rt-thread-official/bsp/tm4c123bsp/libraries/Drivers/drv_adc.c

165 lines
3.6 KiB
C
Raw Normal View History

#include "drv_adc.h"
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "hw_memmap.h"
#include "adc.h"
#include "sysctl.h"
#ifdef RT_USING_ADC
#include "adc_config.h"
#include "tm4c123_config.h"
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static struct tm4c123_adc_config adc_config[] =
{
#ifdef BSP_USING_ADC0
ADC0_CONFIG,
#endif
#ifdef BSP_USING_ADC1
ADC1_CONFIG,
#endif
};
struct tm4c123_adc
{
struct tm4c123_adc_config *config;
struct rt_adc_device adc_device;
};
static struct tm4c123_adc adc_obj[sizeof(adc_config) / sizeof(adc_config[0])]={0};
static rt_err_t tm4c123_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
RT_ASSERT(device != RT_NULL);
//stm32_adc_handler = device->parent.user_data;
if (enabled)
{
ADCSequenceEnable(ADC0_BASE, 2);
ADCIntClear(ADC0_BASE, 2);
}
else
{
ADCSequenceDisable(ADC0_BASE, 2);
}
return RT_EOK;
}
static rt_err_t tm4c123_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
uint32_t pui32ADC0Value[4]={0};
// Trigger the ADC conversion.
//
ADCProcessorTrigger(ADC0_BASE, 2);
//
// Wait for conversion to be completed.
//
while(!ADCIntStatus(ADC0_BASE, 2, false))
{
}
//
// Clear the ADC interrupt flag.
//
ADCIntClear(ADC0_BASE, 2);
//
// Read ADC Value.
//
ADCSequenceDataGet(ADC0_BASE, 2, pui32ADC0Value);
/* get ADC value */
*value = (rt_uint32_t)pui32ADC0Value[channel];
return RT_EOK;
}
static const struct rt_adc_ops tm4c123_adc_ops =
{
.enabled = tm4c123_adc_enabled,
.convert = tm4c123_get_adc_value,
};
static rt_err_t tm4c123_hw_adc_init(struct tm4c123_adc *device)
{
uint32_t adcbase = device->config->adcbase;
uint32_t sequencenum = device->config->sequence;
ADCSequenceConfigure(adcbase, sequencenum,
device->config->trigermode, 0);
ADCSequenceStepConfigure(ADC0_BASE, 2, 0, ADC_CTL_CH7 );
ADCSequenceStepConfigure(ADC0_BASE, 2, 1, ADC_CTL_CH6 | ADC_CTL_IE );
ADCSequenceStepConfigure(ADC0_BASE, 2, 2, ADC_CTL_CH5 );
//Tell the ADC logic
// that this is the last conversion on sequence 3 (ADC_CTL_END).
ADCSequenceStepConfigure(ADC0_BASE, 2, 3, ADC_CTL_CH4 | ADC_CTL_IE |
ADC_CTL_END);
return RT_EOK;
}
static int tm4c123_adc_init(void)
{
int i = 0;
rt_size_t obj_num = sizeof(adc_obj) / sizeof(struct tm4c123_adc);
rt_err_t result = RT_EOK;
adc_hw_config();
for (i = 0; i < obj_num; i++)
{
/* ADC init */
adc_obj[i].config = &adc_config[i];
if(tm4c123_hw_adc_init(&adc_obj[i])!= RT_EOK)
{
LOG_E("%s init failed", adc_obj[i].config->name);
result = -RT_ERROR;
return result;
}
else
{
LOG_D("%s init success", adc_obj[i].config->name);
/* register adc device */
if (rt_hw_adc_register(&adc_obj[i].adc_device, adc_obj[i].config->name, &tm4c123_adc_ops,RT_NULL) == RT_EOK)
{
LOG_D("%s register success", adc_obj[i].config->name);
}
else
{
LOG_E("%s register failed", adc_obj[i].config->name);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_APP_EXPORT(tm4c123_adc_init);
#endif /*RT_UING_ADC*/