16_t *s16ptr;
uint16_t *u16ptr;
int8_t *s8ptr;
uint8_t *u8ptr;
} StructPtr;
/** Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
volatile int64_t *s64ptr;
volatile uint64_t *u64ptr;
volatile int32_t *s32ptr;
volatile uint32_t *u32ptr;
volatile int16_t *s16ptr;
volatile uint16_t *u16ptr;
volatile int8_t *s8ptr;
volatile uint8_t *u8ptr;
} StructVPtr;
/** Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
const int64_t *s64ptr;
const uint64_t *u64ptr;
const int32_t *s32ptr;
const uint32_t *u32ptr;
const int16_t *s16ptr;
const uint16_t *u16ptr;
const int8_t *s8ptr;
const uint8_t *u8ptr;
} StructCPtr;
/** Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
const volatile int64_t *s64ptr;
const volatile uint64_t *u64ptr;
const volatile int32_t *s32ptr;
const volatile uint32_t *u32ptr;
const volatile int16_t *s16ptr;
const volatile uint16_t *u16ptr;
const volatile int8_t *s8ptr;
const volatile uint8_t *u8ptr;
} StructCVPtr;
/** @} */
#endif /* #ifndef __ASSEMBLY__ */
/** \name Usual Constants
* @{ */
#define DISABLE 0
#define ENABLE 1
#ifndef __cplusplus
# if !defined(__bool_true_false_are_defined)
# define false 0
# define true 1
# endif
#endif
/** @} */
#ifndef __ASSEMBLY__
/** \name Optimization Control
* @{ */
/**
* \def likely(exp)
* \brief The expression \a exp is likely to be true
*/
#if !defined(likely) || defined(__DOXYGEN__)
# define likely(exp) (exp)
#endif
/**
* \def unlikely(exp)
* \brief The expression \a exp is unlikely to be true
*/
#if !defined(unlikely) || defined(__DOXYGEN__)
# define unlikely(exp) (exp)
#endif
/**
* \def is_constant(exp)
* \brief Determine if an expression evaluates to a constant value.
*
* \param[in] exp Any expression
*
* \return true if \a exp is constant, false otherwise.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define is_constant(exp) __builtin_constant_p(exp)
#else
# define is_constant(exp) (0)
#endif
/** @} */
/** \name Bit-Field Handling
* @{ */
/** \brief Reads the bits of a value specified by a given bit-mask.
*
* \param[in] value Value to read bits from.
* \param[in] mask Bit-mask indicating bits to read.
*
* \return Read bits.
*/
#define Rd_bits( value, mask) ((value) & (mask))
/** \brief Writes the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue to write bits to.
* \param[in] mask Bit-mask indicating bits to write.
* \param[in] bits Bits to write.
*
* \return Resulting value with written bits.
*/
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
((bits ) & (mask)))
/** \brief Tests the bits of a value specified by a given bit-mask.
*
* \param[in] value Value of which to test bits.
* \param[in] mask Bit-mask indicating bits to test.
*
* \return \c 1 if at least one of the tested bits is set, else \c 0.
*/
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
/** \brief Clears the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to clear bits.
* \param[in] mask Bit-mask indicating bits to clear.
*
* \return Resulting value with cleared bits.
*/
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
/** \brief Sets the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to set bits.
* \param[in] mask Bit-mask indicating bits to set.
*
* \return Resulting value with set bits.
*/
#define Set_bits(lvalue, mask) ((lvalue) |= (mask))
/** \brief Toggles the bits of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue of which to toggle bits.
* \param[in] mask Bit-mask indicating bits to toggle.
*
* \return Resulting value with toggled bits.
*/
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
/** \brief Reads the bit-field of a value specified by a given bit-mask.
*
* \param[in] value Value to read a bit-field from.
* \param[in] mask Bit-mask indicating the bit-field to read.
*
* \return Read bit-field.
*/
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
/** \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
*
* \param[in] lvalue C lvalue to write a bit-field to.
* \param[in] mask Bit-mask indicating the bit-field to write.
* \param[in] bitfield Bit-field to write.
*
* \return Resulting value with written bit-field.
