4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 10:07:22 +08:00

236 lines
8.4 KiB
C
Raw Normal View History

2018-09-20 23:18:14 +08:00
/*
** ###################################################################
** Processors: MIMXRT1052CVJ5B
** MIMXRT1052CVL5B
** MIMXRT1052DVJ6B
** MIMXRT1052DVL6B
**
2019-06-12 15:01:12 +08:00
** Compilers: Freescale C/C++ for Embedded ARM
2018-09-20 23:18:14 +08:00
** GNU C Compiler
** IAR ANSI C/C++ Compiler for ARM
2019-06-12 15:01:12 +08:00
** Keil ARM C/C++ Compiler
2018-09-20 23:18:14 +08:00
** MCUXpresso Compiler
**
2019-06-12 15:01:12 +08:00
** Reference manual: IMXRT1050RM Rev.2.1, 12/2018
** Version: rev. 1.2, 2018-11-27
** Build: b181205
2018-09-20 23:18:14 +08:00
**
** Abstract:
** Provides a system configuration function and a global variable that
** contains the system frequency. It configures the device and initializes
** the oscillator (PLL) that is part of the microcontroller device.
**
** Copyright 2016 Freescale Semiconductor, Inc.
** Copyright 2016-2018 NXP
** All rights reserved.
**
2019-06-12 15:01:12 +08:00
** SPDX-License-Identifier: BSD-3-Clause
2018-09-20 23:18:14 +08:00
**
** http: www.nxp.com
** mail: support@nxp.com
**
** Revisions:
** - rev. 0.1 (2017-01-10)
** Initial version.
2019-06-12 15:01:12 +08:00
** - rev. 1.0 (2018-09-21)
** Update interrupt vector table and dma request source.
** Update register BEE_ADDR_OFFSET1's bitfield name to ADDR_OFFSET1.
** Split GPIO_COMBINED_IRQS to GPIO_COMBINED_LOW_IRQS and GPIO_COMBINED_HIGH_IRQS.
** - rev. 1.1 (2018-11-16)
** Update header files to align with IMXRT1050RM Rev.1.
** - rev. 1.2 (2018-11-27)
** Update header files to align with IMXRT1050RM Rev.2.1.
2018-09-20 23:18:14 +08:00
**
** ###################################################################
*/
/*!
* @file MIMXRT1052
2019-06-12 15:01:12 +08:00
* @version 1.2
* @date 2018-11-27
2018-09-20 23:18:14 +08:00
* @brief Device specific configuration file for MIMXRT1052 (implementation file)
*
* Provides a system configuration function and a global variable that contains
* the system frequency. It configures the device and initializes the oscillator
* (PLL) that is part of the microcontroller device.
*/
#include <stdint.h>
#include "fsl_device_registers.h"
/* ----------------------------------------------------------------------------
-- Core clock
---------------------------------------------------------------------------- */
uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;
/* ----------------------------------------------------------------------------
-- SystemInit()
---------------------------------------------------------------------------- */
void SystemInit (void) {
#if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
SCB->CPACR |= ((3UL << 10*2) | (3UL << 11*2)); /* set CP10, CP11 Full Access */
#endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */
#if defined(__MCUXPRESSO)
extern uint32_t g_pfnVectors[]; // Vector table defined in startup code
SCB->VTOR = (uint32_t)g_pfnVectors;
#endif
/* Disable Watchdog Power Down Counter */
WDOG1->WMCR &= ~WDOG_WMCR_PDE_MASK;
WDOG2->WMCR &= ~WDOG_WMCR_PDE_MASK;
/* Watchdog disable */
#if (DISABLE_WDOG)
if (WDOG1->WCR & WDOG_WCR_WDE_MASK)
{
WDOG1->WCR &= ~WDOG_WCR_WDE_MASK;
}
if (WDOG2->WCR & WDOG_WCR_WDE_MASK)
{
WDOG2->WCR &= ~WDOG_WCR_WDE_MASK;
}
RTWDOG->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
RTWDOG->TOVAL = 0xFFFF;
RTWDOG->CS = (uint32_t) ((RTWDOG->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
#endif /* (DISABLE_WDOG) */
/* Disable Systick which might be enabled by bootrom */
if (SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)
{
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
}
/* Enable instruction and data caches */
#if defined(__ICACHE_PRESENT) && __ICACHE_PRESENT
if (SCB_CCR_IC_Msk != (SCB_CCR_IC_Msk & SCB->CCR)) {
SCB_EnableICache();
}
#endif
#if defined(__DCACHE_PRESENT) && __DCACHE_PRESENT
if (SCB_CCR_DC_Msk != (SCB_CCR_DC_Msk & SCB->CCR)) {
SCB_EnableDCache();
}
#endif
SystemInitHook();
}
/* ----------------------------------------------------------------------------
-- SystemCoreClockUpdate()
---------------------------------------------------------------------------- */
void SystemCoreClockUpdate (void) {
uint32_t freq;
uint32_t PLL1MainClock;
uint32_t PLL2MainClock;
/* Periph_clk2_clk ---> Periph_clk */
if (CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK)
{
switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
{
/* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
if(CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_BYPASS_MASK)
{
freq = (((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK) >> CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_SHIFT) == 0U) ?
CPU_XTAL_CLK_HZ : CPU_CLK1_HZ;
}
else
{
freq = (CPU_XTAL_CLK_HZ * ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) ? 22U : 20U));
}
break;
/* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
freq = CPU_XTAL_CLK_HZ;
break;
case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
freq = (((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK) >> CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_SHIFT) == 0U) ?
CPU_XTAL_CLK_HZ : CPU_CLK1_HZ;
case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
default:
freq = 0U;
break;
}
freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
}
/* Pre_Periph_clk ---> Periph_clk */
else
{
/* check if pll is bypassed */
if(CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_BYPASS_MASK)
{
PLL1MainClock = (((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_MASK) >> CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_SHIFT) == 0U) ?
CPU_XTAL_CLK_HZ : CPU_CLK1_HZ;
}
else
{
PLL1MainClock = ((CPU_XTAL_CLK_HZ * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U);
}
/* check if pll is bypassed */
if(CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_BYPASS_MASK)
{
PLL2MainClock = (((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK) >> CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_SHIFT) == 0U) ?
CPU_XTAL_CLK_HZ : CPU_CLK1_HZ;
}
else
{
PLL2MainClock = (CPU_XTAL_CLK_HZ * ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) ? 22U : 20U));
}
PLL2MainClock += ((uint64_t)CPU_XTAL_CLK_HZ * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM));
switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
{
/* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
freq = PLL2MainClock;
break;
/* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
freq = PLL2MainClock / ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT) * 18U;
break;
/* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
freq = PLL2MainClock / ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT) * 18U;
break;
/* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
freq = PLL1MainClock / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
break;
default:
freq = 0U;
break;
}
}
SystemCoreClock = (freq / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U));
}
/* ----------------------------------------------------------------------------
-- SystemInitHook()
---------------------------------------------------------------------------- */
__attribute__ ((weak)) void SystemInitHook (void) {
/* Void implementation of the weak function. */
}