4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-24 01:47:22 +08:00

349 lines
9.5 KiB
C
Raw Normal View History

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_helium_utils.h
* Description: Utility functions for Helium development
*
* $Date: 09. September 2019
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_UTILS_HELIUM_H_
#define _ARM_UTILS_HELIUM_H_
/***************************************
Definitions available for MVEF and MVEI
***************************************/
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)
#define INACTIVELANE 0 /* inactive lane content */
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
/***************************************
Definitions available for MVEF only
***************************************/
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)
__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
{
float32_t acc;
acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
vgetq_lane(in, 2) + vgetq_lane(in, 3);
return acc;
}
/* newton initial guess */
#define INVSQRT_MAGIC_F32 0x5f3759df
#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
{ \
float32x4_t tmp; \
\
/* tmp = xhalf * x * x */ \
tmp = vmulq(xStart, xStart); \
tmp = vmulq(tmp, xHalf); \
/* (1.5f - xhalf * x * x) */ \
tmp = vsubq(vdupq_n_f32(1.5f), tmp); \
/* x = x*(1.5f-xhalf*x*x); */ \
invSqrt = vmulq(tmp, xStart); \
}
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
/***************************************
Definitions available for MVEI only
***************************************/
#if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)
#include "arm_common_tables.h"
/* Following functions are used to transpose matrix in f32 and q31 cases */
__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
/*
*
* | 0 1 | => | 0 2 |
* | 2 3 | | 1 3 |
*
*/
uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
/*
*
* | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 |
* | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 |
* | 6 7 8 | | 2 5 8 | (row major) | 8 . . . |
*
*/
uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
pDataDest[8] = pDataSrc[8];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
{
/*
* 4x4 Matrix transposition
* is 4 x de-interleave operation
*
* 0 1 2 3 0 4 8 12
* 4 5 6 7 1 5 9 13
* 8 9 10 11 2 6 10 14
* 12 13 14 15 3 7 11 15
*/
uint32x4x4_t vecIn;
vecIn = vld4q((uint32_t const *) pDataSrc);
vstrwq(pDataDest, vecIn.val[0]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[1]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[2]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[3]);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
uint16_t srcRows,
uint16_t srcCols,
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
uint32x4_t vecOffs;
uint32_t i;
uint32_t blkCnt;
uint32_t const *pDataC;
uint32_t *pDataDestR;
uint32x4_t vecIn;
vecOffs = vidupq_u32((uint32_t)0, 1);
vecOffs = vecOffs * srcCols;
i = srcCols;
do
{
pDataC = (uint32_t const *) pDataSrc;
pDataDestR = pDataDest;
blkCnt = srcRows >> 2;
while (blkCnt > 0U)
{
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq(pDataDestR, vecIn);
pDataDestR += 4;
pDataC = pDataC + srcCols * 4;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
*/
blkCnt = srcRows & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq_p(pDataDestR, vecIn, p0);
}
pDataSrc += 1;
pDataDest += srcRows;
}
while (--i);
return (ARM_MATH_SUCCESS);
}
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
{
q63x2_t vecTmpLL;
q31x4_t vecTmp0, vecTmp1;
q31_t scale;
q63_t tmp64;
q31x4_t vecNrm, vecDst, vecIdx, vecSignBits;
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
/*
* index = in >> 24;
*/
vecIdx = vecNrm >> 24;
vecIdx = vecIdx << 1;
vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
/*
* scale elements 0, 2
*/
scale = 26 + (vecSignBits[0] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[0] = (q31_t) tmp64;
scale = 26 + (vecSignBits[2] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[2] = (q31_t) tmp64;
vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
/*
* scale elements 1, 3
*/
scale = 26 + (vecSignBits[1] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[1] = (q31_t) tmp64;
scale = 26 + (vecSignBits[3] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[3] = (q31_t) tmp64;
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
return vecDst;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
{
q31x4_t vecTmpLev, vecTmpLodd, vecSignL;
q15x8_t vecTmp0, vecTmp1;
q15x8_t vecNrm, vecDst, vecIdx, vecSignBits;
vecDst = vuninitializedq_s16();
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
vecIdx = vecNrm >> 8;
vecIdx = vecIdx << 1;
vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecSignBits = vecSignBits >> 1;
vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
vecTmp0 = vecSignBits + 10;
/*
* negate sign to apply register based vshl
*/
vecTmp0 = -vecTmp0;
/*
* shift even elements
*/
vecSignL = vmovlbq(vecTmp0);
vecTmpLev = vshlq(vecTmpLev, vecSignL);
/*
* shift odd elements
*/
vecSignL = vmovltq(vecTmp0);
vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
/*
* merge and narrow odd and even parts
*/
vecDst = vmovnbq_s32(vecDst, vecTmpLev);
vecDst = vmovntq_s32(vecDst, vecTmpLodd);
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
return vecDst;
}
#endif
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
#endif