*/
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (uint32_t)(bitfield) << ctz(mask)))
/** @} */
/** \name Zero-Bit Counting
*
* Under GCC, __builtin_clz and __builtin_ctz behave like macros when
* applied to constant expressions (values known at compile time), so they are
* more optimized than the use of the corresponding assembly instructions and
* they can be used as constant expressions e.g. to initialize objects having
* static storage duration, and like the corresponding assembly instructions
* when applied to non-constant expressions (values unknown at compile time), so
* they are more optimized than an assembly periphrasis. Hence, clz and ctz
* ensure a possible and optimized behavior for both constant and non-constant
* expressions.
*
* @{ */
/** \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
*
* \param[in] u Value of which to count the leading zero bits.
*
* \return The count of leading zero bits in \a u.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define clz(u) ((u) ? __builtin_clz(u) : 32)
#else
# define clz(u) (((u) == 0) ? 32 : \
((u) & (1ul << 31)) ? 0 : \
((u) & (1ul << 30)) ? 1 : \
((u) & (1ul << 29)) ? 2 : \
((u) & (1ul << 28)) ? 3 : \
((u) & (1ul << 27)) ? 4 : \
((u) & (1ul << 26)) ? 5 : \
((u) & (1ul << 25)) ? 6 : \
((u) & (1ul << 24)) ? 7 : \
((u) & (1ul << 23)) ? 8 : \
((u) & (1ul << 22)) ? 9 : \
((u) & (1ul << 21)) ? 10 : \
((u) & (1ul << 20)) ? 11 : \
((u) & (1ul << 19)) ? 12 : \
((u) & (1ul << 18)) ? 13 : \
((u) & (1ul << 17)) ? 14 : \
((u) & (1ul << 16)) ? 15 : \
((u) & (1ul << 15)) ? 16 : \
((u) & (1ul << 14)) ? 17 : \
((u) & (1ul << 13)) ? 18 : \
((u) & (1ul << 12)) ? 19 : \
((u) & (1ul << 11)) ? 20 : \
((u) & (1ul << 10)) ? 21 : \
((u) & (1ul << 9)) ? 22 : \
((u) & (1ul << 8)) ? 23 : \
((u) & (1ul << 7)) ? 24 : \
((u) & (1ul << 6)) ? 25 : \
((u) & (1ul << 5)) ? 26 : \
((u) & (1ul << 4)) ? 27 : \
((u) & (1ul << 3)) ? 28 : \
((u) & (1ul << 2)) ? 29 : \
((u) & (1ul << 1)) ? 30 : \
31)
#endif
/** \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
*
* \param[in] u Value of which to count the trailing zero bits.
*
* \return The count of trailing zero bits in \a u.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define ctz(u) ((u) ? __builtin_ctz(u) : 32)
#else
# define ctz(u) ((u) & (1ul << 0) ? 0 : \
(u) & (1ul << 1) ? 1 : \
(u) & (1ul << 2) ? 2 : \
(u) & (1ul << 3) ? 3 : \
(u) & (1ul << 4) ? 4 : \
(u) & (1ul << 5) ? 5 : \
(u) & (1ul << 6) ? 6 : \
(u) & (1ul << 7) ? 7 : \
(u) & (1ul << 8) ? 8 : \
(u) & (1ul << 9) ? 9 : \
(u) & (1ul << 10) ? 10 : \
(u) & (1ul << 11) ? 11 : \
(u) & (1ul << 12) ? 12 : \
(u) & (1ul << 13) ? 13 : \
(u) & (1ul << 14) ? 14 : \
(u) & (1ul << 15) ? 15 : \
(u) & (1ul << 16) ? 16 : \
(u) & (1ul << 17) ? 17 : \
(u) & (1ul << 18) ? 18 : \
(u) & (1ul << 19) ? 19 : \
(u) & (1ul << 20) ? 20 : \
(u) & (1ul << 21) ? 21 : \
(u) & (1ul << 22) ? 22 : \
(u) & (1ul << 23) ? 23 : \
(u) & (1ul << 24) ? 24 : \
(u) & (1ul << 25) ? 25 : \
(u) & (1ul << 26) ? 26 : \
(u) & (1ul << 27) ? 27 : \
(u) & (1ul << 28) ? 28 : \
(u) & (1ul << 29) ? 29 : \
(u) & (1ul << 30) ? 30 : \
(u) & (1ul << 31) ? 31 : \
32)
#endif
/** @} */
/** \name Bit Reversing
* @{ */
/** \brief Reverses the bits of \a u8.
