rt-thread-official/bsp/stm32l072/board/drv_spi.c

291 lines
7.4 KiB
C
Raw Normal View History

2016-09-21 13:18:21 +08:00
/*
* File : drv_spi.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2015, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2016-09-02 Aubr.Cool the first version
*/
#include <stm32l0xx.h>
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#ifdef RT_USING_COMPONENTS_INIT
#include <components.h>
#endif
#define SPIRXEVENT 0x01
#define SPITXEVENT 0x02
#ifdef RT_USING_SPI
#define SPITIMEOUT 2
#define SPICRCEN 0
struct stm32_hw_spi;
typedef void(*spiirqapi)(struct stm32_hw_spi *hspi);
struct stm32_hw_spi {
SPI_TypeDef* Instance;
struct rt_spi_configuration* cfg;
};
struct stm32_spi {
SPI_TypeDef* spi_device;
struct stm32_hw_spi *data;
};
struct stm32_hw_spi_cs {
rt_uint32_t pin;
};
static rt_err_t stml0xx_spi_init(SPI_TypeDef * spix, struct rt_spi_configuration * cfg)
{
SPI_HandleTypeDef hspi;
hspi.Instance = spix;
if(cfg->mode & RT_SPI_SLAVE) {
hspi.Init.Mode = SPI_MODE_SLAVE;
} else {
hspi.Init.Mode = SPI_MODE_MASTER;
}
if(cfg->mode & RT_SPI_3WIRE) {
hspi.Init.Direction = SPI_DIRECTION_1LINE;
} else {
hspi.Init.Direction = SPI_DIRECTION_2LINES;
}
if(cfg->data_width == 8) {
hspi.Init.DataSize = SPI_DATASIZE_8BIT;
} else if(cfg->data_width == 16) {
hspi.Init.DataSize = SPI_DATASIZE_16BIT;
} else {
return RT_EIO;
}
if(cfg->mode & RT_SPI_CPHA) {
hspi.Init.CLKPhase = SPI_PHASE_2EDGE;
} else {
hspi.Init.CLKPhase = SPI_PHASE_1EDGE;
}
if(cfg->mode & RT_SPI_CPOL) {
hspi.Init.CLKPolarity = SPI_POLARITY_HIGH;
} else {
hspi.Init.CLKPolarity = SPI_POLARITY_LOW;
}
if(cfg->mode & RT_SPI_NO_CS) {
hspi.Init.NSS = SPI_NSS_SOFT;
} else {
hspi.Init.NSS = SPI_NSS_HARD_OUTPUT;
}
hspi.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
if(cfg->mode & RT_SPI_MSB) {
hspi.Init.FirstBit = SPI_FIRSTBIT_MSB;
} else {
hspi.Init.FirstBit = SPI_FIRSTBIT_LSB;
}
hspi.Init.TIMode = SPI_TIMODE_DISABLE;
hspi.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi.Init.CRCPolynomial = 7;
if (HAL_SPI_Init(&hspi) != HAL_OK)
{
return RT_EIO;
}
__HAL_SPI_ENABLE(&hspi);
return RT_EOK;
}
#define SPISTEP(datalen) (((datalen) == 8) ? 1 : 2)
#define SPISEND_1(reg, ptr, datalen) \
do {\
if(datalen == 8) { \
(reg) = *(rt_uint8_t *)(ptr); \
} else { \
(reg) = *(rt_uint16_t *) (ptr); \
} \
} while(0)
#define SPIRECV_1(reg, ptr, datalen) \
do {\
if(datalen == 8) { \
*(rt_uint8_t *)(ptr) = (reg); \
} else { \
*(rt_uint16_t *) (ptr) = reg; \
} \
} while(0)
static rt_err_t spitxrx1b(struct stm32_hw_spi *hspi, void *rcvb, const void *sndb)
{
rt_uint32_t padrcv = 0;
rt_uint32_t padsnd = 0xFF;
if(! rcvb && !sndb) {
return RT_ERROR;
}
if(!rcvb) {
rcvb = &padrcv;
}
if(!sndb) {
sndb = &padsnd;
}
while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE) == RESET);
SPISEND_1(hspi->Instance->DR, sndb, hspi->cfg->data_width);
while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE) == RESET);
SPIRECV_1(hspi->Instance->DR, rcvb, hspi->cfg->data_width);
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_err_t res;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct stm32_spi* spix;
spix = (struct stm32_spi *)device->bus->parent.user_data;
struct stm32_hw_spi *hspi = spix->data;
