4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-02-25 10:47:05 +08:00
rt-thread-official/bsp/hc32/tests/test_uart_v2.c

298 lines
9.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2022-2024, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-12-30 CDT first version
*/
/*
*
* uart_sample_v2
* "hello RT-Thread!"
*
* rtconfig.h修改如下
* #define BSP_USING_GPIO
* #define BSP_USING_UART
* #define BSP_USING_UART1
* //#define BSP_UART1_RX_USING_DMA
* //#define BSP_UART1_TX_USING_DMA
* #define BSP_UART1_RX_BUFSIZE 256
* #define BSP_UART1_TX_BUFSIZE 256
* #define BSP_USING_UART2
* #define BSP_UART2_RX_USING_DMA
* #define BSP_UART2_TX_USING_DMA
* #define BSP_UART2_RX_BUFSIZE 256
* #define BSP_UART2_TX_BUFSIZE 0
* #define BSP_USING_UART5
* //#define BSP_UART5_RX_USING_DMA
* //#define BSP_UART5_TX_USING_DMA
* #define BSP_UART5_RX_BUFSIZE 256
* #define BSP_UART5_TX_BUFSIZE 256
*
* DMA方式rtconfig.h修改如下
* #define BSP_USING_GPIO
* #define BSP_USING_UART
* #define BSP_USING_UART1
* #define BSP_UART1_RX_USING_DMA
* #define BSP_UART1_TX_USING_DMA
* #define BSP_UART1_RX_BUFSIZE 256
* #define BSP_UART1_TX_BUFSIZE 256
* #define BSP_USING_UART2
* #define BSP_UART2_RX_USING_DMA
* #define BSP_UART2_TX_USING_DMA
* #define BSP_UART2_RX_BUFSIZE 256
* #define BSP_UART2_TX_BUFSIZE 0
* #define BSP_USING_UART5
* #define BSP_UART5_RX_USING_DMA
* #define BSP_UART5_TX_USING_DMA
* #define BSP_UART5_RX_BUFSIZE 256
* #define BSP_UART5_TX_BUFSIZE 256
*
*
* uart1 uart_sample_v2 uart1 int
* uart1 DMAuart_sample_v2 uart1 dma
*/
#include <rtthread.h>
#include <rtdevice.h>
#if defined(HC32F460) && defined(BSP_USING_UART2)
#define SAMPLE_DEFAULT_UART_NAME "uart2"
#elif defined(HC32F4A0) && defined (BSP_USING_UART6)
#define SAMPLE_DEFAULT_UART_NAME "uart6"
#elif defined(HC32F448) && defined (BSP_USING_UART1)
#define SAMPLE_DEFAULT_UART_NAME "uart1"
#elif defined(HC32F472) && defined (BSP_USING_UART1)
#define SAMPLE_DEFAULT_UART_NAME "uart1"
#endif
#if defined(SAMPLE_DEFAULT_UART_NAME)
/* 串口接收消息结构 */
struct rx_msg
{
rt_device_t dev;
rt_size_t size;
};
/* 串口设备句柄 */
static rt_device_t serial;
/* 消息队列控制块 */
static struct rt_messagequeue rx_mq;
/* 用于接收消息的信号量 */
static struct rt_semaphore rx_sem;
static rt_device_t serial;
static struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
/* DMA接收数据回调函数 */
static rt_err_t uart_input_dma(rt_device_t dev, rt_size_t size)
{
struct rx_msg msg;
rt_err_t result;
msg.dev = dev;
msg.size = size;
result = rt_mq_send(&rx_mq, &msg, sizeof(msg));
if (result == -RT_EFULL)
{
/* 消息队列满 */
rt_kprintf("message queue full!\n");
}
return result;
}
/* INT接收数据回调函数 */
static rt_err_t uart_input_int(rt_device_t dev, rt_size_t size)
{
/* 串口接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
rt_sem_release(&rx_sem);
return RT_EOK;
}
/* 发送完成回调函数 */
static rt_err_t uart_ouput(rt_device_t dev, void *buffer)
{
return RT_EOK;
}
static void serial_thread_entry_dma(void *parameter)
{
struct rx_msg msg;
rt_err_t result;
rt_uint32_t rx_length;
static char rx_buffer[256];
static rt_uint32_t buf_size = sizeof(rx_buffer);
static rt_uint32_t put_index = 0;
while (1)
{
rt_memset(&msg, 0, sizeof(msg));
/* 从消息队列中读取消息 */
result = rt_mq_recv(&rx_mq, &msg, sizeof(msg), RT_WAITING_FOREVER);
if (result > 0UL)
{
while (msg.size)
{
if (msg.size > (buf_size - put_index))
{
rx_length = rt_device_read(msg.dev, 0, rx_buffer + put_index, buf_size - put_index);
msg.size -= rx_length;
}
else
{
rx_length = rt_device_read(msg.dev, 0, rx_buffer + put_index, msg.size);
msg.size = 0UL;
}
rt_device_write(serial, 0, rx_buffer + put_index, rx_length);
put_index += rx_length;
put_index %= sizeof(rx_buffer);