*
* \param[in] u8 U8 of which to reverse the bits.
*
* \return Value resulting from \a u8 with reversed bits.
*/
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))
/** \brief Reverses the bits of \a u16.
*
* \param[in] u16 U16 of which to reverse the bits.
*
* \return Value resulting from \a u16 with reversed bits.
*/
#define bit_reverse16(u16) ((uint16_t)(bit_reverse32((uint16_t)(u16)) >> 16))
/** \brief Reverses the bits of \a u32.
*
* \param[in] u32 U32 of which to reverse the bits.
*
* \return Value resulting from \a u32 with reversed bits.
*/
#define bit_reverse32(u32) __RBIT(u32)
/** \brief Reverses the bits of \a u64.
*
* \param[in] u64 U64 of which to reverse the bits.
*
* \return Value resulting from \a u64 with reversed bits.
*/
#define bit_reverse64(u64) ((uint64_t)(((uint64_t)bit_reverse32((uint64_t)(u64) >> 32)) |\
((uint64_t)bit_reverse32((uint64_t)(u64)) << 32)))
/** @} */
/** \name Alignment
* @{ */
/** \brief Tests alignment of the number \a val with the \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
*/
#define Test_align(val, n) (!Tst_bits( val, (n) - 1 ) )
/** \brief Gets alignment of the number \a val with respect to the \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Alignment of the number \a val with respect to the \a n boundary.
*/
#define Get_align(val, n) ( Rd_bits( val, (n) - 1 ) )
/** \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
*
* \param[in] lval Input/output lvalue.
* \param[in] n Boundary.
* \param[in] alg Alignment.
*
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
*/
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
/** \brief Aligns the number \a val with the upper \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Value resulting from the number \a val aligned with the upper \a n boundary.
*/
#define Align_up( val, n) (((val) + ((n) - 1)) & ~((n) - 1))
/** \brief Aligns the number \a val with the lower \a n boundary.
*
* \param[in] val Input value.
* \param[in] n Boundary.
*
* \return Value resulting from the number \a val aligned with the lower \a n boundary.
*/
#define Align_down(val, n) ( (val) & ~((n) - 1))
/** @} */
/** \name Mathematics
*
* The same considerations as for clz and ctz apply here but GCC does not
* provide built-in functions to access the assembly instructions abs, min and
* max and it does not produce them by itself in most cases, so two sets of
* macros are defined here:
* - Abs, Min and Max to apply to constant expressions (values known at
* compile time);
* - abs, min and max to apply to non-constant expressions (values unknown at
* compile time), abs is found in stdlib.h.
*
* @{ */
/** \brief Takes the absolute value of \a a.
*
* \param[in] a Input value.
*
* \return Absolute value of \a a.
*
* \note More optimized if only used with values known at compile time.
*/
#define Abs(a) (((a) < 0 ) ? -(a) : (a))
#ifndef __cplusplus
/** \brief Takes the minimal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Min(a, b) (((a) < (b)) ? (a) : (b))
/** \brief Takes the maximal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Max(a, b) (((a) > (b)) ? (a) : (b))
/** \brief Takes the minimal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define min(a, b) Min(a, b)
/** \brief Takes the maximal value of \a a and \a b.
*
* \param[in] a Input value.
* \param[in] b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define max(a, b) Max(a, b)
#endif
/** @} */
/** \brief Calls the routine at address \a addr.
*
* It generates a long call opcode.
*
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
* it is invoked from the CPU supervisor mode.
*
* \param[in] addr Address of the routine to call.
*
* \note It may be used as a long jump opcode in some special cases.
*/
#define Long_call(addr) ((*(void (*)(void))(addr))())
/** \name MCU Endianism Handling
* ARM is MCU little endian.