struct stm32_hw_spi_cs * cs = device->parent.user_data;
if(message->cs_take) {
rt_pin_write(cs->pin, 0);
}
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
while(length) {
res = spitxrx1b(hspi, rcvb, sndb);
if(rcvb) {
rcvb += SPISTEP(hspi->cfg->data_width);
}
if(sndb) {
sndb += SPISTEP(hspi->cfg->data_width);
}
if(res != RT_EOK) {
break;
}
length--;
}
/* Wait until Busy flag is reset before disabling SPI */
while(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_BSY) == SET);
if(message->cs_release) {
rt_pin_write(cs->pin, 1);
}
return message->length - length;
}
#ifdef RT_USING_SPI1
static struct stm32_hw_spi spi1hwdata = {
.Instance = SPI1,
};
const static struct stm32_spi spi1 = {
SPI1,
&spi1hwdata,
};
const static struct stm32_hw_spi_cs stm32_spi1_cs = {
SPI1PINNSS,
};
rt_err_t spi1configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
spi1hwdata.cfg = configuration;
return stml0xx_spi_init(spi1.spi_device, configuration);
}
const struct rt_spi_ops stm_spi_ops1 =
{
.configure = spi1configure,
.xfer = spixfer,
};
static struct rt_spi_bus stm_spi_bus1 = {
.parent = {
.user_data = (void *)&spi1,
},
};
#endif /*RT_USING_SPI1*/
#ifdef RT_USING_SPI2
static struct stm32_hw_spi spi2hwdata = {
.Instance = SPI2,
};
const struct stm32_spi spi2 = {
SPI2,
&spi2hwdata,
};
rt_err_t spi2configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
spi2hwdata.cfg = configuration;
return stml0xx_spi_init(spi2.spi_device, configuration);
}
const struct rt_spi_ops stm_spi_ops2 =
{
.configure = spi2configure,
.xfer = spixfer,
};
const static struct stm32_hw_spi_cs stm32_spi2_cs = {
SPI2PINNSS,
};
static struct rt_spi_bus stm_spi_bus2 = {
.parent = {
.user_data = (void *)&spi2,
},
};
#endif /*RT_USING_SPI2*/
static void RCC_Configuration(void)
{
#ifdef RT_USING_SPI1
__HAL_RCC_SPI1_CLK_ENABLE();
#endif /*RT_USING_SPI1*/
#ifdef RT_USING_SPI2
__HAL_RCC_SPI2_CLK_ENABLE();
#endif /*RT_USING_SPI2*/
}
static void GPIO_Configuration(void)
{
#ifdef RT_USING_SPI1
{
/**SPI1 GPIO Configuration **/
rt_uint32_t mode;
mode = (GPIO_AF0_SPI1 << 8) | GPIO_MODE_AF_PP;
stm32_pin_mode_early(SPI1PINSCK, mode);
stm32_pin_mode_early(SPI1PINMISO, mode);
stm32_pin_mode_early(SPI1PINMOSI, mode);
}
#endif /*RT_USING_SPI1*/
#ifdef RT_USING_SPI2
#endif /*RT_USING_SPI1*/
}
int stm32_hw_spi_init(void)
{
int result1 = RT_EOK, result2 = RT_EOK;
RCC_Configuration();
GPIO_Configuration();
#ifdef RT_USING_SPI1
{
result1 = rt_spi_bus_register(&stm_spi_bus1, "spi1", &stm_spi_ops1);
static struct rt_spi_device spi_device;
rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
stm32_pin_mode_early(SPI1PINNSS, mode);
stm32_pin_write_early(SPI1PINNSS, 1);
rt_spi_bus_attach_device(&spi_device, "spi10", "spi1", (void *)&stm32_spi1_cs);
}
#endif /*RT_USING_SPI1*/
#ifdef RT_USING_SPI2
{
result2 = rt_spi_bus_register(&stm_spi_bus2, "spi2", &stm_spi_ops1);
static struct rt_spi_device spi_device;
rt_uint32_t mode = GPIO_MODE_OUTPUT_PP;
stm32_pin_mode_early(SPI2PINNSS, mode);
stm32_pin_write_early(SPI2PINNSS, 1);
rt_spi_bus_attach_device(&spi_device, "spi20", "spi2", (void *)&stm32_spi2_cs);
}
#endif /*RT_USING_SPI2*/
return result1 | result2;
}
INIT_BOARD_EXPORT(stm32_hw_spi_init);
#endif /*RT_USING_SPI*/