}
}
}
}
static void serial_thread_entry_int(void *parameter)
{
char ch;
while (1)
{
/* 从串口读取一个字节的数据,没有读取到则等待接收信号量 */
while (rt_device_read(serial, -1, &ch, 1) != 1)
{
/* 阻塞等待接收信号量,等到信号量后再次读取数据 */
rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
}
/* 读取到的数据通过串口错位输出 */
rt_device_write(serial, 0, &ch, 1);
}
}
int uart_sample_v2(int argc, char *argv[])
{
rt_thread_t thread;
rt_err_t ret = RT_EOK;
rt_size_t n;
rt_err_t open_flag = 0UL;
static char uart_name[RT_NAME_MAX];
static char comm_mode[RT_NAME_MAX];
const static char comm_mode_int[] = "int";
const static char comm_mode_dma[] = "dma";
const static char comm_info_dma[] = "\r\n drv_version: drv_usart_v2 \r\n communication: using DMA \r\n uart_ch: ";
const static char comm_info_int[] = "\r\n drv_version: drv_usart_v2 \r\n communication: using interrupt \r\n uart_ch: ";
static char comm_info[150];
rt_memset(uart_name, 0, sizeof(uart_name));
rt_memset(comm_mode, 0, sizeof(comm_mode));
if (argc == 1)
{
rt_strncpy(uart_name, SAMPLE_DEFAULT_UART_NAME, RT_NAME_MAX);
rt_strncpy(comm_mode, comm_mode_int, sizeof(comm_mode_int));
}
else if (argc == 2)
{
rt_strncpy(uart_name, argv[1], RT_NAME_MAX);
rt_strncpy(comm_mode, comm_mode_int, sizeof(comm_mode_int));
}
else if (argc == 3)
{
rt_strncpy(uart_name, argv[1], RT_NAME_MAX);
rt_strncpy(comm_mode, argv[2], RT_NAME_MAX);
}
else
{
rt_kprintf("argc error!\n");
return -RT_ERROR;
}
/* 查找串口设备 */
serial = rt_device_find(uart_name);
if (!serial)
{
rt_kprintf("find %s failed!\n", uart_name);
return -RT_ERROR;
}
/* modify configure */
config.baud_rate = BAUD_RATE_115200; //baudrate 115200
config.data_bits = DATA_BITS_8; //data bit 8
config.stop_bits = STOP_BITS_1; //stop bit 1
config.parity = PARITY_NONE;
rt_device_control(serial, RT_DEVICE_CTRL_CONFIG, &config);
if (0 == rt_strncmp(comm_mode, comm_mode_dma, 3))
{
static char msg_pool[256U];
/* 初始化消息队列 */
rt_mq_init(&rx_mq, "rx_mq",
msg_pool, /* 存放消息的缓冲区 */
sizeof(struct rx_msg), /* 一条消息的最大长度 */
sizeof(msg_pool), /* 存放消息的缓冲区大小 */
RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
/* 以DMA接收和发送模式打开串口设备 */
open_flag |= RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX;
rt_device_open(serial, open_flag);
/* 设置回调函数 */
rt_device_set_rx_indicate(serial, uart_input_dma);
rt_device_set_tx_complete(serial, uart_ouput);
/* 发送字符串 */
n = rt_strlen(comm_info_dma);
rt_strncpy(comm_info, comm_info_dma, n);
rt_strncpy(comm_info + n, uart_name, rt_strlen(uart_name));
rt_device_write(serial, 0, comm_info, rt_strlen(comm_info));
/* 创建 serial 线程 */
thread = rt_thread_create("serial", serial_thread_entry_dma, RT_NULL, 1024, 25, 10);
}
else if (0 == rt_strncmp(comm_mode, comm_mode_int, 3))
{
/* 以中断模式打开串口设备 */
open_flag = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX;
rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
rt_device_open(serial, open_flag);
/* 设置回调函数 */
rt_device_set_rx_indicate(serial, uart_input_int);
rt_device_set_tx_complete(serial, uart_ouput);
/* 发送字符串 */
n = rt_strlen(comm_info_int);
rt_strncpy(comm_info, comm_info_int, n);
rt_strncpy(comm_info + n, uart_name, rt_strlen(uart_name));
rt_device_write(serial, 0, comm_info, rt_strlen(comm_info));
/* 创建 serial 线程 */
thread = rt_thread_create("serial", serial_thread_entry_int, RT_NULL, 1024, 25, 10);
}
else
{
rt_kprintf("communication mode error, please input cmd: uart_sample_v2 %s int or uart_sample_v1 uartx dma!\n", uart_name);
return -RT_ERROR;
}
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
else
{
ret = -RT_ERROR;
}
return ret;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(uart_sample_v2, uart device sample);
#endif