*
* @{ */
#define BE16(x) swap16(x)
#define LE16(x) (x)
#define le16_to_cpu(x) (x)
#define cpu_to_le16(x) (x)
#define LE16_TO_CPU(x) (x)
#define CPU_TO_LE16(x) (x)
#define be16_to_cpu(x) swap16(x)
#define cpu_to_be16(x) swap16(x)
#define BE16_TO_CPU(x) swap16(x)
#define CPU_TO_BE16(x) swap16(x)
#define le32_to_cpu(x) (x)
#define cpu_to_le32(x) (x)
#define LE32_TO_CPU(x) (x)
#define CPU_TO_LE32(x) (x)
#define be32_to_cpu(x) swap32(x)
#define cpu_to_be32(x) swap32(x)
#define BE32_TO_CPU(x) swap32(x)
#define CPU_TO_BE32(x) swap32(x)
/** @} */
/** \name Endianism Conversion
*
* The same considerations as for clz and ctz apply here but GCC's
* __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
* applied to constant expressions, so two sets of macros are defined here:
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
* at compile time);
* - swap16, swap32 and swap64 to apply to non-constant expressions (values
* unknown at compile time).
*
* @{ */
/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param[in] u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap16(u16) ((uint16_t)(((uint16_t)(u16) >> 8) |\
((uint16_t)(u16) << 8)))
/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param[in] u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap32(u32) ((uint32_t)(((uint32_t)Swap16((uint32_t)(u32) >> 16)) |\
((uint32_t)Swap16((uint32_t)(u32)) << 16)))
/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param[in] u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap64(u64) ((uint64_t)(((uint64_t)Swap32((uint64_t)(u64) >> 32)) |\
((uint64_t)Swap32((uint64_t)(u64)) << 32)))
/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param[in] u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define swap16(u16) Swap16(u16)
/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param[in] u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap32(u32) ((uint32_t)__builtin_bswap32((uint32_t)(u32)))
#else
# define swap32(u32) Swap32(u32)
#endif
/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param[in] u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap64(u64) ((uint64_t)__builtin_bswap64((uint64_t)(u64)))
#else
# define swap64(u64) ((uint64_t)(((uint64_t)swap32((uint64_t)(u64) >> 32)) |\
((uint64_t)swap32((uint64_t)(u64)) << 32)))
#endif
/** @} */
/** \name Target Abstraction
*
* @{ */
#define _GLOBEXT_ extern /**< extern storage-class specifier. */
#define _CONST_TYPE_ const /**< const type qualifier. */
#define _MEM_TYPE_SLOW_ /**< Slow memory type. */
#define _MEM_TYPE_MEDFAST_ /**< Fairly fast memory type. */
#define _MEM_TYPE_FAST_ /**< Fast memory type. */
#define memcmp_ram2ram memcmp /**< Target-specific memcmp of RAM to RAM. */
#define memcmp_code2ram memcmp /**< Target-specific memcmp of RAM to NVRAM. */
#define memcpy_ram2ram memcpy /**< Target-specific memcpy from RAM to RAM. */
#define memcpy_code2ram memcpy /**< Target-specific memcpy from NVRAM to RAM. */
/** @} */
/**
* \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
* integer arithmetic.
*
* \param[in] a An integer
* \param[in] b Another integer
*
* \return (\a a / \a b) rounded up to the nearest integer.
*/
#define div_ceil(a, b) (((a) + (b) - 1) / (b))
#endif /* #ifndef __ASSEMBLY__ */
#ifdef __ICCARM__
/** \name Compiler Keywords
*
* Port of some keywords from GCC to IAR Embedded Workbench.
*
* @{ */
#define __asm__ asm
#define __inline__ inline
#define __volatile__
/** @} */
#endif
#define FUNC_PTR void *
/**
* \def unused
* \brief Marking \a v as a unused parameter or value.
*/
#define unused(v) do { (void)(v); } while(0)
/* Define RAMFUNC attribute */
#if defined ( __CC_ARM ) /* Keil uVision 4 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define RAMFUNC __ramfunc
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#endif
/* Define OPTIMIZE_HIGH attribute */
#if defined ( __CC_ARM ) /* Keil uVision 4 */
# define OPTIMIZE_HIGH _Pragma("O3")
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define OPTIMIZE_HIGH _Pragma("optimize=high")
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define OPTIMIZE_HIGH __attribute__((optimize("s")))
#endif
#define PASS 0
#define FAIL 1
#define LOW 0
#define HIGH 1
typedef int8_t S8 ; //!< 8-bit signed integer.
typedef uint8_t U8 ; //!< 8-bit unsigned integer.
typedef int16_t S16; //!< 16-bit signed integer.
typedef uint16_t U16; //!< 16-bit unsigned integer.
typedef int32_t S32; //!< 32-bit signed integer.
typedef uint32_t U32; //!< 32-bit unsigned integer.
typedef int64_t S64; //!< 64-bit signed integer.
typedef uint64_t U64; //!< 64-bit unsigned integer.
typedef float F32; //!< 32-bit floating-point number.
typedef double F64; //!< 64-bit floating-point number.
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
#define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
#define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
#define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
#define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32.
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32.
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
#define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
#define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
#define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
#define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64.
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64.
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64.
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64.
#define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
#define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
#define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
#define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
#define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
#define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
#define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
#define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64.
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64.
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64.
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64.
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64.
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64.
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64.
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64.
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
#if defined(__ICCARM__)
#define SHORTENUM __packed
#elif defined(__GNUC__)
#define SHORTENUM __attribute__((packed))
#endif
/* No operation */
#if defined(__ICCARM__)
#define nop() __no_operation()
#elif defined(__GNUC__)
#define nop() (__NOP())
#endif
#define FLASH_DECLARE(x) const x
#define FLASH_EXTERN(x) extern const x
#define PGM_READ_BYTE(x) *(x)
#define PGM_READ_WORD(x) *(x)
#define MEMCPY_ENDIAN memcpy
#define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))
/*Defines the Flash Storage for the request and response of MAC*/
#define CMD_ID_OCTET (0)
/* Converting of values from CPU endian to little endian. */
#define CPU_ENDIAN_TO_LE16(x) (x)
#define CPU_ENDIAN_TO_LE32(x) (x)
#define CPU_ENDIAN_TO_LE64(x) (x)
/* Converting of values from little endian to CPU endian. */
#define LE16_TO_CPU_ENDIAN(x) (x)
#define LE32_TO_CPU_ENDIAN(x) (x)
#define LE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from little endian to CPU endian. */
#define CLE16_TO_CPU_ENDIAN(x) (x)
#define CLE32_TO_CPU_ENDIAN(x) (x)
#define CLE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from CPU endian to little endian. */
#define CCPU_ENDIAN_TO_LE16(x) (x)
#define CCPU_ENDIAN_TO_LE32(x) (x)
#define CCPU_ENDIAN_TO_LE64(x) (x)
#define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src))
#define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src))
/**
* @brief Converts a 64-Bit value into a 8 Byte array
*
* @param[in] value 64-Bit value
* @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
* @ingroup apiPalApi
*/
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
{
uint8_t index = 0;
while (index < 8)
{
data[index++] = value & 0xFF;
value = value >> 8;
}
}
/**
* @brief Converts a 16-Bit value into a 2 Byte array
*
* @param[in] value 16-Bit value
* @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
* @ingroup apiPalApi
*/
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/*
* @brief Converts a 2 Byte array into a 16-Bit value
*
* @param data Specifies the pointer to the 2 Byte array
*
* @return 16-Bit value
* @ingroup apiPalApi
*/
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
{
return (data[0] | ((uint16_t)data[1] << 8));
}
/* Converts a 4 Byte array into a 32-Bit value */
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
{
union
{
uint32_t u32;
uint8_t u8[4];
}long_addr;
uint8_t index;
for (index = 0; index < 4; index++)
{
long_addr.u8[index] = *data++;
}
return long_addr.u32;
}
/**
* @brief Converts a 8 Byte array into a 64-Bit value
*
* @param data Specifies the pointer to the 8 Byte array
*
* @return 64-Bit value
* @ingroup apiPalApi
*/
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
{
union
{
uint64_t u64;
uint8_t u8[8];
} long_addr;
uint8_t index;
for (index = 0; index < 8; index++)
{
long_addr.u8[index] = *data++;
}
return long_addr.u64;
}
/** @} */
#endif /* UTILS_COMPILER_H_INCLUDED */